
Large Language Models for Equivalent Mutant Detection: How
Far Are We?

Zhao Tian
College of Intelligence and

Computing, Tianjin University
Tianjin, China

tianzhao@tju.edu.cn

Honglin Shu
Kyushu University
Fukuoka, Japan

shu.honglin.167@s.kyushu-u.ac.jp

Dong Wang∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

dong_w@tju.edu.cn

Xuejie Cao
College of Intelligence and

Computing, Tianjin University
Tianjin, China

caoxuejie@tju.edu.cn

Yasutaka Kamei
Kyushu University
Fukuoka, Japan

kamei@ait.kyushu-u.ac.jp

Junjie Chen∗
College of Intelligence and

Computing, Tianjin University
Tianjin, China

junjiechen@tju.edu.cn

Abstract
Mutation testing is vital for ensuring software quality. However, the
presence of equivalent mutants is known to introduce redundant
cost and bias issues, hindering the effectiveness of mutation testing
in practical use. Although numerous equivalent mutant detection
(EMD) techniques have been proposed, they exhibit limitations
due to the scarcity of training data and challenges in generalizing
to unseen mutants. Recently, large language models (LLMs) have
been extensively adopted in various code-related tasks and have
shown superior performance bymore accurately capturing program
semantics. Yet the performance of LLMs in equivalent mutant detec-
tion remains largely unclear. In this paper, we conduct an empirical
study on 3,302 method-level Java mutant pairs to comprehensively
investigate the effectiveness and efficiency of LLMs for equiva-
lent mutant detection. Specifically, we assess the performance of
LLMs compared to existing EMD techniques, examine the various
strategies of LLMs, evaluate the orthogonality between EMD tech-
niques, and measure the time overhead of training and inference.
Our findings demonstrate that LLM-based techniques significantly
outperform existing techniques (i.e., the average improvement of
35.69% in terms of F1-score), with the fine-tuned code embedding
strategy being the most effective. Moreover, LLM-based techniques
offer an excellent balance between cost (relatively low training
and inference time) and effectiveness. Based on our findings, we
further discuss the impact of model size and embedding quality,
and provide several promising directions for future research. This
work is the first to examine LLMs in equivalent mutant detection,
affirming their effectiveness and efficiency.

*Dong Wang and Junjie Chen are the corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ISSTA ’24, September 16–20, 2024, Vienna, Austria
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680395

CCS Concepts
• Software and its engineering→ Software testing and debug-
ging.

Keywords
Mutation Testing, Equivalent Mutant Detection, Large Language
Model, Empirical Study

ACM Reference Format:
Zhao Tian, Honglin Shu, Dong Wang, Xuejie Cao, Yasutaka Kamei, and Jun-
jie Chen. 2024. Large Language Models for Equivalent Mutant Detection:
How Far Are We?. In Proceedings of the 33rd ACM SIGSOFT International
Symposium on Software Testing and Analysis (ISSTA ’24), September 16–20,
2024, Vienna, Austria. ACM, New York, NY, USA, 13 pages. https://doi.org/
10.1145/3650212.3680395

1 Introduction
Mutation testing [5, 33] involves injecting a set of intentional artifi-
cial faults into a program being tested, to measure the effectiveness
of a test suite (and further enhance it). In this context, a program
with an artificial fault is referred to as a mutant, constructed by
deliberately changing a small portion of code in the program under
test. Besides measuring test effectiveness, mutation testing has been
extensively extended to facilitate other software testing and debug-
ging tasks (e.g., test case prioritization [47], bug detection [68], and
fault localization [65]) achieving state-of-the-art performance.

Despite its popularity and importance, mutation testing is still
plagued by high costs, notably exacerbated by the presence of equiv-
alent mutants [63, 80], a problem known to be undecidable for over
three decades. An equivalent mutant is redundant because it ex-
hibits the same behavior as the original program for all possible test
cases [33, 51]. Recent research indicates that the rate of equivalent
mutants in real-world development scenarios ranges from 4% to
39% [51]. Moreover, equivalent mutants introduce significant bias
into mutation-based analysis. Specifically, the widely-used metric,
themutation score, is calculated using only non-equivalent mutants.
Therefore, the presence of equivalent mutants makes it impossible
to achieve a score of 100 percent. As a result, developers might
not fully trust an otherwise sufficient test suite. The cost and bias
issues associated with equivalent mutants can impact the practical
effectiveness of mutation testing, potentially slowing down the

https://orcid.org/0000-0002-9316-7250
https://orcid.org/0009-0005-7311-7060
https://orcid.org/0000-0002-2004-0902
https://orcid.org/0009-0003-6194-8110
https://orcid.org/0000-0002-7058-1045
https://orcid.org/0000-0003-3056-9962
https://doi.org/10.1145/3650212.3680395
https://doi.org/10.1145/3650212.3680395
https://doi.org/10.1145/3650212.3680395

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhao Tian, Honglin Shu, Dong Wang, Xuejie Cao, Yasutaka Kamei, and Junjie Chen

software development process and negatively affecting software
quality. Hence, detecting redundant equivalent mutants has become
increasingly critical.

Over the years, numerous equivalent mutant detection (EMD)
techniques have been proposed to tackle the equivalent mutant
problem [20, 37]. Traditional EMD techniques often rely on pre-
defined rules such as constraint-based testing [9, 41, 55, 73] and
compiler optimization [30, 37, 62], showing limited performance
in complex practical development scenarios [53, 66]. Meanwhile,
more advanced learning-based EMD techniques have been pro-
posed, including conventional machine learning-based classifiers
(e.g., KNN and SVM) [11, 14, 53] and tree-based neural network
models [66]. While these learning-based EMD techniques improve
upon traditional techniques by comparing extracted code features,
they may not fully capture program semantics, especially when it
comes to minor syntax differences. Additionally, their effectiveness
is limited by the scarcity of training data for equivalent mutants
and potential challenges in generalizing to unseen mutants.

Lately, large language models (LLMs) have demonstrated impres-
sive performance in both natural language processing (NLP) [75, 81]
and software engineering (SE) [70, 71]. Furthermore, given that the
pre-trained corpus of these LLMs (e.g., StarCoder [42] and Code
Llama [81]) contains a vast amount of code snippets, they can learn
generalized knowledge, thereby, in turn, boosting a variety of code-
related tasks [45, 92]. Particularly, LLMs have shown promise in
diverse software testing scenarios by using different learning strate-
gies like fine-tuning and prompt engineering for tasks such as test
case generation [71, 91], program debugging [17, 43], and program
repair [31]. Detecting equivalent mutants is closely associated with
understanding code semantics. LLMs, pre-trained on extensive code
snippets from diverse resources, possess a superior grasp of code
semantics compared to the above traditional learning-based EMD
techniques that lack sufficient pre-training. Consequently, LLMs
are more likely to effectively address the issue of data scarcity. How-
ever, there is a lack of comprehensive understanding of how well
LLMs perform in detecting equivalent mutants. Encouraged by the
remarkable performance of LLMs, we conjecture that they can bet-
ter understand and distinguish code semantics between equivalent
mutants, even with minor syntax differences.

In our paper, we conduct an empirical study on 3,302 method-
level Java mutant pairs to delve into the potential of leveraging
LLMs for detecting equivalent mutants. To comprehensively assess
the effectiveness and efficiency of LLM-based techniques, we formu-
late the following four research questions with their motivations:
RQ1: What is the performance of state-of-the-art LLMs on
equivalent mutant detection? We first aim to explore the ca-
pability of LLMs in detecting equivalent mutants. Specifically, we
compare LLMs with ten typical or state-of-the-art existing EMD
techniques to determine whether LLMs are superior.
Results: LLM-based techniques significantly surpass all ten EMD
baselines in detecting equivalent mutants, with average F1-score
improvements of 75.18% for Compiler-based techniques, 19.14% for
ML-based techniques, and 12.75% for Tree-based NN techniques.
RQ2: What is the best strategy using LLMs for equivalent
mutant detection? Different strategies (e.g., code embedding and
prompting) utilized by LLMs may influence the detection perfor-
mance. Thus, we further investigate the extent of their impact,

which could offer insights into the optimal selection of strategies
for enhancing LLM performance on equivalent mutant detection.
Results: The fine-tuned code embedding strategy demonstrates
the superiority of equivalent mutant detection. Specifically, the
fine-tuned UniXCoder outperforms all the combinations of LLMs
and strategies with the improvement of 1.16%∼78.85% in terms
of F1-score. On the other hand, LLMs based solely on prompting
strategies cannot achieve comparable performance.
RQ3: What degree of orthogonality exists between our stud-
ied EMD techniques? Certain EMD categories and LLM strategies
may be prone to identify mutants based on specific mutation oper-
ators. Hence, RQ3 seeks to gain an understanding of the character-
istics of various EMD categories and LLM strategies by analyzing
the orthogonality between them.
Results: The LLM-based techniques and the fine-tuned code em-
bedding strategy significantly surpass the other EMD categories
and LLM strategies in terms of the unique correct/incorrect detec-
tions and the detection performance on each mutation operator,
reinforcing the findings of RQ1 and RQ2.
RQ4: How efficient are our studied EMD techniques? As the
size of LLMs has increased exponentially recently, the cost of apply-
ing these large models has also grown significantly. While larger
LLMs may perform better, the trade-off between their detection
performance and the cost is crucial. In this RQ, we comprehensively
investigate the time efficiency (i.e., training and inference time) of
all studied EMD techniques.
Results: The inference time of the best-performing LLM-based
technique (0.0431 s) exceeds that of the best-performing Compiler-
based technique (2.3537 s), but is marginally longer than that of
the best-performing ML-based technique (0.0019 s) and the best-
performing Tree-based NN technique (0.0274 s). The results high-
light the LLM’s excellent balance between cost and effectiveness.
Contributions. To sum up, the contributions of this study are:
• We perform the first large-scale empirical study to assess the
capability of LLMs for equivalent mutant detection, considering
four perspectives (i.e., effectiveness compared to existing EMD
techniques, the impact of LLM strategies, orthogonality between
various EMD techniques, and time efficiency).

• The study confirms the superiority of LLM-based equivalent mu-
tant detection techniques, yielding state-of-the-art performance.

• We provide valuable insights into the capabilities and limitations
of LLMs for equivalent mutant detection. The findings will serve
as essential guidance for future research aimed at enhancing
LLM-based equivalent mutant detection and other aspects of
software engineering. Additionally, we open source all data,
code, and analysis details involved in our study [29].

