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Fuzzing is an automated software testing technique used to find software vulnerabilities that works by sending
large amounts of inputs to a software system to trigger bad behaviors. In recent years, the open-source
software ecosystem has seen a significant increase in the adoption of fuzzing to avoid spreading vulnerabilities
throughout the ecosystem. While fuzzing can uncover vulnerabilities, there is currently a lack of knowledge
regarding the challenges of conducting fuzzing activities over time. Specifically, fuzzers are very complex
tools to set up and build before they can be used.

We set out to empirically find out how challenging is build maintenance in the context of fuzzing. We mine
over 1.2 million build logs from Google’s OSS-Fuzz service to investigate fuzzing build failures. We first conduct
a quantitative analysis to quantify the prevalence of fuzzing build failures. We then manually investigate
677 failing fuzzing builds logs and establish a taxonomy of 25 root causes of build failures. We finally train a
machine learning model to recognize common failure patterns in failing build logs. Our taxonomy can serve
as a reference for practitioners conducting fuzzing build maintenance. Our modeling experiment shows the
potential of using automation to simplify the process of fuzzing.
CCS Concepts: • Software and its engineering → Software testing and debugging; Software maintenance
tools; • General and reference→ Empirical studies; • Security and privacy→ Vulnerability management.
Additional Key Words and Phrases: Fuzzing, Empirical Study, Build Maintenance
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1 INTRODUCTION
With the increasing size and complexity of modern software systems, it is becoming increasingly
harder to avoid bugs and vulnerabilities from being introduced into a codebase. In the context of
open source projects, a single security flaw can have worldwide impacts as we observed with recent
vulnerabilities such as the Hearthbleed vulnerability [27] and the Log4Shell vulnerability [10]. To
minimize the risks of such events happening again, development communities increasingly turn
to fuzzing to actively look for vulnerabilities in their codebase. Fuzzing works by sending large
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amounts of unexpected inputs to a software system to trigger bad behaviors and find security flaws
such that they can be fixed before a malicious actor makes use of them.
The open-source software ecosystem, specifically, has seen a significant increase in fuzzing

activities in recent years. For example, as a result of the Heartbleed vulnerability [27], Google
launched the OSS-Fuzz [50] service with the aim of making the entire open-source ecosystem
more secure. The OSS-Fuzz service provides continuous fuzzing to open-source software systems
and notifies a project’s developers when vulnerabilities are found by OSS-Fuzz’ fuzzers. On top of
external fuzzing services, other open source communities have made efforts to spread the adoption
of fuzzing. For example, the Go development team decided to include fuzzing as a feature within
the Go programming language itself to let developers easily write fuzzing tests and make their
software more secure [17].

While fuzzing helps improve the overall security of the ecosystem, it also requires open-source
communities to take on new challenges related to the process of fuzzing. These challenges cover
the entire lifecycle of fuzzing starting from choosing what to fuzz and how to write fuzz targets, to
setting up, using and building fuzzers, and finally maintaining fuzzing infrastructure over time.
Several studies have been conducted by researchers to know more about the current state of fuzzing
and to find the current limitations of existing fuzzing tools and processes [3, 36, 40, 64]. In 2020, a
Shonan meeting [4] was held to discuss the overall state of fuzzing, to reflect on current fuzzing
methodologies and processes, as well as to discuss current challenges and possible future work
in the field. While the field of fuzzing has many publications on fuzzing tools and techniques to
improve fuzzing coverage [32, 59, 60], the lack of open source empirical data has limited the ability
of researchers to investigate fuzzing practices and methodologies so far.
The recent advent of OSS-Fuzz, however, enables researchers to have access to high quality

empirical data to conduct empirical studies [13, 29] and empirically find out more about current
fuzzing practices and challenges. In 2023, Nourry et al. [47] mined and used OSS-Fuzz data to
empirically find out what challenges fuzzing developers are facing and to get fuzzing developers’
opinions on the current limitations of fuzzing. Based on manual analysis and testimonies of
developers involved with fuzzing activities in open-source software systems, Nourry et al. found
that the most common type of issues in the context of fuzzing are build-related issues. While this
finding sheds more light on why fuzzing activities are challenging, it is still unclear in what ways
build management is causing issues for fuzzing practitioners. Specifically, the survey based study
conducted by Nourry et al. does not reveal how prevalent build related issues are when conducting
fuzzing activities nor does it reveal what are the root causes underlying these build issues.
Using publicly available OSS-Fuzz data, it is now possible to empirically investigate some of

the fuzzing experts’ concerns highlighted in Nourry et al’s survey starting with fuzzing build
failures. OSS-Fuzz currently supports most state of the art fuzzers (AFL++, libfuzzer, HongFuzz,
and Centipede) which allows any important open-source project using C/C++, Rust, Go, Python or
Java to use the OSS-Fuzz service. Due to the wide range of fuzzers and programming languages
supported, fuzzing activities conducted through the OSS-Fuzz service are representative of most use
cases of fuzz testing. Consequently, the build issues found during the OSS-Fuzz build process and
the resulting failing build logs are also representative of build failures encountered by developers
conducting their own fuzzing activities. Similar to how other studies have investigated build failures
in other contexts (CI, Docker, Software development, etc.) [14, 18, 54, 55, 61], we set out to learn
more about build failures in the context of fuzzing using openly availably fuzzer build log data from
OSS-Fuzz. More specifically, we first conduct a quantitative analysis to quantify the prevalence of
build failures in the context of fuzzing. Through this quantitative analysis we aim to find out the
following:
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(RQ1) How often do fuzzing builds fail?
We analyze the distribution of build failures across projects participating in OSS-Fuzz to understand
how common are build issues in the context of fuzzing. We calculate a median percentage of build
failure of 5% across all projects indicating that OSS-Fuzz projects carefully manage their fuzzing
builds. We also find that a few projects do not actively maintain their OSS-Fuzz fuzzing build.

(RQ2) How long does it take to fix failing fuzzing builds?We investigate how long it takes for
a failing fuzzing build to be fixed in order to better understand the time cost of fixing fuzzing build
failures and also to get some insights as to whether or not open source communities quickly address
fuzzing-related issues or not. We find that 80% of fuzzing build failures are fixed within a day of the
first failure. We also find that 73.85% of failing builds have no subsequent failing builds.

Following the quantitative analysis, we then conduct a qualitative analysis to get a better
understanding of the factors causing build failures in the context of fuzzing. Through this qualitative
analysis we aim to answer the following:
(RQ3) What are the root causes of fuzzing build failures?
Using a manual analysis approach, we empirically find the root causes of build failure in 677 failing
fuzzing builds logs. We then define a taxonomy of build failure root causes pertaining to fuzzing
builds. Using this taxonomy, we aim to make diagnosing fuzzing build failure easier and quicker for
developers maintaining fuzzing activities in open source projects. Our manual investigation reveals
25 distinct root causes of fuzzing build failures. We find that multiple build failures are not specific
to fuzzing but rather related to using build systems in general and that multiple fuzzing builds fail
due to circumstances outside of the developers’ control.

We summarize the main contribution of this paper as follows:
(1) We conduct a quantitative analysis to find out the prevalence of build failures in the context

of fuzzing.
(2) We conduct a qualitative analysis to find out why fuzzing builds fail and propose a clear

taxonomy of build failure root causes for fuzzing builds.
(3) We conduct an experiment to automatically classify fuzzing build failures using a machine

learning model.
(4) We provide a manually labeled dataset of 677 failed fuzzing build logs along with the

identified root cause of failure.

2 BACKGROUND
2.1 Fuzzing Process
Fuzzing is an automated software technique that consists of sending large amounts of inputs to
a software system in order to trigger unexpected or bad behaviors. While fuzzing can be used
for a variety of use cases [25, 43, 44, 52], the current main applications so far have been to find
vulnerabilities via penetration testing or software testing. To implement fuzzing, a developer must
first define the fuzz target(s) that will be receiving the fuzzer inputs. In the context of penetration
testing, a fuzz target could be any software that expects an input such as an API expecting a request
[2, 63]. For software testing, a fuzz target can be a piece of source code that expects a specific input
to be executed [17]. For software systems whose codebase contains a lot of interdependency in the
source code or whose software architecture follows a monolithic design, the process of creating a
fuzz target can be very challenging for developers. The main reason is that for each fuzzing session,
each fuzz target must be able to be compiled and executed on its own. Developers must therefore
find ways to extract parts of a codebase such that the source code can be compiled and executed on
its own without needing to compile the rest of the software system.
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After defining and instrumenting (if necessary) the fuzz target(s), a developer must set up the
fuzzing environment by defining the necessary environment variables and installing the required
dependencies. Then, the developer must configure a fuzzer based on the type of fuzzing that will be
conducted (network fuzzing, UI fuzzing, binary fuzzing, etc). Because fuzzers are often configured
for a specific type of software and can only be executed after the environment is perfectly configured
for the fuzzing use case, it is not uncommon for developers to reconfigure their fuzzers as a result
of external changes that affected the environment (i.e., a dependency or the compiler updated its
version number). The complexity of fuzzing tools and the domain knowledge required to properly
configure a fuzzer and its environment can therefore be a significant challenge for developers that
are not experts in fuzzing.
Once the environment and the fuzzer are both configured, a developer needs to download and

fetch the remaining resources required for his/her fuzzing use case such as a corpus. In the context
of fuzzing, a corpus is a set of test inputs used as a baseline to generate new inputs for further
testing. When a new input is found to crash a target system or increase the coverage, developers will
often add this new input to their corpus so that it can be reused in future runs. After aggregating
all necessary resources and setting up the environment, the developer can finally trigger the build
process which will download all dependencies, compile the project and its fuzz target(s), and
compile the fuzzing tool. If any of these previous task fails, the build process fails and the developer
must then find out what caused the build failure, fix the issue, and run the build process again.
If a build process successfully completes, the fuzzer is then executed and starts continuously

sending inputs to the fuzz target(s). If the developer provided a corpus to the fuzzer, the inputs
contained in the corpus will be used to try to crash the target system and also to generate new
inputs via mutations. These mutations can be done using a variety of strategies. For example, the
popular AFL++ fuzzer [16] supports a wide range of input mutation strategies such as changing the
length of an input, flipping random bits, substituting parts of an input and even merging multiple
inputs into one just to name a few.
While fuzzing, the responses of the target software system are continuously monitored so that

any unexpected behavior such as crashing or wrongly providing elevated permissions is recorded
and subsequently made into a bug report. To improve fuzzing over time, all inputs that trigger
vulnerabilities and cause crashes are added to the corpus so that future runs can use them to
generate new inputs. Additionally, developers can also generate coverage reports and use coverage
as a benchmark to increase the amount of source code triggered during fuzzing over time.

