
Hey APR! Integrate Our Fault Localization Skill:
Toward Better Automated Program Repair

Kyosuke Yamate∗, Masanari Kondo∗, Yutaro Kashiwa∗, Yasutaka Kamei∗ and Naoyasu Ubayashi∗
∗Kyushu University, Japan

Email: yamate@posl.ait.kyushu-u.ac.jp, (kondo, kashiwa, kamei, ubayashi)@ait.kyushu-u.ac.jp

Abstract—Background: Prior studies lack the perspective of
using developer’s skills to augment the performance of automated
program repair (APR). APR has a phase referred to as fault
localization (FL), which automatically finds the faulty statement
that causes faults. To achieve a well-performed FL phase, we
study developers’ FL skills, which allow developers to find faulty
statements. We suppose that such FL skills can add additional
information to fault localization to augment the accuracy of fault
localization and reduce the execution cost of APR.
Aims: We aim at revealing a criterion that distinguishes whether
using the FL skill reduces the execution cost of the state-of-the-
art APR, TBar, depending on the accuracy of the FL skill.
Method: We conduct a simulation case study in the Defects4J
dataset, which is the most popular dataset. We compare the
numbers of candidate patches generated by TBar using the FL
skill or using spectrum-based fault localization (SBFL).
Results: Our case study revealed that, if developers localized
the faulty statements before inspecting 40% of the statements
in the target program, the execution cost of TBar reduces for
over half of the studied faults. The 40% value is a requirement
for developers using the FL skill to augment the performance of
APR.
Conclusion: If developers can localize the faulty statement before
inspecting 40% of the statements, integrating the FL skill with
SBFL makes TBar faster compared to when SBFL is used.

Index Terms—Automated Program Repair, Fault Localization,
Developers

I. INTRODUCTION

Debugging is one of the most time-consuming processes in
software development where developers find and fix the faulty
statement by their skills based on their experience, knowledge,
and instincts. The debugging process accounts for more than
50% of software development costs [1], [2]. To facilitate this
process, Automated Program Repair (APR) has become an
important research field in software engineering [2].

APR consists of two phases: “fault localization” and “patch
generation”. The first phase identifies the faulty statement that
causes faults; the second phase creates patches and validates
them to see if each one passes the test case. In particular, the
patch generation phase heavily relies on the fault localization
phase. Even if fault localization specifies wrong statements of
code as faulty statements [3], the patch generation phase still
generates numerous patches and exercise test cases. As APR
repeats these two phases until a generated patch passes the
associated test, the process can take a long time, which is the
execution cost.

It is, therefore, necessary to study approaches to augment
the performance of fault localization to reduce the execution

cost of APR. Prior studies often investigate fully automated
fault localization. However, no studies exist that intend to
reduce the execution cost of APR by using developers’ fault
localization skills (FL skills) to localize faults. Developers’ FL
skills represent the ability to localize the faulty statement. We
suppose that such FL skills can add additional information
to fault localization and augment the performance of fault
localization to reduce the execution cost of APR. We refer
to using developers’ FL skills for the fault localization phase
in APR as manual fault localization (MFL). However, it is
unclear to what extent the FL skills are required to reduce the
execution cost of APR.

In this paper, we conducted a simulation case study to
clarify to what extent the FL skills are required to reduce
the execution cost of APR. When developers intend to find
the faulty statement, they often determine the suspiciousness
of fault for statements and inspect them from the most
suspicious statement. Hence, we use the skill to determine
the suspiciousness as the studied developers’ FL skill and use
it in the fault localization phase in APR. We quantified this
skill as the number of inspected statements before developers
localized the faulty statement. For the simulation, we set the
following central question:

How many statements are developers allowed to
inspect to reduce the execution cost of APR when
using the FL skill?

To address our central question, we investigated MFL in
one of the current state-of-the-art APRs: TBar [4]. This is
because TBar provides record performance in the proposed
APR methods on Java. This simulation case study employs
the Defects4J [5] dataset, which is the most popular dataset
in the APR research.

The answer to the central question provides developers with
a criterion for deciding whether to use MFL for reducing the
execution cost of TBar, depending on the accuracy of their
MFL. We compared the number of candidate patches by TBar
with MFL with those of TBar using spectrum-based fault
localization (SBFL) [6], [7]. SBFL is one of the most popular
automated fault localization techniques.

