
Evaluating Automated Program Repair Techniques
using Introductory Programming Course Datasets

Tsukasa Nakamura∗, Masanari Kondo∗, Yasutaka Kamei∗, Naoyasu Ubayashi∗
∗Kyushu University, Japan

Email: t.nakamura@posl.ait.kyushu-u.ac.jp, {kondo, kamei, ubayashi}@ait.kyushu-u.ac.jp

Abstract—Debugging erroneous programs requires a great deal
of human effort. To reduce human effort, automating debugging
processes has been actively studied so far. One of such automation
is automated program repair techniques for syntactic errors in
programs. Researchers intend to support novice programmers
such as students with these techniques because fixing syntactic
errors is a difficult task for novice programmers. However, there
exist few datasets that consist of programs written by novice
programmers in universities and can be used to evaluate these
techniques. Also, it is difficult to prepare such datasets from
scratch. Indeed, prior studies usually utilized the Indian Institute
of Technology Kanpur (IITK) dataset only. This limitation
restricts the findings and implications in prior studies as a case
study in the university. In this study, we intend to clarify which
findings and implications in prior studies remain the same and
which ones change in another university by a case study. We
prepare three datasets that consist of over 21k programs collected
from an introductory programming course in different divisions
at our university. We compare the state-of-the-art automated
program repair techniques, DeepFix, RLAssist, and DrRepair, in
these datasets. We found that (1) the best technique remains the
same in all the datasets, (2) these techniques fix 8.3 % to 54.5 %
syntactic errors in our datasets, which are 6.7 % to 32.4 % lower
than those in the IITK dataset, (3) the error types that are fixed
by them change in different datasets. Hence, the main finding
in the IITK dataset remains the same; however, each technique
fixes different errors.

Index Terms—automated program repair, syntactic error

I. INTRODUCTION

Debugging, which is the process of detecting and resolving
errors, is one of the most costly tasks in software development.
Indeed, the cost of debugging accounts for as much as 50% of
the total development cost [4], [12]. A prior study argued that
the most impactful factor for the cost is the manual effort of
programmers. Hence, automating debugging is an important
consideration for programmers to reduce the cost.

Automated program repair is widely studied in our commu-
nity of software engineering to reduce the cost of debugging
and improve the productivity of programming. A variety of
automated program repair techniques has been proposed so
far [8], [13]. For example, Gupta et al. [8] proposed DeepFix,
which uses a seq2seq model to fix syntactic errors in C
programs. DeepFix was evaluated on the programs written
by students that were collected from the Indian Institute of
Technology Kanpur (IITK dataset). Gupta et al. reported that
DeepFix can perfectly fix 27% of erroneous programs and
partially fix 19% of them.

The automated program repair techniques, which fix syn-
tactic errors, have been frequently evaluated using the IITK
dataset [1], [9]. The IITK dataset consists of programs written
by students in an introductory programming course. Hence,
the performance of automated program repair on this dataset
implies the applicability of automated program repair for
novice programmers. For example, Ahmed et al. [1] presented
an automated program repair technique to help novice pro-
grammers and evaluated the technique in the IITK dataset.

However, there are no other datasets that consist of pro-
grams written by novice programmers in universities and are
widely used to evaluate automated program repair. This limi-
tation restricts the findings and implications in prior studies as
a case study in the university. Hence, it is unclear whether the
findings and implications are applicable to other universities.

In this study, we compare the performance of three well-
known automated program repair techniques (i.e., DeepFix [8],
RLAssist [7], and DrRepair [13]) in not only the IITK dataset
but also other datasets. Specifically, we prepare three datasets
from the programs in an introductory programming course for
novice programmers in different divisions at our university
(hereafter, “University X”). We intend to unveil which findings
and implications in prior studies remain the same and which
ones change in another university by a case study in University
X. More specifically, we investigate the following research
questions.
(RQ1) To what extent does the state-of-the-art automated pro-

gram repair fix errors in the datasets from University
X?

(RQ2) Does the state-of-the-art automated program repair fix
different errors across different datasets?

We found that automated program repair techniques result
in different performance between the IITK dataset and our
datasets. Specifically, the techniques result in 6.7 % to 32.4
% lower performance in our datasets than those in the IITK
dataset and the error types that are fixed by them change.
However, the best technique remains the same in all datasets.