2.2 OSS-Fuzz Infrastructure
OSS-Fuzz is a free continuous fuzzing service provided by Google for open-source projects that
are considered critical for the open source software ecosystem. Using this service, open-source
projects and the open-source ecosystem as a whole can benefit from continuous fuzzing to check
for vulnerabilities without having to bear the financial cost themselves. Although there is no
official documentation to know how often or how long each project is fuzzed every day, OSS-Fuzz
supports continuous integration to fuzz every pull request of a project. 1 If developers opt to use
continuous integration, they are then able to set how long their project should be fuzzed using
the “fuzz-seconds” argument in their configuration (default of 600 seconds of fuzzing up to a
maximum of almost 6 hours). Since OSS-Fuzz developers are able to assign more or less CPU time
to each project individually via internal weights that are not visible to the public,2 to the best of
our knowledge there is currently no way to know how much fuzzing is conducted on each project.

1https://google.github.io/oss-fuzz/getting-started/continuous-integration/
2https://github.com/google/oss-fuzz/issues/3014
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Cloud build GCS bucket

⑤ Upload compiled files

⑥ Download 
and fuzz Google/oss-fuzz

④ Upload build log

Developer

ClusterFuzz

⑦ File issues for fuzzing bugs

Monorail issue tracker

① Write fuzz targets

Func FuzzFoo(f *testing.F) { 
f.Add(5,”hello”) 
f.Fuzz(func(t *testing.T, i int, s string) { 

out, err := Foo(i,s) 
if err != nil && out != “” { 

t.Errorf(“%q”, “%v”, out, err) } 
} ) }

Fuzz target

Project repo

② Commit build/config files

③ Sync files

⑧ Developer notified for bug fixing

Fig. 1. OSS-Fuzz architecture

While OSS-Fuzz is useful to automate the fuzzing process (i.e., fuzz continuously), using an
external service to fuzz a software system also adds its own set of challenges. For instance, using
an external provider might make it more difficult to locate the root cause of a build failure than
if a developer is always using his/her own local environment to fuzz their project. Additionally,
integrating a project to OSS-Fuzz, managing the fuzzing build over time on an external service,
and using OSS-Fuzz’ bug issue tracker are all additional challenges incurred by using an external
provider rather than fuzzing locally. Figure 1 shows an overview of the OSS-Fuzz architecture and
describes the steps to use OSS-Fuzz.
Integrating a project to OSS-Fuzz. As described on OSS-Fuzz’ website [26], when an open-

source project is accepted into the OSS-Fuzz service by the OSS-Fuzz team, one of the project’s
developers or a maintainer of the project must first create fuzz targets for the target project then
integrate the fuzz targets into the project’s build and testing infrastructure ( 1○).

Next, the developer must commit the build files and configuration files (i.e., project.yaml, Dock-
erfile, build.sh) required from the OSS-Fuzz service into the official OSS-Fuzz GitHub repository
( 2○).3 The first file required is the project.yaml file. It includes general information such as a link
to the project’s repository and the contact information of the maintainer but also which fuzzing
engine (e.g., libfuzzer, AFL++, etc.) and which sanitizers (i.e., MSan, ASan, etc.) to use.

The second file required is a Dockerfile which allows OSS-Fuzz to reproduce the docker environ-
ment in which a project’s fuzzers will be built and the fuzz target(s) will be fuzzed. The third and
last required file is the build.sh file which contains configuration commands to download or set up
the required dependencies such as the environment variables, the symlinks, the corpus/corpora,
and the pip packages to install.
OSS-Fuzz’ process flow. Once all the build files and configuration files are uploaded to the

OSS-Fuzz repository, the OSS-Fuzz service will use a cloud builder4 to build the project using
the provided build/config files ( 3○). At the end of the build process, the resulting build log will
be uploaded to a Google Cloud Storage (GCS) bucket ( 4○) dedicated to OSS-Fuzz. Additionally,
the metadata files stored in the OSS-Fuzz GCS bucket will be updated with the newly created
log’s information. After uploading the build log and updating the metadata files, the cloud builder
will then upload the compiled project’s files and fuzz target(s) to the GCS bucket ( 5○). Finally,
OSS-Fuzz’ ClusterFuzz infrastructure 5 will download the fuzz targets, start fuzzing the project and

3https://github.com/google/oss-fuzz
4https://cloud.google.com/build/docs/cloud-builders
5https://google.github.io/clusterfuzz/
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continuously monitor the system for crashes or unusual behaviors ( 6○). If a vulnerability is found
during fuzzing ( 7○), an issue is automatically created on the official OSS-Fuzz issue tracker [21]
and the project’s developers/maintainers are notified of the vulnerability ( 8○).

In the case of failed builds, we have found through a manual process several different ways that
project developers are notified of build failures. One common way that OSS-Fuzz developers notify
the project developers is by tagging them in a GitHub issue on the official OSS-Fuzz repository
(e.g., issue#5558). We have also found cases where a project developer will notice the failure on
his/her own and make an issue in either the OSS-Fuzz GitHub repository or the project’s GitHub
repository (e.g., LLVM project issue#40714). In other cases, the official bug tracker for OSS-Fuzz
will also notify project developers automatically of build failures happening for their project (e.g.,
issue#23673). It is also highly likely that a project’s maintainer gets automatically notified of a
OSS-Fuzz build failure via the ClusterFuzz panel (the management panel for all OSS-Fuzz processes
related to a project). Since each project’s panel can only be accessed by the official maintainer, we
however cannot confirm if the management panel does indeed notify developers.

OSS-Fuzz projects build logs. The logs stored in the GCS bucket shown in step ( 4○) of Figure 1
are the logs we used in this study to investigate what causes fuzzing build failures. These are the
build logs generated from the cloud builder as a result of compiling the target project, the fuzz
targets and the fuzzer. If the cloud builder build process is unsuccessful, the project’s maintainer
and members of the OSS-Fuzz team must look at the resulting build log to figure out what caused
the failure and who needs to fix the issue. A build failure will normally be fixed either by one of the
project’s developers/maintainers or a member of the OSS-Fuzz team based on whether the error
happened on the project’s side or from an OSS-Fuzz related issue.

Fig. 2. OSS-Fuzz public panel to OSS-Fuzz projects’ fuzzing builds status

As stated in the official documentation 6, each project is built once a day by default but developers
can increase the frequency up to four times a day using the builds_per_day argument in the
configuration file. As shown in Figure 2, a dashboard [51] showing projects being fuzzed by OSS-
Fuzz is publicly available online. Using this dashboard, anyone can view a build log from each of
the last 7 days for each project and the date of the last passing build. To find fuzzing builds older
than 7 days, we had to find the metadata files contained in the OSS-Fuzz build logs GCS bucket
(step ( 4○) in Figure 1) which contains generic information about all build logs generated from the
cloud builder build process. To access the metadata files, the Google storage API 7 must be used to
mine the OSS-Fuzz bucket. By parsing these metadata files, we were able to extract the links to
older fuzzing builds and the date at which they were executed. Once we had a list of all OSS-Fuzz
6https://google.github.io/oss-fuzz/getting-started/new-project-guide/#build_frequency
7https://cloud.google.com/storage/docs/json_api
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projects’ fuzzing builds, we were finally able to mine the entire history of fuzzing builds logs from
OSS-Fuzz’ GCS bucket.

3 QUANTITATIVE ANALYSIS
In this section, we first conduct a quantitative analysis to reveal how prevalent are build failures in
the context of fuzzing and how much time developers spend on fixing their fuzzing builds.

3.1 Quantitative dataset
Using the metadata files stored in OSS-Fuzz’ GCS bucket described in Section 2.2, we were able to
extract and mine the links (URLs) to past build logs. Using these URLs we then started mining every
build log contained in the metadata files. From the metadata files, we also extracted the unique
identifier (hash) and the creation time of each build log so that we could establish the full historical
timeline of fuzzing builds for each project. At the end of the log mining process, the total number
of fuzzing build logs amounted to 1,223,075 logs dating from March 2017 to September 2022 and
spanned over 748 projects. We then parsed each build log to extract the data necessary for our
study namely the name of the project being built, the project’s revision hash at the time of the
build, and the URL to the project’s repository.
As shown in Table 1, we then filtered out logs where the build crashed so early that the target

project had not even been cloned yet. For these cases, because the crash happened so early, the
name and URL of the project being built were not included in the crashing log, which made it
impossible for us to know which project a log belonged to. Because we need this information to
conduct the quantitative analysis, we filtered out these instant crash cases which brought down
our number of logs to 974,431 build logs.
After manually checking the dataset, we found that some of the projects’ URLs extracted from

the build logs were pointing to repositories where fuzzers were being developed or repositories
storing corpora used by a fuzzer to fuzz a target. In the case of corpus repositories, we found that
some of them were used purely for the purpose of storing a corpus and did not contain any source
code. 8 To ensure that we analyzed build logs that reflect “standard" fuzzing use cases (i.e., finding
software vulnerabilities), we decided to remove from our dataset all build logs from which we
extracted a URL pointing to a repository where a fuzzing corpus was stored. Additionally, since we
are interested in real fuzzing use cases where projects are fuzzed to find vulnerabilities and make
the open source ecosystem safer, we also decided to remove build logs from which we extracted a
URL pointing to a repository where a fuzzer was being developed.