The main findings of this study are as follows:

• If developers localized the faulty statement before in-
specting 40% of the statements in the Java method, the
execution cost of TBar reduces compared to TBar with
SBFL over half of the studied faults.

• We found that the number of generated patches varied
greatly depending on the inspected statement. This is a
side effect of APR, which varies the execution cost. SBFL
does not remedy this side effect because it is a fully
automated method. On the contrary, MFL might remedy
this side effect because developers can avoid selecting
the types of statements for which APR generates more
patches.

This study’s major contributions are as follows: (1) Studying
the feasibility of TBar with low execution costs through
interactive intervention by developers, (2) Opening a new
research perspective in which we consider the interaction
between the automated method and developers to augment the
capability of APR.

The remainder of this paper is organized as follows. Sec-
tion II introduces the background of APR. Section III explains
our main idea, MFL. Section IV presents the case study
setup of our experiment. Section V presents the results of our
case study. Section VI discusses the case study. Section VII
describes the threats to the validity. Section VIII presents the
conclusion and prospects.

II. BACKGROUND OF APR

Prior studies [8], [9], [4], [10], [11], [12] have evaluated
various APR methods so far. One of the most popular families
of APR methods is template-based APR [2], [4]. Template-
based APR uses pre-defined templates [2], which are a set
of change operators for programs such as modifying program
conditions, adding code, and removing code. The APR family
modifies programs according to the pre-defined templates.
These APR methods generate patches to modify programs.
The patches are verified by the test cases by the successful
modification of the programs or not. However, even if a
generated patch can pass all the test cases, it might break
a necessary behavior [13]. These patches are often called
plausible patches. We need to investigate to check whether
they are correct patches that do not break a necessary behavior.

Before generating patches, APR should localize the faulty
statement. In the fault localization phase, APR identifies
the faulty statement in programs. SBFL [6], [7] is one of
the most popular fault localization techniques used in APR.
SBFL detects faulty statements by assigning a suspiciousness
score to each statement based on test results and execution
paths. The suspiciousness score is a number that indicates the
likelihood of the cause of fault for each statement. Generally,
statements executed by failed tests have higher suspiciousness
scores, whereas those executed by passed tests have lower
suspiciousness scores. To compute the suspiciousness score,
various calculation methods have been proposed [14], [15].

III. MANUAL FAULT LOCALIZATION (MFL)

Prior studies [16], [4] showed that the accuracy of fault
localization is important for APR. However, prior studies only
focused on fully automated FL techniques. To improve the
accuracy, we focused on developers’ FL skill. Developers
often find faulty statements by using the breakpoint of IDE

tools and the print function in programming languages (human
debugging). In the process of human debugging, developers
use their FL skills to find faulty statements. Inferring the
suspiciousness of fault for statements using the debugging
experience is an FL skill. Expert developers may find faulty
statements accurately by human debugging using their FL
skills. Inspired by human debugging, we study MFL (manual
fault localization) to augment the accuracy of fault localiza-
tion. If fault localization applies high-level FL skills, such as
those of expert developers, accuracy improves.

To study the various levels of MFL accuracy, we conducted
a simulation case study. Specifically, we simulate the behavior
of developers, inferring the suspiciousness of the fault for
statements.

The MFL procedure we used in the fault localization phase
in APR is as follows:

Step1: Developers select a statement from the faulty method
as the cause of fault (fault candidate statement).
The selected statement is the target for the APR to
generate patches.

Step2: Developers apply a patch generation phase in an APR
method to the fault candidate statement. The APR
method then generates patches.

Step3: If the APR method does not generate any correct
patches, developers select another statement.

Step4: Developers repeat Step2 and Step3 until a correct
patch is generated, or all statements in the faulty
method are selected.

We refer to one execution from Step1 to Step3 as an attempt.

It should be noted that, in our simulation, MFL has two
assumptions: developers already know the faulty method and
the cause of the fault originates from one statement. The first
assumption is reasonable in practice because each method
often has a corresponding test method to conduct a unit test.
The second assumption is a limitation of our case study
because if we considered multi-statement faults, the number of
combinations of localized statements outstandingly increases
making it difficult to execute our simulation.