Our result implies that the details of the findings (i.e.,
the error types that are fixed) on a dataset may change on
another dataset. The takeaway message of this paper is that
researchers and users who want to use automated program
repair techniques to fix errors in introductory programming
courses in universities can use the best technique in prior
studies. However, they should recognize that each technique
fixes different errors.



1 #include <stdio.h>
2 int main() {
3 int a[1000];
4 int i, j, n, k, m = 0;
5 scanf("%d", &k);
6 scanf("%d", &n);
7 for (i = 0; i < 1000; i++) {
8 scanf("%d", &a[i]);
9 }

10 for (i = 0; i < 1000; i++) {
11 j = k - a[i];
12 while (m < 1000) {
13 if (a[m] == j) {
14 printf("lucky");
15 break;
16 }
17 - m++;
17 + m++; }
18 }
19 return 0;
20 }

Fig. 1. An example program retrieved from the IITK dataset [8]. Note that
we modified the appearance (e.g., indents) for readability.

1 #include <stdio.h>
2 int main() {
3 int i, j, x;
4 scanf("%d", &x);
5 if (1 <= x <= 10) {
6 for (i = 1; i <= x; i++) {
7 for (j = 1; j <= x; j++) {
8 printf("*");
9 }

10 printf("\n");
11 }
12 if (10 < x) {
13 printf("Error");
14 }
15 return 0;
16 }

Fig. 2. An example program in a dataset collected from the course at
University X. Note that we modified the appearance (e.g., indents) for
readability.

The organization of this paper is as follows. Section II
explains a motivating example. Section III introduces the stud-
ied APR. Section IV describes research questions. Section V
presents the studied datasets and our preliminary analysis. Sec-
tion VI shows the experimental setup and results. Section VII
lists related work. Section VIII describes the threats to the
validity. Section IX presents the conclusion and prospects.

II. MOTIVATING EXAMPLE

In this section, we show why the evaluation in multiple
datasets is important for automated program repair. We intro-
duce two cases in which we attempted to fix an erroneous
program with DeepFix.

The first example is shown in Fig. 1. This is one of the
programs in the IITK dataset, which has a syntactic error due
to a missing closing parenthesis. We applied DeepFix to this
program, and DeepFix inserted a closing parenthesis at line
17. This insertion correctly fixed this erroneous program.

The second example is shown in Fig. 2. This program is
included in a dataset collected from a lecture at University X,
and this program includes a similar error as Fig. 1, which is
a missing closing parenthesis. However, DeepFix cannot fix
this erroneous program while it can fix a similar error in a
program in the IITK dataset.

These two cases imply that even if an automated program
repair technique successfully fixes an error in a dataset, such a
technique may not fix similar errors in other datasets. Hence,
we compare the performance of automated program repair
techniques in different datasets to unveil which findings and
implications in prior studies remain the same and which ones
change in another university.

III. STUDIED AUTOMATED PROGRAM REPAIR

In this study, we compared the performance of three well-
known automated program repair techniques as follows:
DeepFix [8]: This technique consists of a seq2seq model and
fixes syntactic errors in C instead of semantic errors. DeepFix
trains its deep learning model based on syntactically correct C
programs. Specifically, DeepFix uses mutation to convert the
correct C programs into the incorrect C programs and prepare
pairs of syntactically correct and incorrect programs as the
training data.
RLAssist [7]: This technique also fixes syntactic errors in C
programs. RLAssist uses reinforcement learning. The authors
argued that this learning process makes fixing errors more
flexible than DeepFix.
DrRepair [13]: This technique also fixes syntactic errors in
C programs. As described above, DeepFix uses the pairs of
syntactically correct programs and incorrect programs as the
training data. DrRepair uses not only such pairs but also error
messages from the compiler.

These techniques have the following characteristics.
• Fix syntactic errors in C programs
• State-of-the-art techniques1

• All techniques were evaluated in the IITK dataset

IV. RESEARCH QUESTIONS

DeepFix [8] and RLAssist [7] are evaluated in only
the IITK dataset. DrRepair [13] is evaluated in the IITK
dataset and another dataset called the SPoC dataset. How-
ever, the SPoC dataset consists of programs collected from
codeforces.com instead of programs written by novice
programmers in universities. Therefore, it is unclear whether
they can achieve the same results or different results for
datasets that consist of programs written by such programmers.
To clarify this, we investigate the following RQs.

