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ABSTRACT
Prior research suggests that predicting defect-inducing changes,
i.e., Just-In-Time (JIT) defect prediction is a more practical
alternative to traditional defect prediction techniques, pro-
viding immediate feedback while design decisions are still
fresh in the minds of developers. Unfortunately, similar to
traditional defect prediction models, JIT models require a
large amount of training data, which is not available when
projects are in initial development phases. To address this
flaw in traditional defect prediction, prior work has pro-
posed cross-project models, i.e., models learned from older
projects with su�cient history. However, cross-project mod-
els have not yet been explored in the context of JIT predic-
tion. Therefore, in this study, we empirically evaluate the
performance of JIT cross-project models. Through a case
study on 11 open source projects, we find that in a JIT
cross-project context: (1) high performance within-project
models rarely perform well; (2) models trained on projects
that have similar correlations between predictor and depen-
dent variables often perform well; and (3) ensemble learning
techniques that leverage historical data from several other
projects (e.g., voting experts) often perform well. Our find-
ings empirically confirm that JIT cross-project models learned
using other projects are a viable solution for projects with
little historical data. However, JIT cross-project models per-
form best when the data used to learn them is carefully se-
lected.
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1. INTRODUCTION
Software Quality Assurance (SQA) activities, such as code

inspection and unit testing are standard practices for im-
proving software quality prior to o�cial release. However,
software teams have limited testing resources, and must
wisely allocate them to minimize the risk of incurring post-
release defects, i.e., defects that appear in o�cial software
releases. For this reason, a plethora of software engineer-
ing research is focused on prioritizing SQA activities [18].
For example, defect prediction techniques are often used to
prioritize modules (i.e., files or packages) based on their like-
lihood of containing post-release defects [1, 18]. Using these
techniques, practitioners can allocate limited SQA resources
to the most defect-prone modules.

However, recent work shows that traditional prediction
models often make recommendations at a granularity that
is too coarse to be applied in practice [12, 30]. For exam-
ple, since the largest files or packages are often the most
defect-prone [16], they are often suggested by traditional
defect models for further inspection. Yet, carefully inspect-
ing large files or packages is not practical for two reasons:
(1) the design decisions made by when the code was initially
produced may be di�cult to for a developer to recall or re-
cover; and (2) it may not be clear which developer should
perform the inspection tasks, since many developers often
work on the same files or packages [14].

To address these flaws in traditional defect prediction,
prior work has proposed change-level defect prediction mod-
els, i.e., models that predict the code changes that are likely
to introduce defects [12, 14, 22, 30, 31]. The advantages
of change-level predictions are that: (1) the predictions are
made at a fine granularity, since changes often impact only
a small area of the code; and (2) the predictions can be
easily assigned, since each change has an author who can
perform the inspection while design decisions are still fresh
in their mind. We refer to change-level defect prediction as
“Just-In-Time (JIT) defect prediction” [12].

Despite the advantages of JIT defect models, like all pre-
diction models, they require a large amount of historical
data in order to train a model that will perform well [36].
However, in practice, training data may not be available for
projects in the initial development phases, or for legacy sys-
tems that have not archived historical data. To overcome
this, prior work has proposed cross-project defect prediction
models, i.e., models trained using historical data from other
projects [36].



While studies have shown that cross-project defect predic-
tion models can perform well at the file-level [2, 20], cross-
project defect prediction using JIT models remains largely
unexplored. We, therefore, set out to empirically study the
performance of JIT cross-project defect models. Using data
from 11 open source projects, we test JIT cross-project mod-
els trained using three techniques, and address the following
research questions:

(RQ1) Are high performance within-project models
also high performance cross-project models?
JIT models with strong within-project performance
rarely perform well in a cross-project context.

(RQ2) Does similarity in the correlation between
predictor and dependent variables indicate
high performance cross-project models?
Projects with similar correlation values between the
predictors and the dependent variable tend to per-
form well in a cross-project context.

(RQ3) Do ensemble techniques improve cross-project
prediction performance?
Using the ensemble technique like “voting experts”
[32] yields models that often perform well in a cross-
project context.

Furthermore, we show that the combination of ensem-
ble techniques with the carefully selected training projects
based on predictor-dependent variable similarity yields mod-
els that outperform the other models learned using the stud-
ied techniques in isolation.

Paper organization. The rest of the paper is organized
as follows. Section 2 surveys related work. Section 3 moti-
vates the three research questions that structure our study.
Section 4 describes the setting of our empirical study, while
Section 5 describes the results. Section 6 evaluates the
combination of similarity (RQ2) and ensemble techniques
(RQ3), as well as the impact of model threshold on pre-
diction performance. Section 7 discloses the threats to the
validity of our findings. Finally, Section 8 draws conclu-
sions.