In this paper, as described in Section I, we quantify the
FL skill as the number of attempts developers execute be-
fore a correct patch is generated. The number of attempts
corresponds to the number of statements selected as fault
candidate statements. Hence, if MFL reduces the number of
candidate patches generated by the APR until many attempts,
even developers who do not accurately select the cause of the
faults reduce the execution cost of APR.

Regardless of the fault localization results, some faults may
not be fixed owing to the insufficient modification ability of
the APR method. For such faults, it is difficult to compare
MFL and automated fault localization. Hence, in this paper,
we only used faults that can be fixed by the studied APR
method if the faulty statement is localized.

Patch
Generation

Fail

Faulty
program

Test patches
by test cases

Fault
Localization

Patch
Validation

×100

correct

Faulty method
location

candidate patches

overfitting

Pass

Manual
Check

∀𝑥 ∈ 𝑋

Select
statement 𝑥

Modify
statement 𝑥

Attempt Repetition

Fig. 1: Simulation overview of MFL

IV. CASE STUDY SETUP

A. Overview

The selected statement in MFL depends on the developers’
skills. Hence, we simulate which statements the developers
select and in what order. In our simulation, we compare MFL
with a prior fault localization technique, SBFL. Figure 1 shows
the simulation overview of MFL. Our simulation consists
of two phases: attempt repetition and manual check. Also,
the attempt repetition phase includes three processes: fault
localization, patch generation, and patch validation.

As described in Section III, the number of attempts in MFL
is the FL skill. Hence, we determine the number of attempts
that is the simulated FL skill of developers before executing
the simulation. The number of attempts ranges from one to
the number of statements in the method. We study all the
numbers within the range to simulate various levels of the FL
skill. After determining the number of attempts, we execute
the simulation.

B. Phases in the simulation

Attempt Repetition. In the simulation, one execution of
this phase corresponds to an attempt of MFL. We repeat
the execution of the attempt until the number of repetitions
reaches the number of attempts that we determined before
this simulation. Each execution of the attempt includes the
following three processes.

1) Fault Localization. We select a statement in the method.
The number of attempts is the simulated FL skill. Hence,
in this process, we select the faulty statement at the final
attempt while randomly selecting the other statements in
the other attempts.

2) Patch Generation. We apply the studied APR method,
TBar [4], to the selected statement to generate a set of
patches. TBar is a recent template-based APR method.
If developers can find the faulty statement perfectly
(i.e., assuming perfect fault localization), TBar results
in a record performance in the prior APR methods
on Java [4]. Hence, TBar is suitable to evaluate MFL
without the effect of repairing faults.

3) Patch Validation. We apply each of the generated patches
to the method and execute all the test cases on each
method a patch is applied. If the method fails to execute
any test cases, apply another patch to the method and

execute all the test cases. If there are no patches that pass
the all test cases, we go back to the patch generation pro-
cess. This repetition continues until the method passes
all the test cases, the number of generated candidate
patches reaches 10,000, or all the possible patches are
generated.

Manual Check. APR can only check if the patch passes all
test cases or not. Hence, we manually inspect all plausible
patches by comparing the patch against the developer-provided
patch that is available in the studied dataset. We classify the
plausible patches into correct patches and overfitting patches
by manual inspection. The correct patches are the patches
that fix the corresponding faults semantically (i.e., the patches
to make the same modifications as developer-provided). The
overfitting patches do not fix the corresponding faults semanti-
cally, although they pass all the test cases. For example, if the
generated patch is a != b, and the developer-provided patch is
!(a == b), then the patch a != b is classified as a correct patch
because the two are semantically identical. The two authors
decide whether they are overfitting or correct and classify the
patches. The kappa coefficient between their evaluations is
0.89. Any patches of disagreement between them are discussed
and decided with the other author.

As we randomly select statements in the fault localization
phase except for the last attempt, we repeat the above two
phases 100 times to improve the validity of the results. We
evaluate MFL in terms of the number of candidate patches, the
number of correct patches, the number of overfitting patches,
and the number of attempts. We describe the details of the
evaluation criteria in Section IV-D.