Table 1. Number of logs remaining after each step of the filtering process

Filter step Logs removed Number of logs
remaining

Total Number of logs 0 1,222,075
Name and URL shown
in the logs 247,644 974,431

Is a corpus or fuzzer
repository 5,509 968,922

To find corpus repositories and fuzzer reposiories, we first isolated all build logs where the
extracted project URL contained the substrings “fuzz" or “corpus". To ensure that we were not
8https://github.com/guidovranken/cryptofuzz-corpora
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discarding valid repositories, one of the authors manually opened each URL and examined the
repositories on their respective version control systems. As a result of this manual examination, we
found and filtered out 43 URLs belonging to repositories used for storing corpora or developing
a fuzzer. This next layer of filtering brought down our number of build logs from 974,431 logs to
968,922 logs.

3.2 (RQ1) How often do fuzzing builds fail?
Motivation.We first do a preliminary analysis to find out how often builds fail in the context of
fuzzing. As shown in previous studies investigating build failures [55, 61], knowing the prevalence
of build failure can help us quantify how serious of a problem is build management when conducting
fuzzing activities. Additionally, finding out that fuzzing builds often fail could reveal underlying
issues such as fuzzers needing better compatibility with build systems.

Approach.To get an overview of how common build failures are, we first calculate the percentage
of total build failures between 2017 and 2022. Since each project might have different levels of
dedication to fuzzing activities, some projects might fail more often than others and introduce bias
in the total percentage of build failure. We therefore aggregate all build logs for each project, sum
up the number of build failures and calculate the fail percentage for each project individually. We
then aggregate the number of failing build logs for all projects and calculate the overall mean and
median number of fuzzing build failure across all projects. To calculate the average and median
percentage of build failure per project, we repeat the same process and calculate the percentage of
build failure for each project individually then calculate the mean and median percentage of build
failures across all projects. Finally, we investigate projects that have a high ratio of build failures to
understand why some projects fail to maintain their fuzzing build while other projects do not.

Results. From the filtered dataset described in Section 3.1, we found 877,682 builds out of 968,922
to be passing builds and 91,240 to be failing builds. From March 2017 to September 2022, we
therefore find that only 9.41% of OSS-Fuzz fuzzing builds failed. We then calculate the number of
build failures and the percentage of build failure in each project to calculate the median and average
number of failure across all projects. As shown in Table 2, we find that the median number of failed
builds per project is 197.5 and the mean number of failed builds is 680.4 per project. To calculate
the mean and median percentage of build failure across all projects, we calculate the build failure
percentage in each project individually then calculate the mean and median using every projects’
fail percentages. We find that the mean build failure percentage across all projects to be 12.36% and
the median build failure percentage to be 4.76%. This indicates that some projects’ fuzzing builds
are failing much more often than other projects’ fuzzing builds.

Table 2. Statistical data of how many builds fail in each project (in absolute number of builds) and across all
projects (in percentage).

Mean Median
Per project (in builds) 680.4 builds 197.5 builds
Across all projects (percentage) 12.36% 4.76%

Investigating the few projects (12 projects) that have a very high percentage of build failures
(>70%), we find a mix of currently active projects, two inactive projects, and also google internal
projects that interns added to OSS-Fuzz. In this context, we considered two projects as inactive.
First, the libra project9 because Facebook officially shut down the project and sold it to a private
9https://github.com/libra/libra
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organization which did not make further contributions to the open-source repository. At the time
of data collection, a lapse of two months had passed without any contribution to the repository
with no further contribution made since then. A second project we considered inactive was an
intern project where interns were tasked to set up fuzzing for one of Google’s project. At the time
of data collection, that project had no commits in over three years.
For the inactive project and the google internal projects, we find that these projects are not

actively being fuzzed by OSS-Fuzz as of December 2023. For active and inactive projects, we found
that two projects had stopped maintaining their OSS-Fuzz build at the time of data collection. The
libra project had stopped maintaining their OSS-Fuzz build since April of 2020 and the ClickHouse
project 10 had stopped maintaining their OSS-Fuzz build since December of 2021. This indicates to
us that in the case of active projects such as ClickHouse, although development was still currently
taking place, the developers chose not to dedicate resources to fuzzing at that time. From the
OSS-Fuzz dashboard 11, we find that ClickHouse eventually fixed their fuzzing build (latest passing
build dates back to May 13th 2023 as of December 2023) but stopped maintaining their fuzzing
build once again. As for the libra project, the project remains abandoned as of December 2023.

We find a median percentage of build failure of 4.76% across all projects indicating that most
projects participating to OSS-Fuzz carefully manage their fuzzing builds. We also find two
instances of projects that do not actively maintain their fuzzing infrastructure. OSS projects
deciding not to maintain their fuzzing build indicates that fuzzing build management might
be challenging and require significant efforts from open-source contributors.

3.3 (RQ2) How long does it take to fix failing fuzzing builds?
Motivation. In their study investigating the cost of build failures, Mcintosh et al. [42] found
that build maintenance can add an overhead of 27% on source code development and 44% for
test development. Additionally, the testimonies of fuzzing experts surveyed by Nourry et al. [47],
reveal that fuzzing developers experience difficulties fixing their fuzzing build. To get a better
understanding of the cost of build maintenance in the context of fuzzing, we decided to investigate
how long it takes for developers to fix a failing fuzzing build. Knowing how much time is required
to fix a build gives us some insight about whether or not open source communities are willing to
dedicate human resources to fuzzing activities over source code development. Additionally, the time
required to fix fuzzing builds can give us some indications as to how complex and time consuming
fuzzing maintenance is for developers conducting fuzzing activities in open source projects.
Approach. To measure the time to fix failing fuzzing builds, we first looked at isolated failing

builds (i.e., a single failing build with no subsequent build failures) and calculated the time difference
between the build failure and the following passing build. Next, we investigated sequences of build
failures (at least 1 subsequent build failure after the initial failing build). For these cases, we
calculated the time difference between the first failing build (build log 3 in Figure 3) and the first
passing build (build log 6 in Figure 3) following the initial build failure as shown in Figure 3. If no
passing builds could be found after the start of a build failure sequence, then that indicated to us
that the project’s fuzzing build was still failing at the time of the data collection. For such cases,
the entire sequence of failing builds was discarded since we could not calculate the build fix time
without a passing build.

10https://github.com/ClickHouse/ClickHouse
11https://oss-fuzz-build-logs.storage.googleapis.com/index.html
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Build log 1 Build log 2 Build log 6Build log 4 Build log 5Build log 3

Time to fix = Time Δ between build log 6 and build log 3 

Fig. 3. Approach to calculate the time to fix a build failure in a failing build sequence.

Since projects participating to OSS-Fuzz have different level of activity from their contributors
and OSS-Fuzz allows up to 4 builds per day, very active projects with contributors dedicated to
fuzzing activities might have the luxury of running multiple builds on OSS-Fuzz within a single
day and therefore have very short build fix times. On the other hand, smaller projects which do not
have contributors dedicated to fuzzing activites might only be able to fix their fuzzing build once a
day or every few days. To normalize build fixing time across projects regardless of how often a
project builds its fuzzers on OSS-Fuzz, we calculated the number of subsequent builds required to
fix a project’s failing fuzzing build. For this analysis, we also discarded sequences of builds which
do not have a subsequent fixing build.

Results. We found that the overwhelming majority of projects keep close attention to
their fuzzing build. Table 3 shows our results when assessing how long it takes for builds to get
fixed. When measuring the fixing time in days, we find that close to 80% of fuzzing builds are fixed
within a day of the first failure and that 95% of fuzzing builds are fixed within the first 2 days of the
first failure. To get a more in depth view of the time required to fix failing builds, we also measured
the time to fix in hours rather than days. Figure 4 shows an overview of the time required to fix
failing fuzzing builds in hours. As shown in Table 3, we find that 40% of fuzzing builds are fixed
within 12 hours of failing and 75% of fuzzing builds are fixed within the first 24 hours. From our
results, we also find that 95% of initial failing builds tend to be fixed by the second day.
Next, we counted the number of builds between the initial failing build and the next passing

build as a proxy metric to calculate the time required to fix a failing build. Figure 5 shows the
distribution for the number of subsequent failing builds before the next passing build. In other
words, a value of 4 in the x-axis means that the fuzzing build failed 4 additional times after the
initial build failure then passed on the 5th subsequent build. The y-axis value shows the proportion
of all builds which share the same number of subsequent failing builds.

Our results show that 73.85% of failing builds have no subsequent failing builds and 93%
of builds have either a single or no subsequent failing builds. When looking at each project
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Table 3. (Left) Cumulative percentage of initial build failures fixed within the specified time interval.
(Right) Percentage of initial build failures with their corresponding subsequent number of build failures.