1The reason for this decision is that the prior study [13] that proposed
the latest technique, DrRepair, compared its technique with the rest two
techniques.



TABLE I
THE STATISTICS OF THE DATASETS

Dataset Task Erroneous Correct Total
IITK 93 6,978 46,500 53,478
ED 47 3,157 7,339 10,496
PS 57 1,551 3,834 5,385
LA 21 1,861 3,936 5,797

TABLE II
SUMMARY OF ERRORS AND THEIR COMMON CAUSES

ID Error messages Common causes
e1 expected declaration or

statement
missing closing parenthe-
sis

e2 expected identifier duplicating closing paren-
thesis

e3 undeclared undeclared variables and
functions

e4 expected misc. tokens missing misc. tokens such
as semicolons

(RQ1) To what extent does the state-of-the-art automated pro-
gram repair fix errors in the datasets from University
X?

(RQ2) Does the state-of-the-art automated program repair fix
different errors across different datasets?

V. DATASET

A. Dataset Collection

In this study, we prepared three new datasets: ED, PS,
and LA collected from the course for undergraduate students
at University X. In the course, students study some basic
programming tasks for C programmers. The datasets consist
of answers by students for these tasks. The numbers of tasks,
erroneous programs, and correct programs in the datasets are
shown in Table I. The difference between the datasets is the
faculty of the majority of students. The ED, PS, and LA
datasets mainly consist of programs written by students who
belong to the faculty of Education (ED), Pharmacy (PS), and
Law (LA), respectively. Note that some programs were written

1 #include <stdio.h>
2 int main(int argc, const char *argv[]) {
3 int n, m, sum, dif;
4 printf("Enter two numbers\n");
5 - scanf("%d %d", &n &m);
5 + scanf("%d %d", &n, &m);
6 sum = m / n;
7 dif = m % n;
8 printf("%d/%d=%d\n", sum);
9 printf("%d%%d=%d\n", dif);

10 return 0;
11 }

Fig. 3. An example of a program submitted by a student at University X.
Note that we modified the appearance (e.g., indents) for readability.

by students who belong to other faculties. However, such
students account for less than 10% of all students.

To prepare the datasets, we collect the logs when compiling
C programs with SFTP (SSH File Transfer Protocol) from the
server with the same approach as the prior study [3]. This
is because University X provides students with the server to
compile their C programs.

We describe the details of the course at University X in
which we collect programs. In this course, students attend
some lectures and write a C program for each lecture. Each
lecture has a topic of programmings such as mathematical
functions and conditional statements. At the end of the lecture,
some tasks are given to students based on the topic. The
datasets described above collected these tasks, programs writ-
ten by students to these tasks, and the outputs of the compiler.
One of the programs with a statement change, which fixes a
syntactic error is shown in Fig. 3 as an example. This is the
answer to the task, which has the following question: “Given
two integers n and m from the standard input, write a program
to calculate the quotient and remainder of m divided by n.”
When we compiled this program with GCC, the following
error occurred.

example.c: In function ‘main’:
example.c:6:23: error: invalid operands to binary &
(have ‘int *’ and ‘int’)

This error can be solved by inserting a comma in line 5;
however, the error message prompts the student to correct the
usage of the “&” operator. Therefore, it might be difficult for
the student who is a novice programmer to fix this error. Such
syntactic errors are often found in the datasets.

B. Preliminary Analysis and Results
Motivation: The IITK dataset [8] and our datasets were
collected from the introductory programming courses in the
universities. Such a domain similarity may make the collected
programs similar to each other. If differences exist between
the datasets, such differences may cause different findings and
implications. Hence, in this preliminary analysis, we clarify
the differences between the IITK dataset and our datasets.
Approach: We compare the IITK dataset and our datasets
from three perspectives: the numbers of erroneous and correct
programs, the distribution of error messages, and the source
code metrics. The numbers of erroneous and correct programs
and the distribution of error messages are important to train the
model of automated program repair. The former corresponds
to the size of the training data; the latter corresponds to the
types of syntactic errors. The source code metrics are used to
compare the complexity of programs.