C. Details of the fault localization process

Because the fault localization process is the most important
to simulate MFL, we describe the fault localization process
more clearly. We define S = {s1, s2, ..., sbug, ..., sn} as the set
of statements in the faulty method. sbug is the faulty statement
of this method. The others are the statements that do not
cause faults (innocent statements). We also define X as the
subset of S that contains sbug (i.e., X ⊆ S, sbug ∈ X).
We use this X to simulate the FL skill where developers
successfully localize the faulty statement at the |X|th attempt.
|X| is the size of X (i.e., the number of statements contained
in X). Hence, the meaning of X is the selected statements

for |X| attempts in MFL. For example, if |X| is one (i.e.,
X = {sbug}), we simulate the case where developers select the
faulty statement at the first attempt; in other words, developers
do not select any innocent statements. If |X| is three (e.g.,
X = {s2, s5, sbug}), we simulate the case where developers
select the faulty statement at the third attempt after selecting
innocent statements as the fault candidate statement two times.

It should be noted that we do not consider the order of
selection except for the sbug . This is because the number
of candidate patches for each statement is constant, and the
total number of candidate patches for an X remains the same
even if the order of selection is changed. For example, the
order of selection: s2 → s5 → sbug and s5 → s2 → sbug
are indistinguishable in terms of the number of candidate
patches. The lower |X| value corresponds to the better fault
localization performance, and developers need to localize the
faulty statement accurately. We refer to |X| as the number of
selected statements (NSS), a.k.a. the number of attempts. In
this study, NSS simulates the FL skill.

For each NSS, the selection of innocent statements should
affect the execution cost of APR. This is because the APR
method generates a different number of candidate patches for
each innocent statement. If developers select a statement in
which the APR method generates many candidate patches, the
generating and validating time would be longer. To simulate
the impact of MFL on the execution cost of APR, it is
necessary to simulate the selections of innocent statements for
each NSS as well. Hence, as described in Section IV-B, we
randomly select innocent statements 100 times for each NSS.
For example, if NSS is ten, we select 100 different sets of
nine innocent statements.

D. Evaluation criteria
Prior studies [3], [17] used the number of generated can-

didate patches until the valid patches (i.e., plausible patches)
were generated to evaluate the execution cost of APR. This
metric is independent of the execution environment and can
be used to evaluate the execution cost of APR. Hence, we
use the number of candidate patches (NCP) as our evaluation
criterion. Particularly, NCP is the number of candidate patches
for each NSS. As in the general case, the lower the NCP, the
better the execution cost of APR.

We compare NCP between MFL and SBFL. To compare
MFL with SBFL, we apply the APR method with SBFL to the
faulty method and measure the NCP. Because SBFL results in
the same NCP for all NSSs in a faulty method, we compare
the NCP values of MFL for each NSS with the fixed NCP
values of SBFL.

We also use the correctness of the plausible patch to evaluate
MFL. We use the number of correct patches and overfitting
patches classified by manual check phase to evaluate the
correctness. Particularly, we compute the ratio of the correct
and overfitting patches for each NSS for 100 repetitions.

E. Studied dataset
For the dataset, we select Defects4J [5], which is used to

evaluate TBar and is the most popular dataset in the field of

TABLE I: The number of studied faults retrieved from the
Defects4J dataset

Project Chart Closure Lang Math Mockito Time Total

faults 6/26 6/133 6/65 10/106 0/38 1/27 29/395

* Each cell in the second row shows x/y : x is the number of faults that are repaired
correctly by changing one statement; y is the number of all faults in the Defects4J dataset
for each project.

APR for Java programs. Defects4J includes faulty programs
(faults) with their test cases and patches written by developers
that repair the associated faults. Researchers have been using
the Defects4J dataset to study APR to generate patches that
are similar to those written by developers to repair the faults.

From the Defects4J dataset, we retrieve the studied faults
that meet the following two conditions.

1) The faults that TBar repairs correctly.
2) The faults that are repaired by changing one statement.

We do not use the non-retrieved faults because MFL assumes
that faults are only caused by one statement and we need to
compare MFL and SBFL without the effect of the accuracy
of TBar. Table I summarizes the number of retrieved faults.