Time interval (in hours) Subsequent failing build(s)
≤ 12h ≤ 24h ≤ 48h 0 ≤ 1 >10
40.00% 75.00% 95.00% 73.85% 93.00% 2.12%

individually, we find that once a build fails, the median number of subsequent failing builds is 0 and
the mean number of subsequent failing builds is 4.70. This indicates that most projects are keeping
up with their fuzzing activities and that only a few projects are delaying or struggling with their
fuzzing build repair. Our results further confirm that most projects are keeping up with their fuzzing
activites when we calculate the proportion of failing builds with more than 10 subsequent falling
builds. As shown in Table 3, we find that in only 2.12% cases builds fail more than 10 times before
it is fixed. Figure 5 also reveals that some projects participating to OSS-Fuzz have abandoned their
fuzzing activities for a significant amount of time (up to several years) before starting to manage
their fuzzing build again. For these extreme cases where the build seems to not be maintained for
long periods of time, we find that 0.32% of initial build failures have over 100 subsequent failures
before the build is fixed. Since projects accepted into OSS-Fuzz are important projects for the open
source software ecosystem, this extended time without fuzzing represents missed opportunities to
find vulnerabilities that can have a significant impact on the ecosystem.

We find that 93% of projects keep up with their fuzzing workload and fix their failing fuzzing
builds within one or two build cycles. In fact, we find that only 2.12% of initial build failures
require 10 or more subsequent builds before the failure is fixed and 0.32% of initial build
failures require 100 or more builds to be fixed. For these more extreme cases, these periods
without fuzzing leave important open source projects potentially vulnerable to security
issues that could have been uncovered by OSS-Fuzz.

4 QUALITATIVE ANALYSIS
In Section 3, we found that some projects have a significant amount of build failures and that a
small number of projects stop fuzzing altogether. While the quantitative analysis showed that some
projects are having difficulties maintaining their fuzzing build, we still do not understand why that
is the case. To understand why some projects are struggling with fuzzing build management, we
decided to conduct a qualitative analysis to find out the root causes of fuzzing build failures.

A qualitative analysis brings several contributions to the field of fuzzing which currently has few
empirical studies. Finding out the root causes of build failures establishes some of the ground work
required to start improving fuzzing methodologies and fuzzing development in general. Defining a
clear taxonomy of root causes for fuzzing build failures provides a clear list of areas that can be
improved by researchers and developers working on developing automation tools for fuzzing. We
chose to establish our taxonomy from the ground up to avoid missing new types of build failures
due to referring to taxonomies proposed in previous work. Moreoever, we wanted to avoid biasing
the annotators during the labeling process by making them aware of categories established in
previous studies.
Throughout the following section, we use the following symbol ® to provide the URL to a

sample build log that failed due to the described root cause.
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4.1 Qualitative dataset
Using the filtered dataset used for the quantitative anaylsis, we further extracted a smaller subset
to conduct a manual analysis of failing build logs. To do so, we first used the log creation date
extracted from the metadata files to establish the full fuzzing build log history for each project
in our dataset. We then isolated all pairs of pass/fail log pairs throughout the studied projects’
build histories. In other words, we paired together all instances where a build was passing and the
following build was failing. The reason we took this approach is that we hypothesized that the first
failing build (in a sequence of failing builds) contains the root cause of the failure. Additionally, by
sampling logs corresponding to initial build failures (no previous failing build), we reduced the
odds of analyzing logs with multiple unrelated errors compounded over time (i.e., a new unrelated
error affects an already failing build causing). Since build logs are complex to parse and understand,
avoiding build logs with compounded errors was important to reduce the complexity of the log data
and help annotators figure out the true root cause of a failing log. From the 968,922 logs dataset
described in Section 3.1, we further removed all logs which were not part of a pass/fail log pair. This
brought the number of valid logs for the qualitative analysis down to 66,254 build logs spanning
over 677 projects.

Because some projects have a much longer fuzzing history than others on OSS-Fuzz, we decided
not to sample random build failures from our entire dataset to avoid biases towards projects that
have been fuzzing with OSS-Fuzz for a longer period. Additionally, to avoid biases at the project
level where a single unfixed issue makes up a large percentage of fuzzing build failures within a
project, we decided to randomly sample only one build failure from each of the studied projects. By
randomly sampling the build failures, we were also able to get a fair representation of what causes
fuzzing build failures regardless of the kind of project or the project’s fuzzing experience.

The dataset for the manual analysis therefore consisted of one randomly sampled pair of pass/fail
build logs for each of the 677 remaining projects (1,354 total logs). Additionally, the manual
annotators were also provided with a diff file showing the difference between the content of the
passing build and the content of the failing build to easily find the differences between a passing
build log and its subsequent failing build log.

4.2 Qualitative analysis methodology
To find the root cause of build failures, three annotators took part in the manual investigation of
the randomly sampled failing build logs. Based on previous qualitative studies’ approaches [33, 41],
we designed the manual labeling methodology as follows.

Establish the base taxonomy. The three annotators first conducted a trial run by individually
summarizing the cause of build failures in 100 failing build logs. The three authors then got together
to 1) fix disagreements for cases where the cause of failure differed between the authors and 2)
derive classification labels from the root causes of build failures observed during the trial run. Step
1) and Step 2) were repeated until a base taxonomy was established from the 100 logs used for the
trial run.
Validate the initial labels and derive a shared understanding. After agreeing on an initial
set of labels, 200 failing logs (100 logs from the trial run and 100 new ones) were used to verify
the validity of the labels. After relabeling the 100 logs used during the trial run and labeling 100
new logs, the three authors once again got together to compare their classifications and update the
taxonomy. During this part, the authors focused on deriving a shared understanding/definition of
each label.
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Additionally, the three authors also agreed on the criteria to create new labels during that period.
A new label was to be created only if no existing label could describe the cause of failure found in
a build log. Additionally, the new label needed to be as descriptive and specific of the root cause
of failure as possible (i.e., small granularity). Each author had to ensure that newly created labels
described the cause of failure rather than the symptoms of the failure (i.e., describe the root cause
of failure rather than the error messages shown in the build logs).
Once all authors were in agreement with the definition of each label and the criteria to create

new labels, the remaining sampled logs were split into three sets. Each set was manually labeled
by two authors and conflicts were reviewed by all three authors together. The full dataset of logs
was split into three sets so that the manual labeling could be done in three separate iterations.
By proceeding iteratively, the annotators were able to share their new labels at the end of each
iteration and agree on the updated taxonomy together.
Label all build logs. For each set of logs, the authors first separately assigned a root cause to
each failing build log within a set. For cases where the error messages of a build log were not
clear enough as to what caused the build failures or the failure patterns were too complex to easily
assign a label, the three authors discussed in details at the end of an iteration which labels should
be used based on their understanding of the failure. Additionally, the annotators manually searched
through the GitHub repositories of participating projects and the OSS-Fuzz GitHub issue tracker
to find issues, threads, or pull requests discussing build failures for cases where the cause of a
build failure could not be understood from the build log alone. When not enough information was
provided from a build log’s error messages and no additional information could be found online,
the authors labeled the build log as “Not enough information".
In the case where multiple patterns of failures were found, the authors assigned the label of

whichever failure pattern first appeared in the build log. For example, while labeling the authors
encountered a situation where a failing build log contained an error message saying that the
command used to extract or unzip a corpus could not be recognized or failed. Then, later in the
log another error message would state that the corpus could not be found or was broken. In such
situations, the authors would consider the first failure pattern related to the command failing as
the root cause of the issue which caused the following error message stating that the corpus could
not be found.
After each iteration, the authors compared their labeling and reached an agreement for cases

where the classification differed. Between each iteration the three authors also updated their
taxonomy whenever a new root cause of failure was found. At the end of the labeling process, the
three authors got together and merged similar labels in order to keep the taxonomy consistent
in terms of granularity (specific vs generic labels) and to make it easy and natural to understand.
At the end of the labeling process, we merged the labels of all three iterations into one set then
calculated Cohen’s Kappa [9] to measure the inter-agreement ratio between the authors. The
resulting coefficient is a value ranging between -1 and +1 and has been used in past software
engineering studies to calculate the agreement during labeling tasks [1]. A value of 0 implies that
the agreement ratio was due to chance, a value higher than 0 indicates that the agreement is higher
than what we would expect from pure chance, and a lower value means that the agreement is lower
than what we would expect from pure chance. In our case, we obtained a 0.78 coefficient which
indicates that the annotators had a good inter-agreement during labeling.

4.3 (RQ3) What are the root causes of fuzzing build failures?
Table 4 shows the resulting taxonomy from the labeling and merging process described in Section
4.2. In total, 11 generic categories were derived from grouping together similar root causes. From
these 11 categories, we further breakdown our taxonomy into 25 unique root causes (RC1-RC25)
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of fuzzing build failures. Our manual labeling process reveals that corpus related issues cause the
most fuzzing build failures, followed by failure to download external resources and compiler issues.

Environment issues. In this category, we find build failures where the root cause of failure was
related to the environment in which the build was executed. This includes the software environment,
the hardware used by the physical device, and the network environment. The most common root
cause of failure related to environment issues we found was related to compiler issues (9.60% of all

Table 4. Root causes of fuzzing build failures observed during the manual analysis of failing fuzzing build
logs. The number in parentheses ( ) shows how many instances the annotators found during the manual
labeling process.