As the error messages, we used the messages that were
extracted by Gupta et al. [8]. Gupta et al. summarized the
most common four error messages and their causes in the IITK
dataset. These error messages and their causes are shown in
Table II. As the source code metrics, we used the LOC and
the cyclomatic complexity.
Results: The IITK dataset and our datasets have differ-
ences in all perspectives. The numbers of erroneous and



TABLE III
NUMBER OF ERRORS FOR EACH DATASET

Dataset e1 e2 e3 e4 Others Total
IITK 507 (3.1 %) 1,659 (10.0 %) 5,468 (33.0 %) 6,790 (41.0 %) 2,132 (12.9 %) 1,6556
ED 242 (2.8 %) 485 (5.6 %) 887 (10.3 %) 2,616 (30.4 %) 4,384 (50.9 %) 8,614
PS 111 (2.4 %) 176 (3.8 %) 784 (16.7 %) 1,227 (26.2 %) 2,386 (50.9 %) 4,684
LA 182 (4.6 %) 257 (6.6 %) 937 (23.9 %) 1,139 (29.0 %) 1,408 (35.9 %) 3,923

TABLE IV
THE SOURCE CODE METRICS OF THE PROGRAMS FOR EACH DATASET

Dataset Average of CountLine Average of AvgCyclomatic
IITK 26.7 4.73
ED 16.2 2.31
PS 16.1 2.47
LA 16.8 2.67

correct programs are shown in Table I. We observed that
the number of programs in the IITK dataset is 5.1 to 9.9
times larger than those in our datasets. On the contrary, the
proportion of erroneous programs in the IITK dataset is 2.2
to 2.5 times smaller than those in our datasets.

We summarized the numbers of each error message of our
studied datasets in Table III. Since e1 to e4 were the IDs of the
errors that appeared most frequently in the IITK dataset, most
of the errors found in the IITK dataset belong to one of these
categories. On the contrary, we observed that the IITK dataset
and our datasets have differences. Specifically, 35.9% to 50.9%
errors in the ED, PS, and LA datasets do not belong to these
four categories. Indeed, the proportions in the “Others” column
of our three datasets are larger than that of the IITK dataset.
An example of the “Other” columns is “conflicting types for
X.” This error message indicates that, for example, a function
that is called is not defined.

Table IV shows two source code metrics that are the LOC
and the cyclomatic complexity for each dataset. “CountLine”
indicates the LOC; “AvgCyclomatic” indicates the average of
the cyclomatic complexities of the functions in each program.
We measured these source code metrics with Understand2.
Similar to the distributions of programs for each error message,
we observed that the IITK dataset and our datasets have
differences in terms of the source code metrics. The IITK
dataset includes more complex programs than our datasets.

Summary of Preliminary Analysis� �
The size and the complexity of programs in our datasets
are smaller than those in the IITK dataset. However, the
proportion of erroneous programs in our dataset is larger
than that in the IITK dataset. In addition, the distribution
of the errors is different.� �

2https://www.scitools.com/

TABLE V
THE NUMBER OF ERRORS THAT ARE FIXED BY EACH AUTOMATED

PROGRAM REPAIR TECHNIQUE IN OUR DATASETS

APR ED PS LA
DeepFix 188/1,472 101/1,217 109/1,081

(12.8 %) (8.3 %) (10.1 %)
RLAssist 245/1,457 97/779 196/984

(16.8 %) (12.5 %) (19.9 %)
DrRepair 1,698/3,113 794/1,529 425/1,249

(54.5 %) (51.9 %) (34.0 %)

TABLE VI
THE NUMBER OF ERRORS THAT ARE FIXED BY EACH AUTOMATED

PROGRAM REPAIR TECHNIQUE IN THE IITK DATASET RETRIEVED FROM
THE ORIGINAL PAPERS, RESPECTIVELY

APR IITK
DeepFix [8] 1,881/6,971 (27.0 %)
RLAssist [7] 1,854/6,975 (26.6 %)
DrRepair [13] -/6,971 (66.4 %)

VI. EXPERIMENTS AND RESULTS

In our experiments, we applied DeepFix, RLAssist, and
DrRepair to the ED, PS, and LA datasets. We evaluated the
automated program repair techniques in terms of the number
of erroneous programs that are correctly fixed. We aim at
clarifying whether the conclusion in the prior study [13]
remains, which reported that DrRepair is the best automated
program repair technique.