2 Background and Related Work
2.1 Mutation Testing
Mutation testing is a program analysis approach that involves ar-
tificially altering the source code to inject (likely) faulty behav-
ior [52, 74]. The changing rules are calledmutation operators, which
are typically constructed based on syntactic rules derived from the
grammar of the target programming language [57]. For instance,
by applying the relational operator replacement mutation opera-
tor, the code fragment "if(x==y)" in the original program can be

Large Language Models for Equivalent Mutant Detection: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

changed to "if(x!=y)", thereby constructing a mutant. Its basic as-
sumption is that the introduced faults can effectively represent real
faults [6, 22]. Mutation testing aims to evaluate the effectiveness
of the test suits [23, 67]. A mutant is referred to be "killed" if it is
detected by any test case; otherwise, it is said to be "live". The key
metric of mutation testing is the mutation score, also known as the
percentage of killed mutants. This score is calculated by dividing
the number of killed mutants, those that cause test cases to fail, by
the total number of generated non-equivalent mutants.

2.2 Equivalent Mutants
The equivalent mutant problem (EMP) is a critical issue in mutation
testing that has been extensively studied for decades [10, 37]. A
mutant is deemed equivalent if, for all possible test cases, it exhibits
the same behavior as the original program under test. These mu-
tants are syntactically different but semantically equivalent to the
original program, and cannot be killed by any test cases. Equivalent
mutants are often considered one of the main causes contributing
to the limited adoption of mutation testing in practice due to their
high computational cost and introduction of significant bias [63, 93].
Prior research has found that the rate of equivalent mutants in real-
world development scenarios might lie between 4% and 39% [51].
The generation of a high number of mutants leads to increased com-
putational costs and bias for their evaluation [28], and a significant
effort is required to detect equivalent mutants.

Detecting equivalent mutants in practice is challenging since in
code mutation, program equivalence is undecidable [8, 36]. A series
of EMD techniques have been developed to address this issue. In
earlier times, methods such as genetic algorithms [2], constraint-
based testing [9, 41, 55], coverage analysis [61, 64, 72, 73], automata
language equivalence [15], software behavior graphs [21], dynamic
subsumption relations [20, 24], and compiler optimization [30, 37,
62] were used to identify equivalent mutants. Recently, learning-
based EMD techniques have been proposed, including conventional
binary classifiers (e.g., KNN and SVM) [11, 14, 53] and tree-based
neural network (NN) models [66]. In particular, an early assessment
of the tree-based NN technique with 582 mutants, derived from
only two mutation operators, yielded promising results with a
classification accuracy of 90% [66].

Among these existing EMD techniques, certain techniques in-
volve feature extraction through the execution of mutant programs
within the context of the test suite [9, 14, 21, 53]. Although lever-
aging information from test suites can enhance the performance
of equivalent mutant detection, generating and executing a large
number of test cases in practice consumes significant time and com-
putational resources [33]. Therefore, in this paper, we only study
those techniques focusing on the semantic learning of code by
examining the capability of LLMs for equivalent mutant detection.

2.3 Large Language Models
Large language models have become a dominant part of NLP be-
cause of their exceptional performance, such as Llama 2 [81] and
PaLM 2 [7]. Aside from the general purposes of LLMs, many LLMs
have been trained on code corpora for transferring the impres-
sive text generation capability to the code domain, such as Star-
Coder [42] and Code Llama [69].

MutantBench

Mutant Pairs

Dataset
Preparation

LLM
Encoder

MLP-based
Classifier

Equivalent
or Not？

Code
Properties

EMD
Baselines

Equivalent
or Not？

Prompting
Strategies

LLMs Equivalent
or Not？

RQ1:
Performance of
LLMs in EMD

RQ2:
Best Strategy of

LLMs in EMD

RQ3:
Orthogonality

between Studied EMD
Techniques

RQ4:
Efficiency of
Studied EMD
Techniques

Figure 1: Overview of experimental design. 1○/ 2○/ 3○ repre-
sents the workflow of EMD baselines/code embedding strate-
gies/prompting strategies, respectively.

Software testing with LLMs recently has undergone significant
growth [85]. Particularly, LLMs are widely used for test case gener-
ation [71, 90], program debugging [17, 43], and program repair [31]
through various learning strategies such as fine-tuning and prompt
engineering. To name a few, in terms of test case generation, Schäfer
et al. [71] presented a large-scale empirical evaluation of the effec-
tiveness of LLMs for automatic unit test generation with prompt-
ing strategies. Xia et al. [90] proposed Fuzz4All, which leverages
LLMs as the mutation engine to produce diverse and realistic inputs
for any practically relevant language, outperforming the existing
language-specific fuzzers. In terms of program debugging, Feng
and Chen [17] introduced a lightweight approach namely AdbGPT
to reproduce the bugs from bug reports through prompt engineer-
ing. Li et al. [43] developed a technique, Differential Prompting,
to effectively find failure-inducing test cases with the help of the
compilable code synthesized by the inferred intention. In terms of
program repair, Huang et al. [31] conducted a comprehensive study
on the repair capability of five popular LLMs with the fine-tuning
paradigm, suggesting that the LLM-based methods can significantly
outperform previous APR techniques.

Despite these attempts, the effectiveness of LLMs in equivalent
mutant detection remains largely unexplored. Recently, Ma et al.
[50] conducted a preliminary study on equivalent mutant detection
using a small dataset (i.e., 200 mutants) with ChatGPT. To address
the limitations of dataset size and improve generalizability, our
study extensively evaluates the performance of typical and state-of-
the-art LLMs in equivalent mutant detection considering diverse
aspects including strategies, orthogonality, and efficiency.

3 Study Design
Figure 1 illustrates the overview of our study design. Initially, based
on the most widely-used MutantBench [84] dataset, we construct
the training and test datasets comprising code pairs of the original
program and its mutant. We first explore the effectiveness of the
existing EMD techniques and state-of-the-art LLMs on equivalent
mutant detection (RQ1). We also investigate the extent of impact
resulting from various strategies utilized by LLMs on equivalent
mutant detection (RQ2). Then, we gain an understanding of the

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhao Tian, Honglin Shu, Dong Wang, Xuejie Cao, Yasutaka Kamei, and Junjie Chen

Table 1: Statistics of Java programs from MutantBench

Dataset #Programs #Methods #EQ #NEQ

𝑀𝑢𝑡𝑎𝑛𝑡𝐵𝑒𝑛𝑐ℎ𝑡𝑟𝑎𝑖𝑛 19 328 250 1,402
𝑀𝑢𝑡𝑎𝑛𝑡𝐵𝑒𝑛𝑐ℎ𝑡𝑒𝑠𝑡 249 1,401

#Programs, #Methods, #EQ, and #NEQ represent the number of programs, methods,
equivalent mutants, and non-equivalent mutants, respectively.

characteristics of various EMD techniques by analyzing the orthog-
onality between them (RQ3). Finally, we quantitatively measure the
time efficiency across the studied EMD techniques (RQ4).

3.1 Dataset Preparation
Studied dataset. To evaluate the performance of EMD tech-

niques, we select the most widely-used MutantBench [84], contain-
ing 4,400 mutant pairs in both C/C++ and Java programming lan-
guages. More specifically, MutantBench consolidates many existing
open-source datasets [9, 30, 38, 93] into one benchmark, enhancing
dataset diversity and encompassing a broader spectrum of mutant
types. In this study, we focus on the primary programming lan-
guage, Java. Specifically, it accounts for 3,302 mutant pairs from 19
programs, as depicted in Table 1.

Data pre-processing. We carried out data pre-processing in
two steps to meet the input format requirements of LLMs. Due
to the constraint imposed by the maximum input token length of
LLMs, we first removed all the natural language comments from
the Java code utilizing pre-defined regular expressions. It is noted
that natural language comments do not contribute to the equivalent
mutant detection task. Second, we opted to detect the equivalence
of mutant pairs at the method level instead of the program level,
thereby reducing the input length. Since all mutation operators in
the MutantBench dataset are applied exclusively within a single
method rather than across multiple methods, ensuring that method-
level mutant pairs preserve the semantic equivalence of the original
mutant pairs. Hence, following existing work [79, 82], we also
separated the original program and its corresponding mutant into
method-level pieces. We then identified and selected the methods
containing the mutation location from both the original program
and its mutant. This resulted in 3,302 method-level Java mutant
pairs, all of which are devoid of natural language comments.

Construction of training and test datasets. Following ex-
isting work [13, 49], we adopted a stratified sampling strategy
to reduce sampling bias and ensure that both training and test
datasets are representative of the entire dataset. Firstly, the 3,302 to-
tal mutant pairs were divided into two subgroups:𝑀𝑢𝑡𝑎𝑛𝑡𝐵𝑒𝑛𝑐ℎ𝑒𝑞 ,
comprising solely equivalent mutant pairs, and𝑀𝑢𝑡𝑎𝑛𝑡𝐵𝑒𝑛𝑐ℎ𝑛𝑒𝑞 ,
encompassing the remaining non-equivalent mutant pairs. Subse-
quently, ∼50% of the mutant pairs from both𝑀𝑢𝑡𝑎𝑛𝑡𝐵𝑒𝑛𝑐ℎ𝑒𝑞 and
𝑀𝑢𝑡𝑎𝑛𝑡𝐵𝑒𝑛𝑐ℎ𝑛𝑒𝑞 were randomly selected to construct a training
dataset, denoted as𝑀𝑢𝑡𝑎𝑛𝑡𝐵𝑒𝑛𝑐ℎ𝑡𝑟𝑎𝑖𝑛 . Similarly, the remaining mu-
tant pairs from both subgroups were amalgamated to form a test
dataset, named 𝑀𝑢𝑡𝑎𝑛𝑡𝐵𝑒𝑛𝑐ℎ𝑡𝑒𝑠𝑡 . Finally, we obtained 1,652 mu-
tant pairs in𝑀𝑢𝑡𝑎𝑛𝑡𝐵𝑒𝑛𝑐ℎ𝑡𝑟𝑎𝑖𝑛 , comprising 250 equivalent mutant
pairs and 1,402 non-equivalent mutant pairs. For𝑀𝑢𝑡𝑎𝑛𝑡𝐵𝑒𝑛𝑐ℎ𝑡𝑒𝑠𝑡 ,
we ended up with 1,650 mutant pairs, comprising 249 equivalent

mutant pairs and 1,401 non-equivalent mutant pairs. In particular,
we confirmed that there is no data leakage between our training
and test datasets through manual inspection.