Category Root Causes Fine-Grained
Prev. Study [38]

Coarse-Grained
Prev. Study [54]

Environment issue (114)

RC1: Compiler issues (65) Others crash
RC2: Coverage file and
directory issues (26)
RC3: Project environment issues (10) crash

RC4: Network issues (7) Server
connection error crash

RC5: Hardware issues (5) Memory issue crash

RC6: Permission issues (1) Execution
permission error

Corpus related issues (99) RC7 : Corpus related issues (99)

Issues downloading external resources (97) RC8: Issues downloading
external resources (97)

Project dependency issues (58) RC9: Project dependency issues (58) Dependency
resolution dependency

Build and configuration issues (58)
RC10: Project configuration and
build file issues (28) Parse buildconfig

RC11: Coverage build configuration and
file issues (25) Parse buildconfig

RC12: Fuzzer build script issues (5)

Project source code related issues (56)
RC13: Source code related project
compilation errors (39)

Compiler
error compile

RC14: Missing source code files (17) Missing
file

Command and argument related issues (48) RC15: Command and argument
related issues (48)

Runtime issues while fuzzing (43) RC16: Runtime issues while fuzzing (43)
Not enough information (43) RC17 : Not enough information (43) unknown

Fuzz target issues (47)
RC18: Sanitizer errors (24) Other run-time

error
RC19: Broken fuzz target (21)
RC20: Missing fuzz target (2)

Miscellaneous (14) RC21: Input causes unusual fuzzer
crashes or behaviors (7)

RC22: Failing test cases (3) Test run-time
error testfailure

RC23: Missing OSS-Fuzz scripts (2)
RC24: Unusual crash from the
target binary (1)

External
executable error

RC25: Regression in the fuzzer
causes build crash (1)
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build failures in our qualitative dataset). These failures usually happened as a result of a compiler
related change (e.g., version update) causing many fuzzing builds to break at once. In the case of
compiler breaks, we found different scenarios for the breakages that would stem from different
sources. For example, OSS-Fuzz developers updating the compiler version in their environment (e.g.,
issue#6978) could be the cause of a breakage. Other times, the root cause came from an external
source such as compiler developers updating their codebase and breaking OSS-Fuzz builds as a
result of the changes (e.g., issue#6957). Due to the complexity of the build logs that failed as a
result of a compiler issue, we were only able to figure the true root cause as a result of manually
investigating the OSS-Fuzz GitHub repository and finding issues discussing these crashes (e.g.,
issue#6957, issue#6978).

The environment issue category also includes “coverage file and directory issues” which refer to
cases where a coverage build is executed (i.e., code coverage is generated during the build process)
but files due to issues unique to being a coverage build. For example, coverage builds have several
requirements to execute properly such as having the right directory structure. In many cases, we
found that the required coverage directory was either not in the right location or missing altogether.
Compiler related failure sample build log: ®: log-b8e66607-6bae-4ae0-b23d-94f884eacdfa.txt

Corpus related issues. This root cause was the most common root cause of build failure found by
the annotators while doing the manual analysis (14.62% of our dataset). We find in this category
build failures that were caused as a result of not providing a valid corpus or where the cloud builder
could not locate the corpus (either because none was provided or the provided path was incorrect).
Corpus related failure sample: ®: log-349a5b80-51e3-4852-ae84-cee5718acc40

Issue downloading external resources. This root cause of failure was the second most common
root cause we observed while manually labeling build failures (14.33% of all failures). Build failures
in this category were most often the result of the build process failing to download external re-
sources required for the fuzzing build. These cases usually happened as a result of a faulty URL
(i.e., expired URL, typo in the URL, no resources found at the URL provided, invalid URL) which
caused the build to crash and stop.
Faulty URL sample build log: ®: log-7029ee20-e728-41d2-a22e-e8e6ae38da9c

Project dependency issues. This root cause includes cases where dependency issues were found
while compiling the target project and crashed the build as a result. This includes cases such as
using the wrong dependency version or missing required dependencies entirely.
Dependency related error sample log ®: log-bd799639-70c2-41ec-a62e-d7ef98434929

Build and configuration issues. In this category we find root causes of build failures related
to the various build scripts and configuration files that the cloud builder use to execute the build
process. In most cases, one or multiple of the build/configuration files would contain an error such
as a typo or an undefined variable. As for “RC11: Coverage build configuration and file issues”, this
root cause includes cases where the configuration failure was specific to coverage builds. We found
that configuration errors were much more common in project build scripts (4.14% of manually
labeled failures) than fuzzer build scripts (0.74% of manually labeled failures).
Example log where a variable in the build.sh file was not defined: ®: log-06f68129-5be9-43d8-9e47-
619b3ecbc598

Project source code related issues. This category of root causes includes build failures that
happened as a result of errors related to the source code of the target project. This includes errors
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in the source code itself (i.e., compilation errors) and source code files missing (i.e., missing file,
typo in path, etc.) during the build process. The most common root cause in this category “Source
code related project compilation errors" represented 5.76% of build failures in the qualitative dataset.
Example log of a project having errors in its source code®: log-e4abab45-b863-4827-b829-6ba5f2360fb3

Command and argument related issues. This root cause includes cases where a wrong command
or wrong command arguments were provided during the build and caused the entire build to crash
as a result. The errors included in this category vary from typos in arguments to missing arguments
when executing build scripts or commands. For example, in the sample below, the build log states
that the test_all command was not found. Thanks to a manual investigation of the OSS-Fuzz GitHub,
the authors found out that the OSS-Fuzz developers had made a mistake in the provided arguments
and forgot to write a file extension (issue #478112, fixing PR #478313). Command and argument
related issues accounted for 7.09% of the manually labeled build failures.
Command and argument failure sample log ®: log-33248e12-1c84-4c02-9852-005847481744

Runtime issue while fuzzing. In some cases (typically during coverage builds), a small fuzz
session is conducted during the build process. This root cause covers cases where a runtime issue
will cause the small fuzz session to fail unexpectedly and consequently crash the whole build
process. This root cause accounted for 6.20% of the fuzzing build failures we manually labeled.
Sample log for runtime issue while fuzzing: ®: log-0ee126ba-48aa-4f12-8452-569f37d6e4c6

Not enough information. This label includes cases where the annotators could not determine
the root cause with certainty. These cases were often a result of a build log not providing sufficient
information to diagnose the root cause of failure from the build log alone. In other cases, the build
logs had gigantic error sections out of which the authors could not extract the true cause of failure.
Sample log labeled “Not enough information” ®: log-0ea5baf2-321e-477c-9c7a-0b2628a47070

Fuzz target issues. In this category, we find root causes of build failures related to the fuzz targets.
In most cases these failures happened as a result of sanitizer related errors. When configuring their
fuzzing builds, some projects choose to add sanitizers which are software tools that look for bugs at
runtime (i.e., AddressSanitizers, MemorySanitizers, UndefinedBehaviorSanitizer, etc.). To check for
bugs in the fuzz targets, some projects conduct small fuzz sessions during the build process. Based
on the severity of the bug found, a sanitizer can trigger either an error or a warning. If a sanitizer
triggers an error, the build will automatically fail and stop. Cases labeled as “Sanitizer errors” only
includes cases where a sanitizer found an error that caused the build to stop. For cases where a
sanitizer triggered a WARNING but no ERROR in a failing build, we did not label these logs as
sanitizer errors. These sanitizer errors accounted for 3.55% of the failures we manually labeled.
For cases where issues with the fuzz targets crashed the build process for reasons unrelated to

sanitizers, we labeled them as “Broken fuzz target” (3.11% of our qualitative dataset). A fuzz target
can be considered broken for a variety of reasons including having errors in its source code or not
being instrumentated properly. We also found two cases where the build process crashed as a result
of not finding the fuzz targets.
Sample logwhere the AddressSanitizer finds an error®: log-f6d8e847-1494-4b1a-9b15-bf0299333385

12https://github.com/google/oss-fuzz/issues/4781
13https://github.com/google/oss-fuzz/pull/4783
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Miscellaneous. In this category, we find a variety of root causes that did not fit into any of the
other categories. Several of the root causes in this category happened as a result of unexpected
crashes and behaviors and are therefore either flaky in nature or very domain specific to the project.
For example, the most common root cause in the “Miscellaneous" category is the “RC21: input

causes unusual fuzzer crashes or behaviors" which happens when an input is sent to the fuzzer
during a fuzz session for a coverage build. While all failing logs in that root cause suggest that the
crash is due to an issue with the input, we observed different symptoms in each case. Some logs
stated that the first input failed (AFL requires the first input to be valid) while other logs stated
that the input(s) caused the tests to stall. Since we do not have access to the exact input that caused
the crashes, we classified all cases under the same "input causes unusual fuzzer crash or behaviors"
root cause.
In the “Miscellaneous" category we also find cases where unit tests would fail during the build

process (RC22) or OSS-Fuzz scripts required during the build process were missing (RC23). Finally,
we found another unique case where the target binary crashed before any input could be sent to
it (RC24). This case differed from RC16 (Runtime issues while fuzzing) because the small fuzzing
session executed during the build process crashed before even starting to send inputs unlike cases
labeled as “Runtime issues while fuzzing” which crashed during the fuzzing session.
Sample logwhere an unexpected input crashes the fuzzer®: log-7d43d249-3182-4402-94ee-d5cd148d0b5b

4.4 Comparison with previous studies
There are several ways to study build failures in the context of software development. Some studies
conduct fine-grained investigation of build failures by focusing on a specific cause or context for
build failures. For example, Seo et al. [55] conducted a study that focuses on build failures caused
by source code related issues to understand which source code errors are most responsible for
breaking builds. Conversely, studies such as ours or such as the ones led by Rausch et al. [54]
and Lou et al. [38] analyze build failures on a more general level without focusing on any specific
context or root cause. Alternatively, other studies such as Kerzazi et al.’s [30] have also tried to
understand build failures by investigating the circumstances that lead to build failures.
Our qualitative results show a lot of similarities with taxonomies proposed in previous studies

on build failures. This is mostly due to build failures having common sources of failure regardless
of the kind of project or the context in which the build is executed. For example, categories such as
“Environment issues” and “Configuration issues” are recurring categories in studies investigating
build failures [38, 54, 55].