A. RQ1: To what extent does the state-of-the-art automated
program repair fix errors in the datasets from University X?

In this RQ, we studied whether DeepFix, RLAssist, and Dr-
Repair fix errors in the ED, PS, and LA datasets. Fig. 4 shows
the procedure of this experiment. We applied the automated
program repair techniques to our datasets and obtained the

IITK 
dataset

Univ. X 
dataset

Fix 
rate

Fix 
rate

Compare

APR

APR

Previous Research

Fig. 4. The procedure of the experiment for RQ1



number of errors that are fixed. On the other hand, we obtained
the number of errors that are fixed in the IITK dataset from
the prior papers that proposed each technique. We compared
the number of errors that are fixed between our datasets and
the IITK dataset.

It should be noted that to replicate the prior studies [7],
[8], [13] as much as possible, we used the same experimental
setting for each automated program repair technique following
the prior study that proposed the technique, respectively.
Hence, each automated program repair technique has different
experimental settings. For example, DeepFix can be applied
to programs that have less than 450 tokens.

On the contrary, we modified the training process for the
techniques to study the impact of differences of the datasets.
DeepFix and RLAssist were not enough trained by the default
number of epochs in our datasets. Hence, we set the number of
epochs 100 for both. DrRepair has the feature to be pre-trained
with the Codeforce dataset. However, we did not use this
feature because we intend to study the impact of differences
of the datasets only.

All techniques show lower proportions of errors that are
fixed in the ED, PS, and LA datasets than that in the IITK
dataset. Table V shows the number of errors that are fixed in
our datasets while Table VI shows those in the IITK dataset
retrieved from three prior studies [7], [8], [13]. DeepFix and
RLAssist fix less than 20% of errors in our datasets while
they fix over 20% of errors in the IITK dataset. Similarly,
DrRepair fixes less than 60% of errors in our dataset while
that fixes over 60% of errors in the IITK dataset. Specifically,
the performance in our datasets is 6.7% to 32.4% lower than
those in the IITK dataset. However, the proportions of errors
that are fixed in our datasets are not extremely low.

The conclusion, which reports DrRepair fixes the highest
number of errors, remains the same. Even in our datasets,
DrRepair fixes the highest number of errors compared to
DeepFix and RLAssist. Hence, the main conclusion in the
prior study [13] remains the same.

Answer to RQ1� �
All techniques show lower proportions of errors that are
fixed in the ED, PS, and LA datasets than that in the IITK
dataset. However, these proportions are not extremely
low. In addition, the conclusion in the prior study remains
the same in our datasets.� �

B. RQ2: Does the state-of-the-art automated program repair
fix different errors across different datasets?

Since there exist few datasets, prior studies did not investi-
gate if the difference of syntactic errors that are fixed by an
automated program repair technique in different datasets ex-
ists. Hence, in this RQ, we investigate whether one technique
fixes different syntactic errors in different datasets.

The procedure of this RQ is shown in Fig. 5. For each
dataset, we extracted the errors that were fixed for each
technique only and decided the most frequently fixed errors
from the extracted errors for each technique (typical errors).

Dataset

Programs

PatchesDeepFix

RLAssist

DrRepair
UnfixedFixed

UnfixedFixed

UnfixedFixed

Compare

Evaluate 
patches 
based on 
compiling

Patches

Patches

Fig. 5. The procedure of the experiment for RQ2

TABLE VII
TYPICAL ERRORS IN THE ERRONEOUS PROGRAMS THAT ONLY ONE

AUTOMATED PROGRAM REPAIR TECHNIQUE COULD FIX

APR ED PS LA
DeepFix e4 (20/8,871) e3 (19/2,274) e3 (21/2,478)
RLAssist e4 (31/8,871) e4 (26/2,274) e4 (123/2,478)
DrRepair e4 (2,800/8,871) e3 (573/2,274) e3 (661/2,478)

The typical errors change in different datasets. Table VII
shows the typical errors for each technique for each dataset.
Each cell shows the id of the typical error (Table II). The
parentheses show the number of typical errors and all fixed
errors for each dataset. We observed that the typical errors
change in different datasets between e3 and e4.