3.2 Experimented Large Language Models
In our study, we investigated the performance of ten state-of-the-
art LLMs for equivalent mutant detection. These models have been
widely adopted in the literature [16, 77, 85], including:

• CodeBERT [18] is a popular pre-trainedmodel designed to learn
from bimodal data encompassing both source code and natural
languages, using a multilayer Transformer architecture.

• GraphCodeBERT [26] is a pre-trained model that leverages
semantic-level code information to enhance code representation
using a transformer-based architecture.

• PLBART [3] is a bidirectional and autoregressive transformer,
which adopts a BART architecture and employs denoising objec-
tives for pre-training on unlabeled data spanning source code
and natural language.

• CodeT5 [87] is a unified encoder-decoder model that incorpo-
rates token type information in code. It extends the T5 architec-
ture, utilizing denoising sequence-to-sequence pre-training.

• CodeT5+ [86] builds upon CodeT5. It uses a shallow encoder
and a deep decoder, and is trained in multiple stages, initially
with unimodal data, and later with bimodal data.

• UniXCoder [25] is a unified cross-modal pre-trained model that
exploits multi-modal information, such as abstract syntax tree
(AST) and code comments, to improve code representation. It is
also based on transformer-based architecture.

• StarCoder [42] is based on SantaCoder architecture. It pos-
sesses its own encoder model, StarEncoder, and features infilling
capabilities and rapid, large-batch inference made possible by
multi-query attention.

• Code Llama [69] is one of the most popular LLMs for code
generation and infilling derived from Llama 2 models. It is a
decoder-only model and additionally fine-tuned on 500B tokens
from an extra code-heavy dataset.

• Text-EmbeddingModels [60] refer to a series of new-generation
embedding models developed by OpenAI [59]. These models can
generate both text and code embeddings with enhanced represen-
tation capabilities. Specifically, we employed all three versions
of text-embedding models (i.e., Text-Embedding-Ada-002, Text-
Embedding-3-Small, and Text-Embedding-3-Large).

• ChatGPT [58] is a revolutionary LLM capable of transforming
various fields, like software engineering. It is trained on large
amounts of natural language text and code snippets, with rein-
forcement learning to follow human instructions. Particularly,
we studied two LLMs (i.e., GPT-3.5-Turbo [58] and GPT-4 [1]).

To summarize, the studied LLMs can be divided into two types based
on their architectures: encoder LLMs and decoder-only LLMs. En-
coder LLMs consist of encoder-only models (i.e., CodeBERT, Graph-
CodeBERT, Text-Embedding Models) and encoder-decoder mod-
els (i.e., PLBART, CodeT5, UniXCoder, CodeT5+, and StarCoder).
Decoder-only LLMs include Code Llama and ChatGPT.

Large Language Models for Equivalent Mutant Detection: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

3.3 Pre-trained Large Language Models for
Code Embedding

Recently, pre-trained encoder LLMs have achieved substantial im-
provement in various code classification tasks, including code clone
detection [35] and functionality classification [94]. Typically, these
encoder LLMs are pre-trained on a large number of code snippets,
learning the general-purpose code embedding knowledge. To adapt
pre-trained LLMs to various downstream tasks, researchers usually
train a multilayer perceptron (MLP) classifier to predict specific
properties based on code embeddings produced by the pre-trained
encoder LLMs [26, 54, 78]. In our study, we denote this widely-used
paradigm of LLMs as the pre-trained code embedding strategy,
representing a fundamental LLM paradigm.

Hence, we also adopted the pre-trained code embedding strategy
to our studied pre-trained encoder LLMs and investigated their
effectiveness in detecting equivalent mutants. As shown in Figure 1,
we designed an encoder-based classifier framework, which consists
of an LLM encoder and anMLP-based classifier. Specifically, we first
integrated the pre-trained encoder LLMs into our designed encoder-
based classifier framework for training the domain-specific classi-
fiers to detect equivalentmutants based on our training dataset. Dur-
ing the training phase, we fixed the parameters of the pre-trained
LLM encoder and only updated the parameters of the MLP-based
classifier following existing work [26, 54]. Subsequently, multiple
training iterations are performed on the training data to enable the
classifier to fully learn the detection of equivalent mutants utilizing
the code embeddings generated by the pre-trained LLM encoder.

In particular, for encoder LLMs (i.e., CodeBERT, GraphCode-
BERT, PLBART, CodeT5, UniXCoder, CodeT5+, StarCoder, Text-
Embedding-Ada-002, Text-Embedding-3-Small, and Text-Embedding-
3-Large), we utilized their encoder components for obtaining em-
bedding vectors. For the exceptional LLMs, Code Llama and Chat-
GPT, both of which are decoder-only architectures, are not applica-
ble to this pre-trained code embedding strategy.

3.4 Strategies for Large Language Models
We further investigated the impact of various strategies using LLMs
in equivalent mutant detection. In Section 3.3, we initially pre-
sented the fundamental pre-trained code embedding strategy. More-
over, existing studies [46, 95] have demonstrated that fine-tuning
strategies can effectively adapt general LLMs to specific down-
stream tasks, leading to significant enhancement in LLM perfor-
mance. Meanwhile, prompting strategies also have been proposed
to achieve the same goal in a plug-and-play manner [39]. Thus, we
devised another four LLM strategies as follows:

• Fine-tuned code embedding strategy: we also employed the
same encoder-based classifier framework and hyper-parameter
settings as those applied in the pre-trained code embedding
strategy across all the encoder LLMs. However, we did not fix
the encoder parameters; instead, we simultaneously updated the
parameters of both the encoder and classifier during training.

• Zero-shot prompting strategy: we devised a prompt without
any examples, which directly utilized a mutant pair and a struc-
tured instruction (i.e., "Please identify if the two above codes are
semantically equal. Please only answer ‘yes’ or ‘no’. ‘yes’ means

they are semantically equal. ‘no’ means they are not.") to prompt
LLMs for equivalent mutant detection.

• Few-shot prompting strategy: it enables LLMs to learn the
relationship between the mutant pair and semantic equivalence
based on randomly selected <mutant pair, equivalence> exam-
ples. That is, it concatenates these demonstration examples with
a zero-shot prompt to form a new few-shot prompt, which is
then fed to LLMs for equivalent mutant detection.

• Fine-tuning with instruction strategy: it enables LLMs to
acquire specific knowledge through training on many more
instruction-filled mutant pairs. Specifically, we used the same
structured instruction that is described in the aforementioned
zero-shot prompting strategy to construct an instruction-filled
fine-tuning set, i.e., <mutant pair, structured instruction, equiva-
lence>. Then, we fine-tuned the LLMs on the fine-tuning set to
detect equivalent mutants by the zero-shot prompt.

3.5 Baselines
To fairly evaluate LLM performance, we meticulously selected the
baselines by conducting a succinct literature review of relevant
papers published in SE venues over the last decade. From this, we
elected three widely studied techniques that rely solely on the
code features without depending on the execution information of
test cases, and are provided with a full replication package. These
techniques encompass a total of ten baselines for comparison:
• Compiler-based technique. Trivial Compiler Equivalence (TCE)
is an EMD technique based on compilation optimization [37, 62],
employing the off-the-shelf compilers to compile the original
program and each of its mutants intomachine code, subsequently
detecting mutant equivalence by comparing the equivalence of
machine code pairs.

• ML-based technique. Brito et al. [11] extracted a set of features
derived from source code properties and control flow information
(e.g., mutation operator and graph distance). Based on these
features, they then constructed seven ML classification models to
detect equivalent mutants, including K-Nearest Neighbors (KNN),
Decision Tree (DT), Random Forest (RF), Support Vector Machine
(SVM), Linear Discriminant Analysis (LDA), Logistic Regression
(LR), and Gaussian Naive Bayes (GNB).

• Tree-based neural network technique. Abstract Syntax Tree
Neural Network (ASTNN) takes ASTs of mutant programs as
input to detect mutant equivalence [66]. This model can capture
lexical-level and statement-level syntactical features of the code,
as well as the code semantics by decomposing the large ASTs
and encoding multi-way statement trees, significantly enhancing
the detection performance.
We replicated the baseline techniques by following the imple-

mentations and parameter settings recommended in previous pa-
pers. Since the original version of the ML-based technique [11]
and the Tree-based NN technique [66] only support C/C++ code,
we expanded their capabilities to include Java code. Moreover, we
used two variants of the most widely-used TCE baseline, namely
TCE𝐽 𝑎𝑣𝑎𝑐 and TCE𝑆𝑜𝑜𝑡 , for comparison. Note that, we acknowledge
the existence of code clone detection (CCD) techniques [35] that
are built upon code similarities or patterns. However, EMD and
CCD techniques serve distinct purposes and operate on different

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhao Tian, Honglin Shu, Dong Wang, Xuejie Cao, Yasutaka Kamei, and Junjie Chen

principles. Given that all mutants are inherently code snippets with
minor syntactic changes (even an operator) from the original pro-
gram, all the mutant pairs can be considered code clones. Therefore,
we opted not to include CCD techniques as baselines in our study.

3.6 Metrics
Effectiveness. Following existing work [11, 14, 53, 66], we

adopted the most widely-used metrics for the binary classification
task, Precision, Recall, and F1-score, to assess the effectiveness of all
our studied EMD techniques for equivalent mutant detection. The
F1-score, being the harmonic mean of recall and precision, offers a
balanced assessment of detection performance. Specifically, in our
study, we used macro-averaged precision, recall, and F1-score met-
rics. These macro-averaged metrics are unbiased by potential class
imbalances, which are calculated by finding the unweighted mean
of the respective metrics for each class. For example, given two
labels (i.e., negative and positive), the macro-average F1-score is the
average of the F1-score for both classes (i.e., 𝐹1𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝐹1𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒2).

Efficiency. In practice, the time spent on detecting a mutant pair
is significant due to the large number of generated mutants in the
mutation testing scenario. We compared the time overheads among
the techniques on equivalent mutant detection to quantitatively
measure their efficiency. Two types of time overheads are defined:
the average time spent on detecting a mutant pair (referred to as
inference time) and the total time spent building an EMD model
based on the training set offline (referred to as training time).

3.7 Implementation and Environment
All the open-source pre-trainedmodels (i.e., CodeBERT, GraphCode-
BERT, PLBART, CodeT5, UniXCoder, CodeT5+, and StarCoder) are
downloaded from Huggingface [89]. In particular, we used Text-
Embedding-Ada-002, Text-Embedding-3-Small, Text-Embedding-
3-Large, GPT-3.5-Turbo, and GPT-4 through OpenAI’s APIs [59].
Concretely, we used gpt-3.5-turbo-0125 as the specific experi-
mental model version for GPT-3.5-Turbo and used gpt-4-0613 as
the experimental model version for GPT-4. We utilized the recom-
mended hyper-parameters [48] for the pre-trained code embedding
strategy due to their proven effectiveness. To ensure a fair com-
parison and reduce the complexity of hyper-parameter tuning, we
reused the same hyper-parameters for the fine-tuned code embed-
ding strategy. More detailed settings of hyper-parameters can be
found in our project homepage [29]. We conducted all the experi-
ments on an Intel Xeon CPU Gold-6342 machine with 512 GB RAM,
Ubuntu 20.04.6, and two A800 GPUs.