Our study however differs due to the additional layers of complexities brought by fuzzers which
introduce new possible causes of failure not present in previous work. For example, while the
taxonomy in the coarse-grained study led by Rausch et al. [54] makes mention of environment
issues, their environment issues make no mention of hardware issues or compatibility issues with
the compiler. All issues present in non-fuzzing builds can also be found in fuzzing builds. However,
fuzzing builds have more possible sources of failure related to using a corpus or configuring/running
the fuzzing tool itself. Our taxonomy therefore offers an extended look of possible causes of failure
over taxonomies proposed in previous work.
To highlight how our work relate to previous work (and extends it), in Table 4 we compare

the results of our analysis with the results proposed in two previous studies on build failures.
Specifically, we compare our taxonomy with the coarse-grained taxonomy proposed by Rausch
et al.’s in their 2017 study [54] and the fine-grained taxonomy proposed by Lou et al. in their 2020
study [38]. Based on the descriptions of the taxonomies in the original papers, we tried to match the
description of their labels with our own to show all common categories between the taxonomies.
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As shown in Table 4, our taxonomy covers most of their taxonomy while also offerering several
new root causes specific to fuzzing.

4.5 Implications
Our manual investigation reveals that fuzzing build failures happen for a wide variety of reasons
spanning across multiple domains. For example, the annotators found errors on the project side,
errors in the fuzzer itself, errors external to both the fuzzer and the project (e.g., network errors),
and errors on the provider side (OSS-Fuzz). Because fuzzing build failures can happen in many
different locations, in some cases the cause of the crash may not be due to a mistake from the
fuzzing developer. In fact, our results show that several root causes (e.g., RC1, RC5, RC13,
RC23, etc.) of build failures are caused by factors outside of the developers’ control which
makes the diagnostic process and the fixing process difficult for practitioners. Compiler
related issues (RC1) were a common example of this phenomenon where compiler developers
(e.g., Rust developers, LLVM developers, etc.) would push an update and dozens of fuzzing builds
would break on OSS-Fuzz without any intervention or modification by the project developers or
the OSS-Fuzz developers.

Our results demonstrate that diagnosing fuzzing build failures can pose a real challenge
for developers conducting fuzzing activities. The challenge of diagnosing a fuzzing build failure
is further evidenced by the 41 build logs assigned to RC14 (“Not enough information”) where three
separate annotators could not confidently determine what was the cause of failure in a failing build
log. While this could be due to a lack of project specific knowledge, the “Not enough information”
root cause ranked 8th in terms of frequency out of 25 identified possible root causes. The high
frequency of “Not enough information” indicates that it is not uncommon for fuzzing build failures
to require a deeper investigation to diagnose the actual root cause of failure.
From Table 4, we find that many root causes responsible for fuzzing build failures are

not specific to fuzzing but are common causes of failures for build systems in general
(e.g., dependency issues, network issues, source code issues, command and argument issues, build
configuration issues, etc.). As Mcintosh et al. [42] found in their study on build maintenance,
build maintenance can cause significant development overhead to software development activities.
In order to minimize the overhead cost of build management on their fuzzing activities, fuzzing
practitioners should not only possess fuzzing expertise but also have a good understanding of build
systems and experience with build management.

Our results can provide some insights into the build fixing process. Although we currently
have no way to automatically identify who fixes failing builds between OSS-Fuzz developers,
project developers or dependent projects’ developers, our taxonomy can give a general idea of
where build breakages come from. Assuming that the people responsible for breaking a build (e.g.,
OSS-Fuzz developers, projects developers, etc.) are also the people in charge of fixing it, we can
derive a general idea of who fixes failing builds using our taxonomy. For example, any build failure
that happens due to an “environment issue” (other than “RC3: Project environment issue”) or a
“command and argument” related issue is likely to be caused due to an issue on OSS-Fuzz’ side
and therefore fixed by OSS-Fuzz developers. Similarly, any root cause related to an issue with a
project’s configuration or its source code is likely due to a mistake on the project developers’ side
and likely to be fixed by project developers.
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From our manual investigation, we find 25 unique root causes of fuzzing build failures.
We find that corpus related issues (99 instances), issues downloading external resources
(97 instances), and compiler issues (65 instances) were the most common types of root
causes for fuzzing build failures in our sampled data. Our taxonomy reveals that fuzzing
build failures can come from many different sources spanning over both the software and
hardware. Our taxonomy also shows that fuzzing builds fail not only due to issues specific
to fuzzing but also due to issues related to using build systems in general. Additionally,
we find multiple cases where fuzzing builds failed due to reasons outside of the fuzzing
developers’ control.

5 DISCUSSION
5.1 Why do projects abandon their fuzzing build and how do we prevent it from

happening?
The quantitative analysis in Section 3 revealed that a few projects periodically stop their fuzzing
activities for significant periods of time. Since OSS-Fuzz is taking on the processing workload and
the financial cost of running this processing power instead of the developers, it is not clear why
a project would choose to abandon fuzzing activities. It is therefore relevant to question if the
suspension of fuzzing is due to a conscious choice from the projects’ developers or if there are
other limiting factors that forced these projects to abandon their fuzzing activities. To answer this
question, we manually examined the two projects (libra and ClickHouse) that were found to have
abandoned their fuzzing activities in Section 3.2.
In the case of the libra project, a discussion 14 on the OSS-Fuzz GitHub repository between the

project’s fuzzing maintainers and an OSS-Fuzz developer reveals that the project developers did not
always make time to address some of the issues related to fuzzing. After the libra project rebranded
itself to “Diem" instead of libra and the fuzzing maintainer was not active anymore, the project
was later disabled on OSS-Fuzz. From the official OSS-Fuzz repository, we can also confirm that
the project is still disabled as of June 2024 by looking at the project.yaml file which contains the
“disabled” parameter set to true. While looking at project.yaml files of other projects to understand
why projects get disabled, we found comments mentioning that projects were disabled either
because they were test projects, or because the projects were being archived.(e.g., opencensus-go
project, bazel test project)
For the ClickHouse project, our manual investigation reveals that the initial integration of the

project in May of 2020 15 caused build failures and the project was therefore disabled until one of
the maintainers fixed the issues. A pull request 16 on the OSS-Fuzz GitHub dating from August
2021 reveals that it took over a year before a contributor decided to get involved again with fuzzing
activities for the ClickHouse project. Based on our manual investigation and the fact that the
ClickHouse fuzzing build has been failing for several months as of December 2023, we hypothesize
that the ClickHouse project faced the same situation as the libra project where the developers did
not dedicate time to work on fuzzing activities.

In both the libra and the ClickHouse projects, our manual investigation reveals that large open
source projects are very much dependent on having one or multiple of their contributors willing
to take on fuzzing activities for the entire project by themselves. Consequently, the lack of such
contributor(s) means that these projects cannot be fuzzed and a vulnerability could affect the tens

14https://github.com/google/oss-fuzz/pull/6560#event-5494529937
15https://github.com/google/oss-fuzz/pull/3800
16https://github.com/google/oss-fuzz/pull/6244
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of thousands of dependent projects and users. As highlighted by the fuzzing experts surveyed
in Nourry et al.’s previous study [47], fuzzing currently has a high barrier of entry and is a very
complex field to get into as someone with no prior expertise. While many of the larger open source
projects have the luxury of having fuzzing experts among their contributors, we hypothesize that
lowering the barrier of entry for fuzzing by simplifying fuzzers and establishing standard fuzzing
methodologies could increase the number of open source contributors willing to maintain fuzzing
activities for open source projects.

Until the barrier of entry for fuzzing is lowered, however, we hypothesize that automated tools
could be one of the main ways that a smaller open source project can sustain fuzzing activities
while having limited fuzzing expertise within its contributors.

5.2 Improving fuzzing using other fields’ breakthroughs.
One of the main challenges of diagnosing and fixing failing fuzzing builds seems to be that fuzzing
build failures can come from a wide variety of sources and contexts which often do not have
a relationship between each other (project environment, fuzzing environment, docker environ-
ment, platform dependent tools, project dependencies, fuzzer dependencies, external resources to
download, fuzzer corpus etc.). While this issue is not unique to fuzzing, several of the root causes
found during the manual analysis seem to be caused by factors unrelated to fuzzing. From Table
4 in Section 4, we find several root causes of build failures in fuzzing builds that are present in
non-fuzzing builds such as source code related errors, failing test cases and dependency issues.
Since many of these root causes occur across a variety of development activities (software

development, fuzzing, testing, web development, etc.), several studies on automated build repair
have already developed automated tools to address them [22, 39, 45, 62]. It is likely that solutions
proposed in previous studies could also be applied in the context of fuzzing. For example, fuzzing
builds which happen due to source code errors could benefit from automatic build repair strategies
and patch generation tools applied in the context of software development [37, 56]. Dependency
and configuration issues could also benefit from automatic dependency versioning repairs [58].
Using the knowledge acquired from other fields’ studies, fuzzing developers could potentially
improve their fuzzing methodologies without much efforts. Additionally, using tools developed by
other fields could possibly reduce the amount of fuzzing build failures or significantly reduce the
amount of efforts required to fix failing builds by automating parts of the build fixing process.

5.3 Modeling build failures
As discussed in Section 5.1, open source projects are currently dependent on having fuzzing experts
among their contributors. To alleviate some of the dependence of open source projects on open
source fuzzing developers, we therefore turn to automation tools to see if open source projects could
automate some of the workload incurred by maintaining fuzzing activities. In a previous study
investigating log-related issues in Java systems, Hassani et al. [23] demonstrated the possibility of
automatically detecting log-related issues in software systems using basic logic rules.

Building upon this idea, we set out to find if it is also possible to automate the diagnosis of build
failures in the context of fuzzing. While fuzzing build failures can be quite complex and come
from a wide variety of sources as discussed in Section 5.2, we hypothesize that automation can
be developed to alleviate some of the fuzzing build management workload. Using the build logs
manually labeled for the qualitative analysis, we conduct a basic experiment to test the feasibility
of automating the classication of fuzzing build failures by training a machine learning model to
recognize common failure patterns in failing build logs.