Hence, using only one dataset to evaluate the automated
program repair techniques may overlook insights. For exam-
ple, RQ1 shows that DrRepair outperforms the other two
techniques, whereas Table VII implies that RLAssist augments
the performance of DrRepair to fix e4 in the PS and LA
datasets compared to using only DrRepair. Especially, in the
LA dataset, RLAssist fixes more than 100 e4 errors. If we only
used the ED dataset, we would not conclude that RLAssist has
the potential to fix more e4 errors combined with DrRepair
compared to DeepFix.

Answer to RQ2� �
The errors that are fixed by the state-of-the-art automated
program repair techniques change in different datasets.
Hence, even if the main conclusion remains the same,
it is important to evaluate automated program repair
techniques in different datasets.� �

VII. RELATED WORK

Automated program repair has been an active research field,
and various techniques have been proposed so far. In this
section, we describe prior studies for automated program repair
techniques.

Gupta et al. [8] assumed that the most common errors are
syntactic errors caused by developers’ carelessness and lack of
knowledge. Hence, they proposed DeepFix, and reported that
DeepFix correctly fixed 27% of 6,971 erroneous programs and
partially fixed 19% of them. Gupta et al. [7] also proposed
RLAssist, and reported that RLAssist fixes more erroneous



programs than DeepFix. Yasunaga et al. [13] proposed Dr-
Repair, and reported that DrRepair fixed more programs than
both DeepFix and RLAssist.

On the other hand, unlike these techniques, prior studies also
proposed automated program repair techniques for semantic
errors. Gulwani et al. [6] proposed CLARA, which fixes
semantic errors. They evaluated the performance of CLARA
on a dataset collected from a MOOC by MITx. They found
that CLARA can fix 4,183 out of 4,293 incorrect programs
(97.44%). Tufano et al. [11] investigated the applicability of
Neural Machine Translation (NMT) for learning the patterns to
fix erroneous programs. They empirically evaluated their NMT
model using the patterns in Java programs in GitHub Archive.
They found that the NMT model fixed 9-50% of 2,927 small
programs and 3-28% of 1,869 medium programs.

Similar to our study, prior studies also built or used new
datasets. For example, Goues et al. [5] built two datasets
called MANYBUGS and INTROCLASS. MANYBUGS consists
of the programs of OSS while INTROCLASS consists of the
programs written by students. Yi et al. [14] collected programs
written by students from an introductory C language course in
the Indian Institute of Technology Kanpur as a new dataset,
which is not the IITK dataset that we used in this paper.
Kaleeswaran et al. [10] evaluated their tool, CoderAssist, using
C programs written by students from the submissions on
CodeChef. Birch et al. [2] used a dataset of Java and Python
programs written by students to answer Computer Science
coursework questions at the University of Auckland. However,
the target error of these datasets is semantic errors. Hence, the
lack of datasets for syntactic errors is still a challenge.

VIII. THREATS TO VALIDITY

Internal validity. As described in Section V-A, we collected
the logs when compiling programs as our datasets from the
server at University X. In this server, students can compile
their programs multiple times without any changes. Hence, our
datasets may duplicate the same programs. If such erroneous
programs exist and are easily/hardly to be fixed by the studied
automated program repair techniques, our results might be
biased by these duplicated programs.
External validity. In this study, we compared DeepFix,
RLAssist, and DrRepair in our datasets and confirmed that the
main conclusion is not changed in prior studies. However, our
datasets are collected from only University X. Future studies
are necessary to extend the datasets more.

IX. CONCLUSION

The IITK dataset is the only dataset that consists of pro-
grams written by students in an introductory programming
course and are widely used to evaluate automated program
repair techniques, though it is important to propose techniques
for such students. In this study, we unveiled which findings
and implications in prior studies remain the same and which
ones change in another university as a case study. Specifically,
we built the ED, PS, and LA datasets from the introductory
programming course at University X and evaluated DeepFix,

RLAssist, and DrRepair. Our results show that the main
conclusion in the prior study [13] remains the same; however,
the types of errors that are fixed by automated program repair
techniques change.