V. RESULT

Based on whether MFL is better than SBFL, we classified
the result into two patterns (A and B). Figure 2 shows
examples of each pattern. Each figure corresponded to the
result of a faulty method. The horizontal axis represented the
number of selected statements (i.e., NSS) in MFL. The vertical
axis is the number of candidate patches (i.e., NCP) for each
NSS. Each dot represents the result of the execution of APR
with MFL out of 100 executions for each NSS. The blue dots
show the case where only a correct patch is generated. The red
dots indicate both overfitting and correct patches are generated
in the execution. Each NSS includes 100 dots. The horizontal
line indicates the case in which a correct patch is generated
by APR with SBFL. This result was a line instead of a dot
because APR with SBFL resulted in the same NCP for all
NSSs, as described in Section IV-D.
Pattern A. Pattern A (Figure 2a) indicates the case where
SBFL is better or equal to MFL. The SBFL resulted in the
lowest NCP compared to MFL, meaning SBFL easily detected
the faulty statement for generating the correct patch.
Pattern B. Pattern B (Figure 2b) implies that MFL is better
than SBFL in a certain case. We observed some blue dots are
lower than the horizontal line of SBFL. Hence, MFL resulted
in a lower NCP than that of SBFL when NSS was lower than a
certain value. The pattern also included the case where SBFL
generated overfitting patches but none were correct. In both
cases, MFL performed better than SBFL for any NSS.

We used the correctness of the plausible patches to decide
the appropriate NSS where MFL is better than SBFL (i.e.,
the least FL skill to reduce the execution cost of APR). The
appropriate NSS is the largest NSS and satisfy the following
two conditions.

• The NCP value of SBFL was larger than the median NCP
value of MFL. For example, in Figure 2b, we selected

selected statements (NSS)

ge

ne
ra

te
d

pa
tc

he
s (

NC
P)

(a) SBFL is better than MFL (A)

selected statements (NSS)

ge

ne
ra

te
d

pa
tc

he
s (

NC
P)

(b) MFL is better than SBFL (B)

Fig. 2: Example of simulation results: Pattern A (left) and
Pattern B (right)

0 20 40 60 80 100
%NSS (NSS/# statements in the method)

0%

50%

100%

De

fe
ct

s4
J f

au
lts

Fig. 3: The cumulative distribution of NSS for pattern B

all NSSs where more than half of the dots are under the
horizontal line.

• There are more cases where only correct patches are
generated than when overfitting patches are generated.
For example, in Figure 2b, we selected all NSSs where
more than half of the dots are blue.

For 75% of the studied faults, MFL may be superior
to SBFL in APR. The number of faults classified as pattern
A was seven, and the number classified as pattern B was 22.
The faults in pattern A are almost evenly distributed for each
project (i.e., one fault from the Chart project and two faults
from the Closure, Lang, and Math projects). The percentage
of faults classified as pattern A is 25%. Hence, there is 25%
of faults in which SBFL is better than MFL. However, the
percentage of faults classified as pattern B is 75%. For such
faults, MFL was better than SBFL depending on NSS. Hence,
MFL has the potential to reduce the execution cost of APR in
the majority of faults.

The appropriate NSS of MFL is less than or equal to
40% of the number of statements in the method. Figure 3
shows the cumulative distribution for the number of faults in
which MFL is better than SBFL for each %NSS calculated by
dividing NSS by the number of statements in the method. We
used %NSS instead of NSS because the number of statements
for each method is different. Here all faults were classified
as Pattern B. The histogram with diagonal lines represents
the cumulative proportion that reached 50% (i.e., being in the
majority). We also observe that MFL is better than SBLF
in half of the faults in which %NSS is less than or equal
to 40%. The result showed that developers need to specify

TABLE II: The average number of patches per statement type

Statement Type #Patch Frequency

MethodCall 98.41 117
Binary 79.03 92
Name 73.25 16
Assign 62.78 46
VariableDeclaration 43.24 131
Return 32.88 78
Unary 23.40 25
Break 17.80 10
Throw 3.89 9
Continue 1.00 4

the faulty statement before selecting 40% of the statements
in the method in the MFL case. This value is acceptable for
developers provided that they understand the target program.
This is because it may not be difficult to localize faults before
inspecting almost half of the statements.