4 Results
4.1 RQ1: Performance of LLMs in EMD
Approach. This research question offers a comparative analysis
of the performance of various encoder LLMs, specifically focusing
on their usage of code embeddings. The typical pre-trained code
embedding strategy of LLMs for equivalent mutant detection has
been provided in Section 3.3. For all eight ML-based and Tree-based
NN baselines, we also trained their classifiers with our training
dataset based on the same settings and process as their correspond-
ing paper. The exceptional Compiler-based baselines (i.e., TCE𝐽 𝑎𝑣𝑎𝑐

and TCE𝑆𝑜𝑜𝑡) are based on off-the-shelf compilers, requiring no
training phase. Subsequently, we measured the effectiveness of 10
state-of-the-art encoder LLMs and 10 baselines in terms of precision,
recall, and F1-score metrics.
Results. Table 2 shows the comparison results among LLMs and
the baselines in terms of precision, recall, and F1-score. First, the
evaluation results show that almost all LLM-based techniques (ex-
cept CodeBERT) achieve superior effectiveness compared to all
the baselines in terms of F1-score. For example, the most effective
LLM-based techniques (i.e., UniXCoder and CodeT5+) achieve the
F1-score of 81.88%, whereas the F1-score of ASTNN, KNN, and
TCE𝑆𝑜𝑜𝑡 is 70.00%, 72.15%, and 50.80%, respectively. On average,
LLM-based techniques outperform the Compiler-based, ML-based,
and Tree-based NN techniques by 75.18%, 19.14%, and 12.75% in
terms of F1-score, 108.27%, 15.90%, and 8.23% in terms of precision,
and 62.05%, 15.25%, and 11.68% in terms of recall, respectively. It
significantly demonstrates the effectiveness of LLMs on equiva-
lent mutant detection. The prevalence of this phenomenon may
stem from the fact that LLMs, typically pre-trained on extensive
code snippets, exhibit enhanced capability in handling code-related
downstream tasks compared to the general ML/DL models lacking
such pre-training strategies. In particular, through manual analysis,
we found that 363 mutant pairs could not be compiled successfully
by Javac due to missing necessary configuration files. Since both
TCE𝐽 𝑎𝑣𝑎𝑐 and TCE𝑆𝑜𝑜𝑡 rely on the corresponding binary classfiles
produced by Javac, their performance is consequently suboptimal.

Second, we observe that the performance of three state-of-the-
art Text-Embedding models does not exceed other pre-trained en-
coder LLMs. Conversely, UniXCoder and CodeT5+, characterized
by fewer parameters, demonstrate relatively superior performance
in equivalent mutant detection. For instance, the F1-score of Text-
Embedding-Ada-002 is 74.56% while that of UniXCoder is 81.88%.
This may primarily arise because embedding models are general-
purpose text embedding models trained on extensive natural lan-
guage datasets. However, when employed for the code-related task
(i.e., equivalent mutant detection), they are indeed affected by the
data-shift problem [50]. It also suggests that smaller code-specific
encoder LLMs are more inclined to produce code representations
conducive to MLP-based classifiers learning the semantic differ-
ences in code.

RQ1 Summary: LLMs significantly surpass all ten EMD
baselines in equivalent mutant detection. Specifically,
LLMs outperform the Compiler-based, ML-based, and Tree-
basedNN techniques by an average improvement of 75.18%,
19.14%, and 12.75% in terms of F1-score, respectively.

4.2 RQ2: Best Strategy of LLMs in EMD
Approach. This research question aims to investigate the impact
of four additional LLM strategies (designed in Section 3.4) for en-
hancing equivalent mutant detection compared to the pre-trained
code embedding strategy in RQ1. Similarly, for the fine-tuned
code embedding strategy, we selected CodeBERT, GraphCodeBERT,
PLBART, CodeT5, UniXCoder, CodeT5+, and StarCoder as the base
models. Besides, we selected Code Llama, GPT-3.5-Turbo, and GPT-4

Large Language Models for Equivalent Mutant Detection: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 2: The performance of baselines and state-of-the-art
LLMs on equivalent mutant detection

Technique Precision Recall F1-score

Compiler-based technique

TCE𝐽 𝑎𝑣𝑎𝑐 40.55% 38.15% 39.31%
TCE𝑆𝑜𝑜𝑡 51.26% 51.81% 50.80%

ML-based technique

KNN 77.77% 69.09% 72.15%
DT 78.20% 67.20% 70.63%
RF 78.89% 66.94% 70.53%
SVM 93.62% 58.84% 61.61%
LDA 88.02% 59.22% 62.09%
LR 90.69% 59.33% 62.30%
GNB 70.23% 62.10% 64.43%

Tree-based NN technique

ASTNN 88.34% 65.27% 70.00%

LLM-based technique (Pre-trained code embedding strategy)

CodeBERT (110M) 94.36% 64.26% 69.20%
GraphCodeBERT (110M) 95.81% 74.30% 80.52%
PLBART (210M) 95.81% 74.30% 80.52%
CodeT5 (210M) 95.81% 74.30% 80.52%
UniXCoder (110M) 96.02% 75.70% 81.88%
CodeT5+ (6B) 96.02% 75.70% 81.88%
StarCoder (7B) 95.99% 75.50% 81.69%
Text-Embedding-Ada-002 94.99% 68.67% 74.56%
Text-Embedding-3-Small 95.31% 70.88% 77.00%
Text-Embedding-3-Large 95.96% 75.30% 81.50%

as the representative LLMs to perform zero-shot prompting, few-
shot prompting, and fine-tuning with instruction strategies. Given
the input length limit of LLMs, we used the 3-shot setting for the
few-shot prompting strategy following the existing work [50]. In
particular, we excluded GPT-4 from the fine-tuning with instruc-
tion strategy due to its unavailability. Specifically, we examined the
extent of impact resulting from these four LLM strategies in terms
of precision, recall, and F1-score metrics.
Results. Table 2 and Table 3 illustrate the performance of five LLM
strategies on equivalent mutant detection. First, the fine-tuned
UniXCoder achieves the best performance compared to all other
combinations of LLMs and strategies with the improvement of
1.16%∼78.85% in terms of F1-score. It demonstrates employing
smaller LLMs with the fine-tuned code embedding strategy is the
best approach for equivalent mutant detection.

Second, the fine-tuned code embedding strategy always out-
performs the pre-trained code embedding strategy on all studied
LLMs in terms of F1-score. For example, the former outperforms the
latter with the improvement of 21.20%, 5.79%, 6.09%, 4.78%, 5.74%,
4.53%, and 0.23% on CodeBERT, GraphCodeBERT, PLBART, CodeT5,
UniXCoder, CodeT5+, and StarCoder in terms of F1-score, respec-
tively. It indicates that the fine-tuned code embedding strategy can
significantly improve the LLM performance in equivalent mutant
detection. Additionally, upon inspecting their prediction results,
we observed that despite the superiority of fine-tuned LLMs over

Table 3: The performance of different LLM strategies on
equivalent mutant detection

Technique Precision Recall F1-score

Fine-tuned code embedding strategy

CodeBERT (110M) 90.39% 79.74% 83.87%
GraphCodeBERT (110M) 91.54% 81.05% 85.18%
PLBART (210M) 93.24% 80.70% 85.42%
CodeT5 (210M) 90.59% 80.34% 84.37%
UniXCoder (110M) 94.33% 81.81% 86.58%
CodeT5+ (6B) 89.28% 82.79% 85.59%
StarCoder (7B) 96.02% 75.70% 81.88%

Zero-shot prompting strategy

Code Llama (7B) 59.22% 50.78% 48.04%
GPT-3.5-Turbo 59.22% 59.70% 59.44%
GPT-4 67.42% 53.76% 53.61%

Few-shot prompting strategy

Code Llama (7B) 52.85% 50.38% 47.76%
GPT-3.5-Turbo 57.04% 52.23% 51.59%
GPT-4 67.02% 55.18% 55.90%

Fine-tuning with instruction strategy

Code Llama (7B) 93.21% 55.82% 56.79%
GPT-3.5-Turbo 92.82% 76.95% 82.31%

pre-trained LLMs in overall performance, a fraction of pre-training
knowledge is still lost during the fine-tuning process. Specifically,
among the initially correct predictions, 1.09% were erroneously
transformed into incorrect predictions on average. This observa-
tion exposes the catastrophic forgetting problem [31] of LLMs under
the fine-tuning paradigm to some extent.

Third, code embedding strategies (i.e., pre-trained and fine-tuned
code embedding) outperform prompting strategies (i.e., zero-shot
and few-shot prompting) across all three metrics (i.e., precision,
recall, and F1-score). On average, code embedding strategies outper-
form prompting strategies by 55.81%, 41.50%, and 54.21% in terms
of precision, recall, and F1-score, respectively. The main reason lies
in the inherent complexity of context-understanding demanded
by LLMs (with prompting strategies) for the comprehensive un-
derstanding of mutant pairs, compared to the relatively simplified
process of directly comparing the embedding vectors of mutant
pairs. As a result, code embedding strategies appear more straight-
forward in mutant understanding and comparison, thereby leading
to superior detection performance.