Preprocessing the logs. We first perform basic text preprocessing by removing extra punctua-
tion and symbols. Since fuzzing builds logs generated by OSS-Fuzz have clear build steps and a
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build stops when an error or a crash occurs, we trimmed each build log to only keep the content of
the last build step executed during each build. In other words, we only kept the section of each
build log that contained the crash inducing error. We did this because the size of the build logs
were too large to embed and because we wanted to minimize the amount of text data not relevant
to the crash for the model training process.
Embedding the log data. To embed our textual log data, we decided to use OpenAI’s text-

embedding-ada-002 [49]. Themain reason behind this choice was that this embeddingmodel allowed
up to 8,192 tokens per input. Since many of our build logs remained large even after trimming all
sections that were not relevant to the build failure, models that only allow short inputs such as
the BERT model [11] (512 tokens) were less suitable for our use case. Since the build process stops
when a crash happens, it is more likely that the data indicating the root cause of a build failure
is located towards the end of the error section than the start. Therefore, to fit the 8,192 tokens
limitation of the embedding model, we tokenized the crashing section of our build logs and kept
only the last 8,192 tokens of each log. In one case, the embedding model kept crashing due to one
of the failing build log. We therefore removed this data point for the purpose of the classification
and used the remaining 676 manually labeled logs.

100 50 0 50 100
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Build log embedding distribution using t-SNE

Fig. 6. Embedded log distribution using t-SNE

Visualizing the embedded logs. After em-
bedding our build logs, we used a t-SNE plot to
get an overview of our data. A t-SNE plot is a
plot that allows us to get a simplified view of
our data when dealing with high dimensional
and complex data. While a t-SNE plot’s axes
do not have a directly interpretable meaning,
the formation of small clusters/groupings (as
shown in Figure 6) indicate to us that some of
the data points share similarities between each
other. In this case, since we are working with
embedded build log data, a t-SNE plot allows
us to easily find out if there are subpopulations
or clusters of build logs similar to each other
within our dataset. The color of each data point
indicates what label (root cause) was assigned
to that specific failing log. When several build
logs share similar text content, they will appear closer together in the t-SNE plot. Using the color
of the points on the plot, we can therefore tell at a glance if logs that share similar text content
also share the same root cause or not. Lastly, the groupings in the t-SNE plot also indicate to us
that there could be textual patterns specific to each root cause that a model could be trained to
recognize and classify.
Confirming the presence of failure text patterns. To learn more about textual patterns of

failure in the failed logs, we tried to find logs whose failure patterns were representative of a root
cause. Since points (or logs) that are closer to each other on the t-SNE plots should have similar
content, we decided to use the t-SNE coordinates to define a “centroid” for each root cause. We
defined this theoretical center by calculating the mean coordinates of all points that shared the
same root cause. We then calculated the euclidian distance between the centroid of each root cause
and its corresponding points. Finally, we took the five points (or builds logs) that were closest to
this center, manually reviewed them and wrote down the text patterns that allowed us to classify
the failure. We repeated this process for the five most common root causes (RC1, RC7, RC8, RC9,
RC12), as well as two root causes specific to fuzzing builds (RC16, RC19) since we wanted to know
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more about fuzzing specific patterns of failure. Table 5 shows failure patterns representative of
the selected root causes. These failure patterns were extracted from logs that were closest to the
centroid of each root cause.

Table 5. Table showing a representative build failure text pattern for the selected root causes and a corre-
sponding example. The top part shows the failure pattern and the lower part shows a real example.

Label Pattern
Example

RC1: Compiler issues

checking whether the C compiler works... no
configure: error: in {location where compiler failed}:
configure: error: C compiler cannot create executables
checking whether the C compiler works... no
configure: error: in ‘/src/libxml2’:
configure: error: C compiler cannot create executables

RC7: Corpus related issues

[/corpus/{name of corpus}]
End-of-central-directory signature not found. Either this file is not
a zipfile, or it constitutes one disk of a multi-part archive.In the
latter case the central directory and zipfile comment will be found on
the last disk(s) of this archive.
[/corpus/fuzz_reader.zip]
End-of-central-directory signature not found.Either this file is not
a zipfile, or it constitutes one disk of a multi-part archive.In the
latter case the central directory and zipfile comment will be found on
the last disk(s) of this archive.

RC8: Issue downloading external resources CommandException: No URLs matched. Do the files you’re operating on exist?
CommandException: No URLs matched. Do the files you’re operating on exist?

RC9: Project: Dependency issues clang-14: error: no such file or directory: ’{missing_dependency}’
clang-14: error: no such file or directory: ’/src/librdkafka/mklove/deps/dest/usr/lib/libz.a’

RC15: Command and argument related issues Bad syntax used for argument
[-] PROGRAM ABORT : [0mBad syntax used for -t[1;91m

RC16: Runtime issue while fuzzing

Error occured while running {name of fuzz target}:
[...]
{error code} libFuzzer: run interrupted; exiting
Error occured while running ./hevc_dec_fuzzer:
INFO: Seed: 2661026770
INFO: Loaded 1 module 65 inline 8-bit counters): 65 [0x7d53fc, 0x7d543d),
INFO: Loaded 1 PC tables (65 PCs): 65 [0x57c130,0x57c540),
MERGE-OUTER: 16912 files, 0 in the initial corpus, 0 processed earlier
MERGE-OUTER: attempt 1
MERGE-OUTER: attempt 2
MERGE-OUTER: attempt 3
==28== libFuzzer: run interrupted; exiting

RC19: Broken Fuzz target

BAD BUILD: {name of fuzz target}
[...]
Broken fuzz targets ({number of broken targets})
{broken target 1}
{broken target 2}
...
{broken target N}
ERROR: {X}% of fuzz targets seem to be broken
BAD BUILD: /tmp/not-out/llvm-isel-fuzzer–wasm32-O2 seems to have either startup crash or exit:
[...]
Broken fuzz targets 19
/tmp/not-out/llvm-opt-fuzzer–x86_64-gvn
/tmp/not-out/llvm-opt-fuzzer–x86_64-irce
/tmp/not-out/llvm-isel-fuzzer–aarch64-O2
/tmp/not-out/llvm-opt-fuzzer–x86_64-simplifycfg
...
tmp/not-out/llvm-opt-fuzzer–x86_64-loop_predication
/tmp/not-out/llvm-isel-fuzzer–wasm32-O2
ERROR: 70.37037037037037% of fuzz targets seem to be broken.
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Modeling and classification. For this experiment, we wanted to see if a model could learn to
recognize frequent types of build failure root causes, namely: corpus related issues (RC7), issue
downloading external resources (RC8), compiler issues (RC1), project dependency issues (RC9), and
finally command and argument related issues (RC12). All failing build logs not belonging to one of
the top five most common root causes were labeled as “Other” for the purpose of this experiment.
Using OpenAI’s embeddings as an independent variable to find similarities between failed builds
logs, we then tried to classify every failed build logs in our manually labeled dataset into one of the
6 possible categories mentioned above.

Table 6. Random Forest Classifier 10-Fold cross validation results

Categories Precision Recall F1-score Testing
instances

Correct
predictions

(RC7) Corpus related issues 1.000 0.970 0.985 99 96
(RC8) Issue downloading external resources 0.979 0.969 0.974 97 94
(RC1) Compiler issues 0.671 0.815 0.736 65 53
(RC9) Project Dependency issues 0.333 0.017 0.033 58 1
(RC12) Command and argument related issues 0.952 0.833 0.889 48 40
Other 0.808 0.942 0.870 309 291
Total (Macro) 0.761 0.759 0.747 676 575

To predict a failing build’s class, we decided to use random forest (RF) classifiers because RF
classifiers have proven to be suitable models to handle overfitting induced by imbalanced classes
while also achieving high accuracy [34, 53, 57]. Additionally, a previous study has also shown
that RF classifiers can outperform other types of models in many situations [19]. During our
experimentation phase, we also tried using an XGBoost classifier and an MLP classifier to see
if it would outperform a random forest classifier. We chose these two alternatives because MLP
classifiers are widely used for text embedding classifications [12, 24, 31] and XGBoost has proven
to perform well for text classification tasks[6, 35]. While the results were comparable between the
three classifiers, the random forest algorithm performed the best out of them. In this section, we
therefore only present the results obtained using the random forest classifier.

For our use case, we used a maximum tree depth of 20. We used a low maximum depth in order
to minimize the chances of overfitting the data. All other parameters including the number of
trees (100 trees), and the impurity criterion (Gini) were left as default and can be found in the
official scikit-learn documentation.17 Since our labeled dataset is very small, we conducted a 10-fold
cross validation to have a more robust estimation of how our model would perform in a real case
scenario. Table 6 shows the results we obtained from a 10-Fold cross validation using random forest
classifiers on our labeled data.

Our result show that the model was able to achieve an overall F1-score of 74.7% when trying to
classify a failing build log into one of 6 possible categories. Looking more closely at the results, we
find that there is potential to automate the detection and classification of at least three of the top
five most common root causes of fuzzing build failure. The corpus related issues label, the issue
downloading external resources label and the command and argument related issues label all have
a F1-score of 88% or above. Additionally, the high precision for these three categories indicate that
the model is unlikely to produce false positives that could mislead the developers trying to fix their

17https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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builds. With a precision of 95% for these three categories, we therefore find that there is a real
potential to automate these types of build failures for practitioners.
For compiler related failures and dependency related failures, however, our results indicate

that the model was not able to recognize failure patterns in the build logs that belonged to these
categories. While the model was able to achieve a F1-score of 73.6% for compiler related failures,
the 67.1% precision might be too low for real case scenarios and where the model could mislead
developers as to why their builds are failing. With only a single instance correctly predicted out of
58, the model was completely unable to recognize dependency related failures.