Finding

MFL has the potential to be superior to SBFL in 75%
of the studied faults. To reduce the execution cost of
APR with MFL, developers should select the faulty
statement before selecting 40% of the statements in
the method for half of the studied faults.

VI. DISCUSSION

While conducting our experiment, we observed that differ-
ent selected statement types led to distinctly different NCPs.
To confirm that this observation was correct, we studied
statement types, and their corresponding number of patches
in the target programs. Table II shows the average number of
patches per statement type. The #Patch column is the average
number of patches generated from a single statement, classified
as the type in the Statement Type column. The Frequency
column is the total number of statements classified as the type
in the Statement Type column. We used JavaParser1 to classify
the statement types. Note that a single statement can have more
than one type. For example, a statement a=method(b);
includes both the Assign type and the MethodCall type. Here,
we used the type of child node of the Expression type from the
statement parsed by JavaParser. If the statement does not have
the Expression type, we used the name of the Statement class
(e.g., Continue). The above example statement is classified as
an Assign type. For more details of the statement types, please
refer to the documentation [18].

The execution cost of MFL varies nearly 100 times
depending on the selected statement. When using TBar, the
number of patches for the “MethodCall” statement is nearly
100, but 1 for the “Continue” statement. That is, when using
TBar-based MFL, the execution time may differ by a factor
of close to 100, depending on the selected statement. This
difference in the number of patches between statements is due

1https://javaparser.org

to APR, not MFL; and therefore, this difference is a side effect
of using APR. SBFL does not remedy this side effect because
it is a fully automated method. Fortunately, using MFL has the
potential to remedy it because developers can avoid selecting
the types of statements for which APR generates more patches.

From the result above, MFL may be particularly useful
in supporting experienced developers. Experienced developers
can find a faulty statement more accurately, and are less likely
to select statements that do not contain fault but generate many
patches. Hence, for experienced developers, fixing faults can
be streamlined using MFL.

VII. THREATS TO VALIDITY

Internal Validity. We assume that only one of the statements
in the faulty method causes the fault. Hence, MFL can only be
applied to such methods. Future studies are necessary to ex-
pand MFL to faulty methods that include multiple statements
that cause faults.

Each developer has different knowledge, experiences, and
skills. We can simulate MFL more rigorously by consider-
ing these differences. However, thid work aims to reveal a
criterion that distinguishes whether using MFL is better than
using automated fault localization techniques in terms of the
execution cost. Hence, the distribution of FL skills is out-of-
scope in this paper. Future studies are necessary to collaborate
with developers and evaluate the performance of MFL by
considering the differences.

To use MFL, developers should decide the fault candidate
statement by manual effort. On the contrary, SBFL is fully
automated. Future studies are necessary to evaluate the differ-
ence in effort between MFL and SBFL.
External Validity. We use TBar as our APR method in
this work. Many APR methods have been proposed so far.
Hence, different APR methods may show different results.
Additionally, we use the Defects4J dataset only. Hence, future
studies should evaluate the difference across different APR
methods and datasets.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we investigated the number of candidate
patches and set the following central question:

How many statements are developers allowed to
inspect to reduce the execution cost of APR when
using the FL skill?

Through a simulation study, we found a criterion that
established whether using the FL skill is better than using
automated fault localization techniques. Developers reduced
the execution cost of APR when they selected the faulty
statement before selecting 40% of the statements in a Java
method. We further found the number of candidate patches
varied depending on the inspected statement. This is a side
effect of APR, which varies the execution cost. SBFL does not
remedy this side effect, whereas MFL may remedy it because
MFL is not a fully automated method.

In the future, we would like to expand the investigated
datasets and experiment using the skills of actual developers.

In this paper, the developer’s skill was quantified as the number
of inspected statements before localizing the faulty statement
from a method, but other skills may also be involved in the
execution cost of APR with MFL. Hence, we would like to
clarify the feasibility of MFL in an actual software develop-
ment when considering the skills of actual developers. The
replication package can be found here: https://www.dropbox.
com/s/fotxbb7qh0fdxy2/compsac 2022 APR.zip?dl=0

ACKNOWLEDGMENTS

This research was partially supported by JSPS KAKENHI
Japan (Grant Numbers: JP18H04097, 21H04877, 21K17725)
and JSPS International Joint Research Program with SNSF
(Project “SENSOR”: JPJSJRP20191502).