Fourth, fine-tuningwith instruction strategy significantly outper-
forms both zero-shot prompting and few-shot prompting strategies
based on both decoder-only LLMs (i.e., Code Llama and GPT-3.5-
Turbo) across all three metrics. On average, fine-tuning with instruc-
tion strategy improves 57.07% and 69.55% higher precision than
zero-shot prompting and few-shot prompting, 19.41% and 29.06%
higher recall, and 28.34% and 39.23% higher F1-score, respectively. It
further demonstrates that the fine-tuning strategy can significantly
enhance the performance of LLMs in equivalent mutant detection.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhao Tian, Honglin Shu, Dong Wang, Xuejie Cao, Yasutaka Kamei, and Junjie Chen

12

10

4

5

2

1

541

28

72

76

6

47

319

963

(a) Unique correct detection
of four EMD categories

LLM-based

Tree-based NN ML-based

Compiler-based

319

47

6

76

72

28

415

1

2

5

4

10

12

59

(b) Unique incorrect detection
of four EMD categories

LLM-based

Tree-based NN ML-based

Compiler-based

7

3

16

5 83

25

2

1
1

1

17

9
744

176
2

65

51185

0

 Pre-trained

(c) Unique correct detection
of five LLM strategies

code embedding

Zero-shot

Fine-tuned
code embedding

prompting

Few-shot
promptingFine-tuning

with instruction

5

65
2

176

4 749

7

1
11

1
3 225

3
85

16 3

747

Fine-tuned
Pre-trained

(d) Unique incorrect detection
of five LLM strategies

code embedding
code embedding

Zero-shot
prompting

Few-shot
promptingFine-tuning

with instruction

3

Figure 2: Unique correct detections (↑) and unique incorrect detections (↓) across studied EMD techniques

RQ2 Summary: The fine-tuned UniXCoder significantly
outperforms all other combinations of LLMs and strate-
gies with the improvement of 1.16%∼78.85% in terms of
F1-score, demonstrating that fine-tuned code embedding
strategy is the best strategy on equivalent mutant detection.
Additionally, LLMs based solely on prompting strategies
cannot achieve comparable performance.

4.3 RQ3: Orthogonality between Studied EMD
Techniques

Approach. This research question aims to gain an understanding
of the performance characteristics of different EMD techniques and
LLM strategies. Hence, we conducted a comprehensive analysis
to explore the degree of their orthogonality with two different
perspectives, following the experimental design of RQ1 and RQ2:
• Between EMD categories. Based on the findings of RQ1, we
selected the best-performing EMD techniques within four EMD
categories (i.e., Compiler-based, ML-based, Tree-based NN, and
LLM-based techniques). Specifically, the selected techniques are
TCE𝑆𝑜𝑜𝑡 , KNN, ASTNN, and fine-tuned UniXCoder, each repre-
senting their respective EMD categories.

• Between LLM strategies. Based on the findings of RQ2, we
selected the best-performing EMD techniques within five LLM
strategies (i.e., pre-trained code embedding, fine-tuned code em-
bedding, zero-shot prompting, few-shot prompting, and fine-
tuning with instruction strategies). Specifically, the selected tech-
niques are pre-trained UniXCoder, fine-tuned UniXCoder, “GPT-
3.5-Turbo + zero-shot prompting”, “GPT-4 + few-shot prompt-
ing”, and “GPT-3.5-Turbo + fine-tuning with instruction”, each
representing their respective LLM strategies.
Based on the above two perspectives, we further conducted a

two-level analysis: (1) the unique correct/incorrect detections,
and (2) the detection performance on each mutation operator.
Regarding the first level, we employed Venn diagrams to assess the
unique correct/incorrect detections across various studied EMD
techniques. Regarding the second level, we further investigated the
detection performance of each EMD technique across various mu-
tation operators, by disaggregating the detection results based on

their respective mutation operators. In particular, the test dataset
comprises 1,611 mutants, each labeled with mutation operators,
alongside an additional 39 mutants unlabeled. Then the first two au-
thors conducted a round-table discussion to manually classify these
unlabeled mutants, aligning with the definition of mutation opera-
tors provided by the prior work [84]. Furthermore, we conducted a
Kruskal-Wallis test [40], a non-parametric test for comparing differ-
ences among multiple independent groups, to assess the statistical
significance between our studied EMD techniques in terms of the
detection performance on each mutation operator.
Results. Figure 2 presents the Venn diagrams that demonstrate the
intersection of correct/incorrect detections among the studied EMD
techniques based on two analyzed perspectives (i.e., EMD categories
and LLM strategies). Overlap areas denote shared correct/incorrect
detections amongmultiple EMD techniques, while non-overlapping
areas signify the unique correct/incorrect detections of each EMD
technique. Figure 3 further shows the detection performance of
studied EMD techniques on each mutation operator. Due to space
constraints, we only present the results on the top 10 common
mutation operators. Detailed results for all 28 mutation operators
are available on our project homepage [29].

Between EMD categories. From Figure 2a, we find that the
LLM-based technique achieves the best performance compared to
the other three EMD categories in terms of the unique correct de-
tections. Specifically, the LLM-based technique exhibits 41 unique
correct detections, significantly surpassing 12 by the Compiler-
based technique, 10 by the ML-based technique, and 5 by the Tree-
based NN technique, respectively. From Figure 2b, we find that the
LLM-based technique also outperforms the other three EMD cate-
gories in terms of unique incorrect detections. It only has 5 unique
incorrect detections, which is significantly fewer than the other
EMD categories (319, 47, and 76, separately). These results prove
the effectiveness of LLM-based techniques in equivalent mutant
detection, further strengthening the findings in RQ1.

From Figure 3a, we further find that the LLM-based technique
always outperforms the other three EMD categories in terms of
detection performance on almost all mutation operators (with only
one exception). For example, the LLM-based technique achieves
correct detections of 339 (92.12%), 314 (91.28%), and 287 (95.03%)
on the three most common mutation operators (i.e., AOIS, ROR, and
AROB), while the suboptimal ML-based technique achieves lower

Large Language Models for Equivalent Mutant Detection: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

AOIS ROR AORB VDL ROD AOIU LOI CDL CR SEOD0.0

0.2

0.4

0.6

0.8

1.0

LLM-based ML-based Tree-based NN Compiler-based

(a) Performance of 4 EMD categories on Top-10 mutation operators

AOIS ROR AORB VDL ROD AOIU LOI CDL CR SEOD0.0

0.2

0.4

0.6

0.8

1.0

Pre-trained Code Embedding
Fine-tuned Code Embedding
Zero-shot Prompting

Few-shot Prompting
Fine-tuning with Instruction

(b) Performance of 5 LLM strategies on Top-10 mutation operators

Figure 3: Detection performance on Top-10 mutation opera-
tors across various EMD techniques (x-axis shows mutation
operators and y-axis shows the correct detection percentage)

correct detections of 280 (76.09%), 295 (85.76%), and 274 (90.73%),
respectively. For the one exceptional mutation operator (i.e., COR),
the LLM-based technique exhibits slightly fewer correct detections
compared to the most effective ML-based technique (13 vs 14). Fur-
thermore, the Kruskal-Wallis test confirms a significant difference,
with a p-value of 8.89e-4, suggesting that the LLM-based technique
is statistically superior to all the compared EMD categories in terms
of the detection performance on each mutation operator.

Between LLM strategies. From Figure 2c, we find that the fine-
tuned code embedding strategy performs best compared to the other
four LLM strategies in terms of the unique correct detections. Specif-
ically, the fine-tuned code embedding strategy exhibits 25 unique
correct detections, significantly surpassing 0 by the pre-trained
code embedding strategy, 16 by the zero-shot prompting strategy, 3
by the few-shot prompting strategy, and 7 by the fine-tuning with
instruction strategy. From Figure 2d, we find that both prompt-
ing strategies achieve the poorest performance among five LLM
strategies regarding the unique incorrect detections, with 176/65
by the zero-shot/few-shot prompting strategy, compared to 1 by
the pre-trained code embedding strategy, 7 by the fine-tuned code
embedding strategy, and 5 by the fine-tuning with instruction strat-
egy. It significantly suggests that LLMs based solely on prompting
strategies cannot achieve comparable performance on equivalent
mutant detection, further supporting the findings in RQ2.

From Figure 3b, we observe that the fine-tuned code embedding
strategy always outperforms the other strategies in terms of de-
tection performance on almost all mutation operators (with only
two exceptions). For the two exceptional mutation operators (i.e.,
SEOD and ROR), the fine-tuned code embedding strategy exhibits
slightly fewer correct detections compared to the most effective

strategies (42 vs 45 and 314 vs 317, respectively). Besides, we find
that both zero-shot and few-shot prompting strategies exhibit the
lowest detection performance on most mutation operators. For
example, the zero-shot prompting strategy achieves correct detec-
tions of 254 (69.02%), 257 (74.71%), and 265 (87.75%) on the three
most common mutation operators (i.e., AOIS, ROR, and AROB), while
the fine-tuned code embedding strategy achieves higher correct
detections of 339 (92.12%), 314 (91.28%), and 287 (95.03%) respec-
tively. Additionally, the Kruskal-Wallis test validates that there is a
significant difference among all the compared strategies in terms of
detection performance on each mutation operator, with a p-value
being 1.63e-4, suggesting the superiority of the fine-tuned code
embedding strategy.

RQ3 Summary: The LLM-based technique and the fine-
tuned code embedding strategy significantly surpass the
other EMD categories and LLM strategies regarding the
unique correct/incorrect detections and the detection per-
formance on each mutation operator.

4.4 RQ4: Efficiency of Studied EMD Techniques
Approach. This research question aims to assess the efficiency of
our studied EMD techniques by calculating both training time (the
total time spent building an EMD model offline) and inference time
(the average time spent detecting a mutant pair). Given that the
training phase is not universally applicable to all EMD techniques,
such as TCE, and is conducted offline only once before the inference
phase, the primary metric for evaluating efficiency across these
techniques is the inference time.
Results. From Table 4, we observe that the inference time for the
best-performing Compiler-based technique (i.e., TCE𝑆𝑜𝑜𝑡), the best-
performing ML-based technique (i.e., KNN), the best-performing
Tree-based NN technique (i.e., ASTNN), and the best-performing
LLM-based technique (i.e., UniXCoder) are 2.3537 s, 0.0019 s, 0.0274 s,
and 0.0431 s, respectively. On the one hand, compared to traditional
Compiler-based techniques, LLM-based techniques have achieved
significant improvements in both efficiency and effectiveness. On
the other hand, while LLM-based techniques may be slightly less
efficient than the ML-based and Tree-based NN techniques, their
significant effectiveness makes the additional costs associated with
LLMs acceptable. This indicates that LLM-based techniques provide
an excellent balance between cost and effectiveness.