The results achieved by the model overall align with the annotators’ manual labeling experience.
The model performed well on root causes that were easy for the annotators to label. This can
be attributed to some root causes (such as corpus related issues and issue downloading external
resources) having very few patterns of failure. Additionally, these root causes often had little amount
of unrelated text in the error section of the logs and also clear messages indicating the cause of
failure. Alternatively, three distinct failure patterns for compiler issues were found while labeling.
It is therefore not surprising that the model would have difficulties achieving high accuracy for
compiler related failures. Similarly, build logs belonging to project dependency issues had several
completely different patterns of failures and often produced very large build logs with only one or
a few single lines indicating that the true cause of failure was due to an issue with a dependency.

Overall, this small experiment demonstrated that there is potential to automate the classification
of fuzzing build failures in real case scenarios. While more work is needed for complex failures
such as dependency related issues, the clear structure of some of the build logs makes it very
easy to recognize and classify automatically. We therefore hypothesize that continuous fuzzing
services such as OSS-Fuzz and Fuzzit [20] and CI/CD services that support fuzzing such as Travis
CI [8], Circle CI [7] and Jenkins [28] could already benefit from prediction models to automatically
diagnose fuzzing build failures.

6 THREATS TO VALIDITY
6.1 Threats to internal validity
Threats to the internal validity concern factors internal to our study that could have affected the
results we obtained. The manual labeling process conducted during our qualitative analysis was a
subjective process based on each author’s understanding of a build failure with the error messages
that were available in the failing build logs. To mitigate the chance of mislabeling, multiple authors
further investigated ambiguous cases to agree on the correct root cause and labeled as “Not enough
information" when no agreement could be made or a build failure was not clear enough.

For this study, we chose to manually label only a single build failure per project to avoid project
level biases. However, by only picking a single build failure we might be missing several other
types of root causes that should be included in our taxonomy.

6.2 Threats to construct validity
Threats to the construct validity concern the relationship between our observation and the theory.
Despite having three authors experienced with conducting research studies about build logs and
having years of programming experience debugging their own failing builds, the true root cause
of a build failure might generate error messages in the failing logs that could mislead the authors
towards a different root cause and therefore mislabel a build log. To avoid this situation, the authors
thoroughly looked online to find what kind of failures generate the error messages found in the
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build logs and investigated the GitHub repository of the target project as well as the official OSS-
Fuzz GitHub repository to find discussions, issues or pull requests that could reveal the root cause
of a build failure.

6.3 Threats to external validity
Threats to the external validity refers to the generalizibility of our results. For this study we only
used open source projects participating to OSS-Fuzz which often have a well established community
with experienced developers. Our results may therefore not reflect the fuzzing situation of smaller
projects with less experienced fuzzing developers. OSS-Fuzz currently supports state-of-the-art
fuzzers which are very complex tools that support dozens of arguments and need significant
fuzzing experience to configure properly. Using smaller and simpler fuzzers may therefore not
cause as many build failures related to the configuration and the usability of the fuzzer for example.
Additionally, because OSS-Fuzz only supports specific programming languages, using fuzzers
that were developed using other languages not supported by OSS-Fuzz may pose different build
maintenance challenges.

7 RELATEDWORK
7.1 Studies on build failures
Build failures have been extensively studied in various contexts such as source code compilation
failures, Docker build failures, and Maven/Gradle/Ant build failures just to name a few. Lou et
al. [38] studied the symptoms of build failures and resolution patterns in three widely used build
systems. They propose a taxonomy of 50 categories of build failures based on the failure symptoms
and find that 67.96% of build issues can be fixed by modifying the build script code. Finally, they
find that 20 categories of build failures have clear fix patterns and highlight these patterns. Wu et
al. [61] studied build failures in Docker builds. In their study, they investigate over 850,000 Docker
builds collected from over 3,000 open-source projects. They find that projects that build more
frequently have a lower ratio of broken builds and projects that have a higher ratio of failing builds
tend to take longer to fix build failures.

Rausch et al. [54] investigated the cause of build failures in a continuous integration (CI) environ-
ment for 14 open-source Java projects. They found that the most common category of build failures
(over 80% of build failures) was due to test failures. Their results also show that build failures are
often not an isolated incident. In fact, their results show that more than 50% of all build failures
follow a previous build failure.
Seo et al. [55] led a large scale empirical study at Google to find out the main causes of build

failures in Google systems. In their study, they investigated over 26.6 million builds generated over
a period of 9 months in Java and C++ projects. By mining error statements from build failures, they
were able to find out the frequency at which each type of error appears in build failures and find
that symbols that the compiler does not recognize are the most common cause of build failures.
They then group error statements into categories of build failures and show that dependency related
failures are the most common types of build failures. Their results align with other studies [15, 46]
that have also studied and found that dependency issues account for a significant portion of build
failures.

The main path towards improving build maintenance practices and developing automation tools
to alleviate some of the cost and overhead introduced by build maintenance is to first develop a deep
understanding of where inefficiencies and build issues come from. Similar to how previous studies
have conducted qualitative analysis to understand the nature of build issues in their respective fields
(CI [54], build systems [38], etc.), our study’s qualitative analysis provides insights as to what root
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causes are the main culprits of fuzzing build failures and build maintenance overhead. Additionally,
our qualitative analysis provides empirical data to quantify the cost of build maintenance in the
context of fuzzing. Our study complements previous work towards understanding and quantifying
the impacts of build maintenance on development activities such as fuzzing.

7.2 Empirical studies on fuzzing
In recent years, the use of fuzzers has significantly increased in open source software projects.
Consequently, the availability of fuzzing data has also increased and allowed researchers to conduct
more empirical studies related to fuzzing practices, fuzzer performances and other fuzzing related
qualitative studies.

For instance, Ding et al. [13] conducted one of the first empirical studies on OSS-Fuzz by mining
and analyzing over 23,000 bugs collected from the official bug tracker [21]. In that study, Ding
et al. [13] studied the lifecycle of bugs found by OSS-Fuzz fuzzers and found that OSS-Fuzz is
effective at finding bugs early on and that developers are quick to patch the issues (especially in the
case of serious errors such as buffer overflows). Their study also quantifies which types of bugs and
faults are most commonly found by OSS-Fuzz fuzzers and highlight which types of errors tend to
be flaky. Keller et al. [29] also investigated the lifecycle of bugs found by OSS-Fuzz. Their findings
align with Ding et al.’s findings that developers are generally quick to fix bugs once the issues are
detected by OSS-Fuzz fuzzers. Keller et al.’ Study however finds that the median lifespan for a bug
detectable via fuzzing is 324 days which indicates that there are still improvements to be made with
respect to the detection of vulnerabilities and fuzzing tools in general.
The increased cost of finding bugs quickly and lower return on investment of dedicating more

machines to fuzzing was empirically studied by Böhme et al. [5]. In their study, they dedicate four
CPU years worth of fuzzing to fuzz over 300 open-source software systems. They find that adding
exponentially more machines to find known bugs is much faster but finding unknown bugs is only
linearly faster. Their results empirically prove that improving fuzzing tools leads to more significant
gains in terms of efficiency, speed, and bug finding capabilities than purely increasing the amount
of CPU power dedicated to fuzzing.
As introduced above, previous empirical studies on fuzzing have investigated various aspects

related to maintaining fuzzing activities such as fuzzing bug fixing and the cost of fuzzing over
time. Our study complements previous empirical fuzzing work by investigating a new aspect
vital to maintaining fuzzing activities namely, managing fuzzing build issues. As Mcintosh et
al. demonstrated in their 2011 study on build maintenance efforts [42], build maintenance can
significantly impact development activities. We therefore hope that our study can help fuzzing
developers get a better understanding of the challenges of build maintenance for fuzzing activities
and try to plan strategies ahead of time to reduce the overhead introduced by fuzzing build
maintenance.

8 CONCLUSION
As more vulnerabilities are introduced into software systems over time, development communities
will likely turn to automated solutions such as fuzzing to find these vulnerabilities inside their
software systems. With the increased adoption of fuzzing, new fuzzing developers will be faced
with the challenges incurred by fuzzing activities starting from the configuration of fuzzers, to
building the fuzzers, to running the fuzzers and fixing bugs found while fuzzing.

Our quantitative analysis showed that open source communities are able to maintain their fuzzing
infrastructure and fix build issues that arise in a timely manner. In fact, our results show that most
failing builds do not have a subsequent failing build indicating that open source developers do care
a lot about security and are willing to dedicate their time to keeping their fuzzing build healthy.
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Our study provides practitioners with relevant insights and information regarding the challenges
of build maintenance for fuzzing activities. Using a manual approach, we provide a clear taxonomy
of root causes of build failures that fuzzing developers need to be aware of in their daily activities.
We also find that a significant portion of fuzzing build failures are caused by issues not specific to
fuzzing. We therefore highly encourage fuzzing practitioners to make use of build management
tools and methodologies used in contexts other than fuzzing.

For researchers, this study provides valuable empirical fuzzing data on which further studies can
build upon. In Section 2.2, we explain the process of mining OSS-Fuzz data so that developers can
conduct their own studies. We also provide researchers a dataset of 677 failed fuzzing build logs
labeled with the root cause of failure. Finally, in Section 5.3, we provide a proof of concept towards
automating build maintenance for fuzzing by demonstrating the feasibility of classifying fuzzing
build failures automatically using machine learning techniques.

Our future work will aim to explore various ways to lower the barrier of entry of fuzzing activities
so that projects of all sizes can start fuzzing their software regardless if they have fuzzing experts
or not among their contributors. We also aim to explore how automation techniques can be used to
abstract some of the complexity of starting and maintaining fuzzing activities over time. Specifically,
we aim to investigate the process of fixing fuzzing build failures in order to deliver a practical
solution or tool that can automate fuzzing build diagnosis and repair.

9 REPLICATION
To facilitate future work, we have made available online the result of our manual labeling process
in our replication package [48].
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