We currently extend our study to different programming
languages. Specifically, we collect programs written by Python
from the introductory programming course at University X.

ACKNOWLEDGMENTS

This research was partially supported by JSPS KAKENHI
Japan (Grant Numbers: JP18H04097, 21H04877) and JSPS
International Joint Research Program with SNSF (Project
“SENSOR”: JPJSJRP20191502).

REFERENCES

[1] U. Z. Ahmed, P. Kumar, A. Karkare, P. Kar, and S. Gulwani, “Compila-
tion error repair: for the student programs, from the student programs,”
in Proceedings of the 40th International Conference on Software Engi-
neering, 2018, pp. 78–87.

[2] G. Birch, B. Fischer, and M. Poppleton, “Using fast model-based fault
localisation to aid students in self-guided program repair and to improve
assessment,” in Proceedings of the 2016 ACM Conference on Innovation
and Technology in Computer Science Education, ITiCSE 2016, Arequipa,
Peru, July 9-13, 2016, A. Clear, E. Cuadros-Vargas, J. Carter, and
Y. Túpac, Eds., 2016, pp. 168–173.

[3] X. Fu, A. Shimada, H. Ogata, Y. Taniguchi, and D. Suehiro, “Real-time
learning analytics for C programming language courses,” in Proceedings
of the 7th International Learning Analytics & Knowledge Conference,
2017, pp. 280–288.

[4] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair:
A survey,” IEEE Transactions on Software Engineering, vol. Vol. 45,
no. 1, pp. 34–67, 2019.

[5] C. L. Goues, N. J. Holtschulte, E. K. Smith, Y. Brun, P. T. Devanbu,
S. Forrest, and W. Weimer, “The manybugs and introclass benchmarks
for automated repair of C programs,” IEEE Trans. Software Eng., vol. 41,
no. 12, pp. 1236–1256, 2015.

[6] S. Gulwani, I. Radicek, and F. Zuleger, “Automated clustering and pro-
gram repair for introductory programming assignments,” in Proceedings
of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, Philadelphia, PA, USA, June
18-22, 2018, 2018, pp. 465–480.

[7] R. Gupta, A. Kanade, and S. K. Shevade, “Deep reinforcement learning
for syntactic error repair in student programs,” in The 33rd AAAI
Conference on Artificial Intelligence, 2019, pp. 930–937.

[8] R. Gupta, S. Pal, A. Kanade, and S. K. Shevade, “Deepfix: Fixing
common C language errors by deep learning,” in Proceedings of the
31st AAAI Conference on Artificial Intelligence, 2017, pp. 1345–1351.

[9] H. Hajipour, A. Bhattacharyya, and M. Fritz, “Samplefix: Learning to
correct programs by sampling diverse fixes,” CoRR, vol. abs/1906.10502,
2019.

[10] S. Kaleeswaran, A. Santhiar, A. Kanade, and S. Gulwani, “Semi-
supervised verified feedback generation,” in Proceedings of the 24th
ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE 2016, Seattle, WA, USA, November 13-18, 2016, 2016,
pp. 739–750.

[11] M. Tufano, C. Watson, G. Bavota, M. D. Penta, M. White, and
D. Poshyvanyk, “An empirical study on learning bug-fixing patches
in the wild via neural machine translation,” ACM Trans. Softw. Eng.
Methodol., vol. 28, no. 4, pp. 19:1–19:29, 2019.

[12] Undo, “What is Reverse Debugging, and why do we need it?”
https://undo.io/resources/reverse-debugging-whitepaper/, accesse Date:
2021-12-18.

[13] M. Yasunaga and P. Liang, “Graph-based, self-supervised program repair
from diagnostic feedback,” in Proceedings of the 37th International
Conference on Machine Learning, 2020, pp. 10 799–10 808.

[14] J. Yi, U. Z. Ahmed, A. Karkare, S. H. Tan, and A. Roychoudhury,
“A feasibility study of using automated program repair for introductory
programming assignments,” in Proceedings of the 11th Joint Meeting
on Foundations of Software Engineering, 2017, pp. 740–751.