In addition, the pre-trained code embedding strategy signifi-
cantly outperforms the fine-tuned one in terms of training time.
For example, the pre-trained UniXCoder requires only 809.1785 s,
whereas the fine-tuned UniXCoder requires 2566.1184 s, making
the time consumption of the latter three times that of the former. It
demonstrates that the limited computational resource along with
the large model size of LLMs is the non-negligible factor that should
be carefully considered when adopting the fine-tuned code embed-
ding strategy to enhance LLM performance. Therefore, in practical
usage, there should be a trade-off between efficiency and resource
consumption for LLM-based techniques.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhao Tian, Honglin Shu, Dong Wang, Xuejie Cao, Yasutaka Kamei, and Junjie Chen

Table 4: Time efficiency of studied EMD techniques

Technique
Training
Time (s)

Inference
Time (s)

Compiler-based TCE𝐽 𝑎𝑣𝑎𝑐 - 1.0241
TCE𝑆𝑜𝑜𝑡 - 2.3537

ML-based

KNN 298.8415 0.0019
DT 297.3026 0.0015
RF 300.3978 0.0081
SVM 297.4997 0.0018
LDA 297.7096 0.0016
LR 296.8087 0.0016
GNB 298.2195 0.0014

Tree-based NN ASTNN 306.7047 0.0274

LLM-based Technique

Pre-trained
code embedding

CodeBERT (110M) 562.6160 0.0269
GraphCodeBERT (110M) 805.1435 0.0429
PLBART (210M) 844.1389 0.0421
CodeT5 (210M) 1545.3771 0.0784
UniXCoder (110M) 809.1785 0.0431
CodeT5+ (6B) 17043.0572 0.8294
StarCoder (7B) 16634.3038 0.9292
Text-Embedding-Ada-002 9820.2909 0.5951
Text-Embedding-3-Small 11346.9648 0.6876
Text-Embedding-3-Large 19234.9228 1.1705

Fine-tuned
code embedding

CodeBERT (110M) 1734.3351 0.0269
GraphCodeBERT (110M) 2613.7416 0.0429
PLBART (210M) 2390.2443 0.0421
CodeT5 (210M) 4471.2962 0.0784
UniXCoder (110M) 2566.1184 0.0431
CodeT5+ (6B) 37286.3283 0.8294
StarCoder (7B) 41888.5360 0.9292

Zero-shot
prompting

Code Llama (7B) - 0.2068
GPT-3.5-Turbo - 0.4990
GPT-4 - 0.5808

Few-shot
prompting

Code Llama (7B) - 0.5639
GPT-3.5-Turbo - 0.5290
GPT-4 - 0.6601

Fine-tuning
with instruction

Code Llama (7B) 29206.5457 0.5286
GPT-3.5-Turbo 6976.0079 0.3156

RQ4 Summary:The inference time of the best-performing
LLM-based technique (0.0431 s) exceeds that of the best-
performing Compiler-based technique (2.3537 s) but is
marginally longer than that of the best-performing ML-
based technique (0.0019 s) and the best-performing Tree-
based NN technique (0.0274 s). Given the significant ef-
fectiveness of LLM-based techniques, a minor increase in
inference time is deemed acceptable, highlighting their
balance between cost and effectiveness.

5 Discussion
5.1 Lessons Learnt
Does the model size affect detection performance? Our study
empirically validated the performance of a series of LLMs with

F1-score (↑): 81.88%
Centroid Distance (↑): 9.92

(a) Pre-trained UniXCoder

F1-score (↑): 86.58%
Centroid Distance (↑): 58.70

(b) Fine-tuned UniXCoder

F1-score (↑): 81.50%
Centroid Distance (↑): 5.87

(c) Text-Embedding-3-Large

NEQ Mutant Pair
EQ Mutant Pair
NEQ Mutant Pair Centroid
EQ Mutant Pair Centroid

Figure 4: t-SNE plots showing the embedding of mutant pairs.
EQ/NEQ represents equivalent/non-equivalent, respectively

various model sizes. The initial assumption of this study was that
larger LLMs would have possessed broader prior knowledge and
increased learning capacity, thereby enhancing the performance in
equivalent mutant detection. However, our experimental findings
indicated that the model size is not the predominant factor influenc-
ing LLM performance on equivalent mutant detection. Conversely,
our findings suggest that the data modality and pre-training tasks
of LLMs tend to play a more crucial role, a conclusion corroborated
by existing studies [19, 25, 86]. For instance, UniXCoder surpasses
all other studied LLMs, despite its smaller size as shown in RQ1 and
RQ2. This superiority is likely attributed to UniXCoder leveraging
AST to enhance code embeddings with rich syntax and semantic in-
formation from source code, achieved through contrastive learning
involving three well-designed code-related pre-training tasks.

Does the embedding quality affect detection performance?
Existing studies [12, 44] indicate that the embedding quality cru-
cially affects the ability to capture the program semantic feature for
identifying an effective decision boundary. To access the embedding
quality of mutant pairs, we employed t-distributed stochastic neigh-
bor embedding (t-SNE) [83], which enables us to visually examine
the relationship between code embeddings generated by various
studied encoder LLMs by projecting them into a 2-dimensional
space. Based on the findings of RQ1 and RQ2, we selected three best-
performing LLMs within three categories (i.e., pre-trained code em-
bedding, fine-tuned code embedding, and general text-embedding
models). Specifically, the selected techniques are pre-trained UniX-
Coder, fine-tuned UniXCoder, and Text-Embedding-3-Large. Fol-
lowing existing work [4], we utilized centroid distance to measure
the separation and quality of code embeddings. Larger centroid
distance values indicate enhanced embedding quality, signifying
clearer delineation in the embedding space.

Figure 4 displays the t-SNE plots for all 1,650 mutant pairs in
the test set across three studied encoder LLMs. We find that fine-
tuned UniXCoder (58.70) achieves better separation compared to

Large Language Models for Equivalent Mutant Detection: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

both pre-trained UniXCoder (9.92) and Text-Embedding-3-Large
(5.87) in terms of the centroid distance. The consistent performance
of the three LLMs on both the centroid distance (measuring em-
bedding quality) and F1-score (measuring detection performance)
metrics suggests a strong correlation between embedding quality
and detection performance.

5.2 Future Work
Across Different Programming Languages. Due to the limited
computational resources and time cost, we selected the popular
Java as the representative programming language for the evalua-
tion. In the future, we will extend our experimental evaluation in
other languages to comprehensively explore the performance of
LLMs in equivalent mutant detection. Moreover, we plan to analyze
the performance of LLMs in detecting equivalent mutants across
different programming languages. This investigation will facilitate
an in-depth analysis of LLMs’ understanding capability of various
syntaxes and structures across diverse programming paradigms.

Chain-of-Thought Prompting. In our study, we solely em-
ployed the typical prompting techniques (i.e., zero-shot prompting
and few-shot prompting). Recently, Chain-of-Thought (CoT) [39,
76] prompting technique has been proposed, facilitating LLMs for
tackling complex problems (e.g., mathematical reasoning and code
generation), through an intermediate reasoning process to derive
final solutions. Several studies have confirmed the effectiveness of
CoT prompting in enhancing LLM performance across complex rea-
soning benchmarks [34, 88]. Hence, we can further investigate the
role of CoT prompting in the task of equivalent mutant detection.

Equivalent Mutant Avoidance. Rather than detection, some
research focused on avoiding the generation of equivalent mu-
tants [51]. These avoidance techniques often involve meticulous
construction of mutants employing program dependence analysis
or higher-order mutation operators to reduce the number of equiv-
alent mutants [27, 32, 56]. Equivalent mutant detection techniques
and equivalent mutant avoidance techniques are orthogonal to a
large extent. Future work could explore the synergy of these two
categories to further enhance the mutation testing process.

Duplicated Mutant Detection. A related issue is the problem
of mutant duplication. Duplicated mutants refer to mutants that
are semantically equivalent to some other mutants, although both
duplicated mutants may be semantically different from the original
program. Duplicated mutants are also a challenge for mutation
testing as they may inflate the mutant-killing effectiveness of a test
suite. Kintis et al. [37] demonstrated that the equivalent mutant
detection technique (i.e., TCE) can directly detect these duplicated
mutants. In the future, we will delve into exploring the performance
of LLMs in duplicated mutant detection.

5.3 Threats to Validity
External threat. This threat mainly lies in the equivalent mutant

dataset used in our study. We only focus on programs written in
Java, thus our results may not be generalized to other languages.
In future work, we plan to extend our study framework to investi-
gate LLM performance across diverse programming languages in
equivalent mutant detection.

Construct threat. Three related threats are summarized. First,
the construction of training and test datasets may introduce poten-
tial bias resulting from the adopted strategy. However, the strati-
fied sampling strategy and the setting of 50% are commonly used.
Second, we acknowledge that the EQ/NEQ ratio we used is not
perfectly realistic. Nevertheless, our used ratio (17.80%) better re-
flects practical scenarios compared to the 50.00% ratio typically
used in existing studies [11, 50, 66]. In future work, we will conduct
a more comprehensive study to investigate the LLM sensitivity
across various ratios in the more practical benchmarks. Last, due
to the limited computational resources and cost, we did not run
our studied EMD techniques multiple times to mitigate potential
variance and randomness. Future work is encouraged to repeat the
experiment multiple times and report the average results.

Internal threat. This threat mostly lies in the implementations
of each studied EMD technique. To mitigate this threat, we imple-
mented EMD techniques based on the open-source tools of each
paper, and three authors have carefully reviewed the source code.

6 Conclusion
This work conducts an empirical study to extensively investigate
the effectiveness and efficiency of LLMs for equivalent mutant de-
tection. Specifically, we assess the performance of ten studied LLMs
in comparison to ten existing EMD techniques, examine the various
strategies of LLMs, evaluate the orthogonality between EMD tech-
niques, and measure the time overhead of training and inference.
The key findings highlight that LLM-based techniques significantly
surpass all baselines, with the fine-tuned code embedding strategy
being the most effective. Moreover, LLM-based techniques strike
an excellent balance between cost and effectiveness. Our work also
paves the way for promising future research such as the study
of cross-language equivalent mutant detection, chain-of-thought
prompting, combined effects with equivalent mutant avoidance
techniques, and LLM application in duplicated mutant detection.

7 Data Availability
We released all the experimental data and source code on the project
homepage for replication, future research, and practical use [29].

Acknowledgments
This work was supported by National Natural Science Founda-
tion of China (Grant Nos. 62322208, 62232001), CCF Young Elite
Scientists Sponsorship Program (by CAST), JSPS for the KAK-
ENHI grants (JP21H04877, JP22K18630), Bilateral Program grant
JPJSBP120239929, and the Inamori Research Institute for Science
for supporting Yasutaka Kamei via the InaRIS Fellowship.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. GPT-4 Technical Report. arXiv preprint arXiv:2303.08774
(2023).

[2] Konstantinos Adamopoulos, Mark Harman, and Robert M Hierons. 2004. How
to overcome the equivalent mutant problem and achieve tailored selective muta-
tion using co-evolution. In Genetic and Evolutionary Computation–GECCO 2004:
Genetic and Evolutionary Computation Conference, Seattle, WA, USA, June 26-30,
2004. Proceedings, Part II. Springer, 1338–1349.