REFERENCES

[1] J. S. Collofello and S. N. Woodfield, “Evaluating the effectiveness of
reliability-assurance techniques,” J. of Syst. and Soft., vol. 9, no. 3, pp.
191–195, 1989.

[2] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A
survey,” Trans. on Soft. Eng., vol. 45, no. 1, pp. 34–67, 2019.

[3] Y. Qi, X. Mao, Y. Lei, and C. Wang, “Using automated program repair
for evaluating the effectiveness of fault localization techniques,” in Proc.
of ISSTA, 2013, pp. 191–201.

[4] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandé, “Tbar: Revisiting
template-based automated program repair,” in Proc. of ISSTA, 2019, p.
31–42.

[5] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing
faults to enable controlled testing studies for java programs,” in Proc.
of ISSTA, 2014, pp. 437–440.

[6] R. Abreu, P. Zoeteweij, R. Golsteijn, and A. J. C. van Gemund, “A
practical evaluation of spectrum-based fault localization,” J. of Syst. and
Soft., vol. 82, no. 11, pp. 1780–1792, 2009.

[7] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” Trans. on Soft. Eng., vol. 42, no. 8, pp.
707–740, 2016.

[8] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer, “A systematic
study of automated program repair: Fixing 55 out of 105 bugs for $8
each,” in Proc. of ICSE, 2012, pp. 3–13.

[9] F. Long and M. Rinard, “Automatic patch generation by learning correct
code,” in Proc. of the POPL, 2016, pp. 298–312.

[10] K. Liu, A. Koyuncu, D. Kim, and T. F. Bissyandè, “Avatar: Fixing
semantic bugs with fix patterns of static analysis violations,” in Proc. of
SANER, 2019, pp. 1–12.

[11] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program
repair space with existing patches and similar code,” in Proc. of ISSTA,
2018, p. 298–309.

[12] F. DeMarco, J. Xuan, D. Le Berre, and M. Monperrus, “Automatic repair
of buggy if conditions and missing preconditions with smt,” in Proc. of
CSTVA, 2014, p. 30–39.

[13] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun, “Is the cure worse
than the disease? overfitting in automated program repair,” in Proc. of
ESEC/FSE, 2015, p. 532–543.

[14] R. Abreu, P. Zoeteweij, and A. J. C. van Gemund, “On the accuracy
of spectrum-based fault localization,” in Proc. of TAICPART, 2007, pp.
89–98.

[15] J. A. Jones, M. J. Harrold, and J. T. Stasko, “Visualization of test
information to assist fault localization,” in Proc. of ICSE, 2002, pp.
467–477.

[16] K. Liu, A. Koyuncu, T. F. Bissyandé, D. Kim, J. Klein, and Y. L.
Traon, “You cannot fix what you cannot find! an investigation of fault
localization bias in benchmarking automated program repair systems,”
in Proc. of ICST, 2019, pp. 102–113.

[17] K. Liu, S. Wang, A. Koyuncu, K. Kim, P. Wu, J. Klein, X. Mao, Y. L.
Traon, T. F. Bissyandé, and D. Kim, “On the efficiency of test suite
based program repair : A systematic assessment of 16 automated repair
systems for java programs,” in Proc. of ICSE, 2020, pp. 615–627.

[18] JavaParser Contributors. (2021) javaparser-core 3.23.1 API. https://www.
javadoc.io/doc/com.github.javaparser/javaparser-core/3.23.1/index.html.

https://www.dropbox.com/s/fotxbb7qh0fdxy2/compsac_2022_APR.zip?dl=0
https://www.dropbox.com/s/fotxbb7qh0fdxy2/compsac_2022_APR.zip?dl=0
https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.23.1/index.html
https://www.javadoc.io/doc/com.github.javaparser/javaparser-core/3.23.1/index.html

	Introduction
	Background of APR
	Manual Fault Localization (MFL)
	Case Study Setup
	Overview
	Phases in the simulation
	Details of the fault localization process
	Evaluation criteria
	Studied dataset

	Result
	Discussion
	Threats to Validity
	Conclusion and Future Work
	References