ISSTA ’24, September 16–20, 2024, Vienna, Austria Zhao Tian, Honglin Shu, Dong Wang, Xuejie Cao, Yasutaka Kamei, and Junjie Chen

[3] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang.
2021. Unified pre-training for program understanding and generation. arXiv
preprint arXiv:2103.06333 (2021).

[4] Toufique Ahmed, Christian Bird, Premkumar Devanbu, and Saikat Chakraborty.
2024. Studying LLM Performance on Closed-and Open-source Data. arXiv
preprint arXiv:2402.15100 (2024).

[5] James H Andrews, Lionel C Briand, and Yvan Labiche. 2005. Is mutation an
appropriate tool for testing experiments?. In Proceedings of the 27th international
conference on Software engineering. 402–411.

[6] James H Andrews, Lionel C Briand, Yvan Labiche, and Akbar Siami Namin. 2006.
Using mutation analysis for assessing and comparing testing coverage criteria.
IEEE Transactions on Software Engineering 32, 8 (2006), 608–624.

[7] Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin,
Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen,
et al. 2023. Palm 2 technical report. arXiv preprint arXiv:2305.10403 (2023).

[8] Paolo Arcaini, Angelo Gargantini, Elvinia Riccobene, and Paolo Vavassori. 2017. A
novel use of equivalent mutants for static anomaly detection in software artifacts.
Information and Software Technology 81 (2017), 52–64.

[9] Michael Baer, Norbert Oster, and Michael Philippsen. 2020. Mutantdistiller: Using
symbolic execution for automatic detection of equivalent mutants and generation
of mutant killing tests. In 2020 IEEE International Conference on Software Testing,
Verification and Validation Workshops (ICSTW). IEEE, 294–303.

[10] Ezio Bartocci, Leonardo Mariani, Dejan Ničković, and Drishti Yadav. 2023.
Property-based mutation testing. In 2023 IEEE Conference on Software Testing,
Verification and Validation (ICST). IEEE, 222–233.

[11] Claudinei Brito, Vinicius HS Durelli, Rafael S Durelli, Simone RS de Souza,
Auri MR Vincenzi, and Márcio Eduardo Delamaro. 2020. A preliminary investiga-
tion into using machine learning algorithms to identify minimal and equivalent
mutants. In 2020 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE, 304–313.

[12] Nadia Burkart and Marco F Huber. 2021. A survey on the explainability of
supervised machine learning. Journal of Artificial Intelligence Research 70 (2021),
245–317.

[13] Cristiano Cervellera and Danilo Macciò. 2017. Distribution-preserving stratified
sampling for learning problems. IEEE Transactions on Neural Networks and
Learning Systems 29, 7 (2017), 2886–2895.

[14] Seungjoon Chung and Shin Yoo. 2022. Augmenting Equivalent Mutant Dataset
Using Symbolic Execution. In 2022 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE, 150–159.

[15] Xavier Devroey, Gilles Perrouin, Mike Papadakis, Axel Legay, Pierre-Yves
Schobbens, and Patrick Heymans. 2018. Model-based mutant equivalence detec-
tion using automata language equivalence and simulations. Journal of Systems
and Software 141 (2018), 1–15.

[16] Yali Du and Zhongxing Yu. 2023. Pre-training code representation with semantic
flow graph for effective bug localization. In Proceedings of the 31st ACM Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering. 579–591.

[17] Sidong Feng and Chunyang Chen. 2024. Prompting Is All You Need: Automated
Android Bug Replay with Large Language Models. In Proceedings of the 46th
IEEE/ACM International Conference on Software Engineering. 1–13.

[18] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[19] Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021. Simcse: Simple contrastive
learning of sentence embeddings. arXiv preprint arXiv:2104.08821 (2021).

[20] Rohit Gheyi, Márcio Ribeiro, Beatriz Souza, Marcio Guimarães, Leo Fernandes,
Marcelo d’Amorim, Vander Alves, Leopoldo Teixeira, and Baldoino Fonseca. 2021.
Identifying method-level mutation subsumption relations using Z3. Information
and Software Technology 132 (2021), 106496.

[21] Dan Gong, Tiantian Wang, Xiaohong Su, and Yanhang Zhang. 2022. Equivalent
mutants detection based on weighted software behavior graph. International
Journal of Software Engineering and Knowledge Engineering 32, 06 (2022), 819–843.

[22] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Mutations: How close
are they to real faults?. In 2014 IEEE 25th International Symposium on Software
Reliability Engineering. IEEE, 189–200.

[23] Rahul Gopinath, Björn Mathis, and Andreas Zeller. 2018. If You Can’t Kill a
Supermutant, You Have a Problem. In 2018 IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 18–24.

[24] Marcio Augusto Guimarães, Leo Fernandes, Márcio Ribeiro, Marcelo d’Amorim,
and Rohit Gheyi. 2020. Optimizing mutation testing by discovering dynamic
mutant subsumption relations. In 2020 IEEE 13th International Conference on
Software Testing, Validation and Verification (ICST). IEEE, 198–208.

[25] Daya Guo, Shuai Lu, Nan Duan, Yanlin Wang, Ming Zhou, and Jian Yin. 2022.
Unixcoder: Unified cross-modal pre-training for code representation. arXiv
preprint arXiv:2203.03850 (2022).

[26] Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, Shujie Liu, Long
Zhou, Nan Duan, Alexey Svyatkovskiy, Shengyu Fu, et al. 2020. Graphcodebert:

Pre-training code representations with data flow. arXiv preprint arXiv:2009.08366
(2020).

[27] Mark Harman, Rob Hierons, and Sebastian Danicic. 2001. The relationship
between program dependence and mutation analysis. Mutation testing for the
new century (2001), 5–13.

[28] Dominik Holling, Sebastian Banescu, Marco Probst, Ana Petrovska, and Alexan-
der Pretschner. 2016. Nequivack: Assessing mutation score confidence. In 2016
IEEE Ninth International Conference on Software Testing, Verification and Validation
Workshops (ICSTW). IEEE, 152–161.

[29] Homepage. 2024. https://github.com/tianzhaotju/EMD.
[30] Mahdi Houshmand and Samad Paydar. 2017. TCE+: An extension of the tce

method for detecting equivalent mutants in java programs. In Fundamentals of
Software Engineering: 7th International Conference, FSEN 2017, Tehran, Iran, April
26–28, 2017, Revised Selected Papers 7. Springer, 164–179.

[31] Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wenjie Wang, Shuhao Li, and
Yuqing Zhang. 2023. An empirical study on fine-tuning large language models
of code for automated program repair. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 1162–1174.

[32] Yue Jia and Mark Harman. 2009. Higher order mutation testing. Information and
Software Technology 51, 10 (2009), 1379–1393.

[33] Yue Jia and Mark Harman. 2010. An analysis and survey of the development of
mutation testing. IEEE transactions on software engineering 37, 5 (2010), 649–678.

[34] Xue Jiang, Yihong Dong, Lecheng Wang, Qiwei Shang, and Ge Li. 2023.
Self-planning code generation with large language model. arXiv preprint
arXiv:2303.06689 (2023).

[35] Mohamad Khajezade, Jie Wu, Fatemeh Hendijani Fard, Gema Rodríguez-Pérez,
and Mohamed Sami Shehata. 2024. Investigating the Efficacy of Large Language
Models for Code Clone Detection. arXiv preprint arXiv:2401.13802 (2024).

[36] Jinhan Kim, Juyoung Jeon, Shin Hong, and Shin Yoo. 2022. Predictive mutation
analysis via the natural language channel in source code. ACM Transactions on
Software Engineering and Methodology (TOSEM) 31, 4 (2022), 1–27.

[37] Marinos Kintis, Mike Papadakis, Yue Jia, Nicos Malevris, Yves Le Traon, and Mark
Harman. 2017. Detecting trivial mutant equivalences via compiler optimisations.
IEEE Transactions on Software Engineering 44, 4 (2017), 308–333.

[38] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, and
Nicos Malevris. 2016. Analysing and comparing the effectiveness of mutation
testing tools: A manual study. In 2016 IEEE 16th International Working Conference
on Source Code Analysis and Manipulation (SCAM). IEEE, 147–156.

[39] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke
Iwasawa. 2022. Large language models are zero-shot reasoners. Advances in
neural information processing systems 35 (2022), 22199–22213.

[40] William H. Kruskal and W. Allen Wallis. 1952. Use of Ranks in One-Criterion
Variance Analysis. J. Amer. Statist. Assoc. 47, 260 (1952), 583–621.

[41] Benjamin Kushigian, Amit Rawat, and René Just. 2019. Medusa: Mutant equiva-
lence detection using satisfiability analysis. In 2019 IEEE International Conference
on Software Testing, Verification and Validation Workshops (ICSTW). IEEE, 77–82.

[42] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).

[43] Tsz-On Li, Wenxi Zong, Yibo Wang, Haoye Tian, Ying Wang, Shing-Chi Cheung,
and Jeff Kramer. 2023. Nuances are the key: Unlocking chatgpt to find failure-
inducing tests with differential prompting. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 14–26.

[44] Xiang Li, John Thickstun, Ishaan Gulrajani, Percy S Liang, and Tatsunori B
Hashimoto. 2022. Diffusion-lm improves controllable text generation. Advances
in Neural Information Processing Systems 35 (2022), 4328–4343.

[45] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2024. Is your
code generated by chatgpt really correct? rigorous evaluation of large language
models for code generation. Advances in Neural Information Processing Systems
36 (2024).

[46] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and
Graham Neubig. 2023. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. Comput. Surveys 55, 9 (2023),
1–35.

[47] Yiling Lou, Dan Hao, and Lu Zhang. 2015. Mutation-based test-case prioritization
in software evolution. In 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE). IEEE, 46–57.

[48] Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey Svyatkovskiy, Ambro-
sio Blanco, Colin Clement, Dawn Drain, Daxin Jiang, Duyu Tang, et al. 2021.
Codexglue: A machine learning benchmark dataset for code understanding and
generation. arXiv preprint arXiv:2102.04664 (2021).

[49] Yucheng Lu, Youngsuk Park, Lifan Chen, Yuyang Wang, Christopher De Sa,
and Dean Foster. 2021. Variance reduced training with stratified sampling for
forecasting models. In International Conference on Machine Learning. PMLR,
7145–7155.

[50] Wei Ma, Shangqing Liu, WenhanWang, Qiang Hu, Ye Liu, Cen Zhang, Liming Nie,
and Yang Liu. 2023. The scope of chatgpt in software engineering: A thorough
investigation. arXiv preprint arXiv:2305.12138 (2023).

https://github.com/tianzhaotju/EMD

Large Language Models for Equivalent Mutant Detection: How Far Are We? ISSTA ’24, September 16–20, 2024, Vienna, Austria

[51] Lech Madeyski, Wojciech Orzeszyna, Richard Torkar, and Mariusz Jozala. 2013.
Overcoming the equivalent mutant problem: A systematic literature review and a
comparative experiment of second order mutation. IEEE Transactions on Software
Engineering 40, 1 (2013), 23–42.

[52] Mohsen Moradi Moghadam, Mehdi Bagherzadeh, Raffi Khatchadourian, and
Hamid Bagheri. 2023. muAkka: Mutation Testing for Actor Concurrency in
Akka using Real-World Bugs. In Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 262–274.

[53] Muhammad Rashid Naeem, Tao Lin, Hamad Naeem, and Hailu Liu. 2020. A
machine learning approach for classification of equivalent mutants. Journal of
Software: Evolution and Process 32, 5 (2020), e2238.

[54] Changan Niu, Chuanyi Li, Vincent Ng, Dongxiao Chen, Jidong Ge, and Bin Luo.
2023. An empirical comparison of pre-trained models of source code. arXiv
preprint arXiv:2302.04026 (2023).

[55] A Jefferson Offutt and Jie Pan. 1997. Automatically detecting equivalent mutants
and infeasible paths. Software testing, verification and reliability 7, 3 (1997),
165–192.

[56] Saeyoon Oh, Seongmin Lee, and Shin Yoo. 2021. Effectively sampling higher order
mutants using causal effect. In 2021 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE, 19–24.

[57] Milos Ojdanic, Ezekiel Soremekun, Renzo Degiovanni, Mike Papadakis, and Yves
Le Traon. 2023. Mutation testing in evolving systems: Studying the relevance
of mutants to code evolution. ACM Transactions on Software Engineering and
Methodology 32, 1 (2023), 1–39.

[58] OpenAI. 2022. ChatGPT: Optimizing Language Models for Dialogue. https:
//openai.com/blog/chatgpt.

[59] OpenAI. 2024. https://openai.com/.
[60] OpenAI. 2024. New Generation of Embedding Model. https://openai.com/blog/

new-embedding-models-and-api-updates.
[61] Mike Papadakis, Marcio Delamaro, and Yves Le Traon. 2014. Mitigating the

effects of equivalent mutants with mutant classification strategies. Science of
Computer Programming 95 (2014), 298–319.

[62] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial compiler
equivalence: A large scale empirical study of a simple, fast and effective equivalent
mutant detection technique. In 2015 IEEE/ACM 37th IEEE International Conference
on Software Engineering, Vol. 1. IEEE, 936–946.

[63] Mike Papadakis, Marinos Kintis, Jie Zhang, Yue Jia, Yves Le Traon, and Mark
Harman. 2019. Mutation testing advances: an analysis and survey. In Advances
in computers. Vol. 112. Elsevier, 275–378.

[64] Mike Papadakis and Yves Le Traon. 2013. Mutation testing strategies using
mutant classification. In Proceedings of the 28th Annual ACM Symposium on
Applied Computing. 1223–1229.

[65] Mike Papadakis and Yves Le Traon. 2015. Metallaxis-FL: mutation-based fault
localization. Software Testing, Verification and Reliability 25, 5-7 (2015), 605–628.

[66] Samuel Peacock, Lin Deng, Josh Dehlinger, and Suranjan Chakraborty. 2021.
Automatic equivalent mutants classification using abstract syntax tree neural
networks. In 2021 IEEE International Conference on Software Testing, Verification
and Validation Workshops (ICSTW). IEEE, 13–18.

[67] James Perretta, Andrew DeOrio, Arjun Guha, and Jonathan Bell. 2022. On the use
of mutation analysis for evaluating student test suite quality. In Proceedings of
the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis.
263–275.

[68] Michael Pradel and Koushik Sen. 2018. Deepbugs: A learning approach to name-
based bug detection. Proceedings of the ACM on Programming Languages 2,
OOPSLA (2018), 1–25.

[69] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[70] June Sallou, Thomas Durieux, and Annibale Panichella. 2024. Breaking the
silence: the threats of using llms in software engineering. In Proceedings of the
2024 ACM/IEEE 44th International Conference on Software Engineering: New Ideas
and Emerging Results. 102–106.

[71] Max Schäfer, Sarah Nadi, Aryaz Eghbali, and Frank Tip. 2023. An empirical
evaluation of using large language models for automated unit test generation.
IEEE Transactions on Software Engineering (2023).

[72] David Schuler and Andreas Zeller. 2010. (Un-) covering equivalent mutants. In
2010 Third International Conference on Software Testing, Verification and Validation.
IEEE, 45–54.

[73] David Schuler and Andreas Zeller. 2013. Covering and uncovering equivalent
mutants. Software Testing, Verification and Reliability 23, 5 (2013), 353–374.

[74] August Shi, Jonathan Bell, and DarkoMarinov. 2019. Mitigating the effects of flaky
tests on mutation testing. In Proceedings of the 28th ACM SIGSOFT International
Symposium on Software Testing and Analysis. 112–122.

[75] Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M Sadler, Wei-Lun
Chao, and Yu Su. 2023. Llm-planner: Few-shot grounded planning for embodied
agents with large language models. In Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2998–3009.

[76] Zhao Tian and Junjie Chen. 2023. Test-case-driven programming under-
standing in large language models for better code generation. arXiv preprint
arXiv:2309.16120 (2023).

[77] Zhao Tian, Junjie Chen, and Zhi Jin. 2023. Code difference guided adversarial
example generation for deep code models. In 2023 38th IEEE/ACM International
Conference on Automated Software Engineering (ASE). IEEE, 850–862.

[78] Zhao Tian, Junjie Chen, and Xiangyu Zhang. 2023. On-the-fly improving perfor-
mance of deep code models via input denoising. In 2023 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineering (ASE). IEEE, 560–572.

[79] Zhao Tian, Junjie Chen, Qihao Zhu, Junjie Yang, and Lingming Zhang. 2022.
Learning to construct better mutation faults. In Proceedings of the 37th IEEE/ACM
International Conference on Automated Software Engineering. 1–13.

[80] Thierry Titcheu Chekam,Mike Papadakis, Tegawendé F Bissyandé, Yves Le Traon,
and Koushik Sen. 2020. Selecting fault revealing mutants. Empirical Software
Engineering 25 (2020), 434–487.

[81] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[82] Michele Tufano, Cody Watson, Gabriele Bavota, Massimiliano Di Penta, Martin
White, and Denys Poshyvanyk. 2019. Learning how to mutate source code from
bug-fixes. In 2019 IEEE International conference on software maintenance and
evolution (ICSME). IEEE, 301–312.

[83] Laurens van der Maaten and Geoffrey E. Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research (2008).

[84] Lars van Hijfte and Ana Oprescu. 2021. Mutantbench: an equivalent mutant
problem comparison framework. In 2021 IEEE International Conference on Software
Testing, Verification and Validation Workshops (ICSTW). IEEE, 7–12.

[85] Junjie Wang, Yuchao Huang, Chunyang Chen, Zhe Liu, Song Wang, and Qing
Wang. 2024. Software testing with large language models: Survey, landscape,
and vision. IEEE Transactions on Software Engineering (2024).

[86] Yue Wang, Hung Le, Akhilesh Deepak Gotmare, Nghi DQ Bui, Junnan Li, and
Steven CH Hoi. 2023. Codet5+: Open code large language models for code
understanding and generation. arXiv preprint arXiv:2305.07922 (2023).

[87] YueWang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. 2021. Codet5: Identifier-
aware unified pre-trained encoder-decoder models for code understanding and
generation. arXiv preprint arXiv:2109.00859 (2021).

[88] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi,
Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought prompting elicits reasoning
in large language models. Advances in neural information processing systems 35
(2022), 24824–24837.

[89] ThomasWolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al.
2019. Huggingface’s transformers: State-of-the-art natural language processing.
arXiv preprint arXiv:1910.03771 (2019).

[90] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Ling-
ming Zhang. 2023. Universal fuzzing via large language models. arXiv preprint
arXiv:2308.04748 (2023).

[91] Chen Yang, Junjie Chen, Bin Lin, Jianyi Zhou, and Ziqi Wang. 2024. Enhancing
LLM-based Test Generation for Hard-to-Cover Branches via Program Analysis.
arXiv preprint arXiv:2404.04966 (2024).

[92] Lin Yang, Chen Yang, Shutao Gao, Weijing Wang, Bo Wang, Qihao Zhu, Xiao
Chu, Jianyi Zhou, Guangtai Liang, Qianxiang Wang, et al. 2024. An Empirical
Study of Unit Test Generation with Large Language Models. arXiv preprint
arXiv:2406.18181 (2024).

[93] Xiangjuan Yao, Mark Harman, and Yue Jia. 2014. A study of equivalent and
stubborn mutation operators using human analysis of equivalence. In Proceedings
of the 36th international conference on software engineering. 919–930.

[94] Jian Zhang, Xu Wang, Hongyu Zhang, Hailong Sun, Kaixuan Wang, and Xudong
Liu. 2019. A novel neural source code representation based on abstract syntax
tree. In 2019 IEEE/ACM 41st International Conference on Software Engineering
(ICSE). IEEE, 783–794.

[95] Ting Zhang, Ivana Clairine Irsan, Ferdian Thung, and David Lo. 2023. Revisiting
sentiment analysis for software engineering in the era of large language models.
arXiv preprint arXiv:2310.11113 (2023).

https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openai.com/
https://openai.com/blog/new-embedding-models-and-api-updates
https://openai.com/blog/new-embedding-models-and-api-updates

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Mutation Testing
	2.2 Equivalent Mutants
	2.3 Large Language Models

	3 Study Design
	3.1 Dataset Preparation
	3.2 Experimented Large Language Models
	3.3 Pre-trained Large Language Models for Code Embedding
	3.4 Strategies for Large Language Models
	3.5 Baselines
	3.6 Metrics
	3.7 Implementation and Environment

	4 Results
	4.1 RQ1: Performance of LLMs in EMD
	4.2 RQ2: Best Strategy of LLMs in EMD
	4.3 RQ3: Orthogonality between Studied EMD Techniques
	4.4 RQ4: Efficiency of Studied EMD Techniques

	5 Discussion
	5.1 Lessons Learnt
	5.2 Future Work
	5.3 Threats to Validity

	6 Conclusion
	7 Data Availability
	Acknowledgments
	References