2. BACKGROUND AND RELATED WORK
In this section, we describe the related work with respect

to traditional, JIT, and cross-project defect prediction.

2.1 Traditional Defect Prediction
Traditional defect prediction models describe the relation-

ship between module metrics (e.g., SLOC and McCabe’s Cy-
clomatic complexity) as predictor variables and a module
status (defect-prone or not) as a response variable. In other
words, given a module, a traditional defect model classifies
it as either defect-prone or not.

Various techniques are used to build defect models, such
as logistic regression and random forest. Many prior studies
focus on the evaluation of prediction performance for ad-
ditional modeling techniques like linear discriminant anal-
ysis [27], decision trees [13] and Support Vector Machines
(SVM) [35]. In this paper, we train our JIT cross-project
models using the random forest algorithm, since compared
to conventional modeling techniques (e.g., logistic regres-
sion and decision trees), random forest produces robust,
highly accurate, stable models that are especially resilient

to noisy data [9]. Furthermore, prior studies have shown
that random forest tends to outperform other modeling tech-
niques [10, 17].

Random Forest: Random forest is a classification (or re-
gression) technique that builds a large number of decision
trees at training time [3]. Each node in the decision tree
is split using a random subset of all of the attributes. Per-
forming this random split ensures that all of the trees have
a low correlation between them [3].

First, the dataset is split into training and testing corpora.
Typically, 90% of the dataset is allocated to the training
corpus, which is used to build the forest. The remaining
10% of the dataset is allocated to the testing or Out Of Bag
(OOB) corpus, which is used to test the prediction accuracy
of the forest. Since there are many decision trees that may
each report di↵erent outcomes, each sample in the OOB
corpus is pushed down all of the trees in the forest and the
final class of the sample is decided by aggregating the votes
from all of the trees.

2.2 Just-In-Time Defect Prediction
While traditional defect prediction models use module

metrics for predictor variables and module status (defect-
prone or not) as a response variable, JIT defect predic-
tion model uses change metrics (e.g., # modified files) and
change status (i.e., defect-inducing or not).

Prior work suggests that JIT prediction is a more prac-
tical alternative to traditional defect prediction. For ex-
ample, Mockus et al. [22] predict defect-inducing changes
in a large-scale telecommunication system. Kim et al. [14]
add change features, such as the terms in added and deleted
deltas, modified file and directory names, change logs, source
code, change metadata and complexity metrics to classify
changes as being defect-inducing or not. Kamei et al. [12]
also perform a large-scale study on the e↵ectiveness of JIT
defect prediction, reporting that the addition of a variety
of factors extracted from commits and bug reports helps to
e↵ectively predict defect-inducing changes. In addition, the
authors show that using their technique, careful inspection
of 20% of the changes could prevent up to 35% of the defect-
inducing changes from impacting users.

The prior work not only establishes that JIT defect pre-
diction is a more practical alternative to traditional defect
prediction, it is also viable, yielding actionable results. How-
ever, defect models must be trained on a large corpus of data
in order to perform well [36]. Since new projects and legacy
ones may not have enough historical data available, we set
out to study JIT cross-project defect prediction.

2.3 Cross-Project Defect Prediction
Cross-project defect prediction is also a well-studied re-

search area. Several studies have explored traditional defect
prediction using cross-project models [20, 26, 33, 36]. For
example, Zimmermann et al. [36] study cross-project defect
prediction models using 28 datasets collected from 12 open
source and industrial projects. They find that of the 622
cross-project combinations, only 21 produce acceptable re-
sults. They also identify the factors that influence the suc-
cess of cross-project prediction, such as the number of ob-
servations (file count, binary count and component count).

Turhan et al. [33] investigate the applicability of cross-
project prediction for building localized defect predictors
using static code features. They report that the proposed



Table 1: Summary of project data. Parenthesized values show the percentage of defect-introducing changes.

Project name Period # of changes Project name Period # of changes
Bugzilla (BUG) 08/1998 - 12/2006 4,620 (37%) Perl (PER) 12/1987 - 06/2013 50,485 (24%)
Columba (COL) 11/2002 - 07/2006 4,455 (31%) Eclipse Platform (PLA) 05/2001 - 12/2007 64,250 (15%)
Gimp (GIP) 01/1997 - 06/2013 32,875 (36%) PostgreSQL (POS) 07/1996 - 05/2010 20,431 (25%)
Eclipse JDT (JDT) 05/2001 - 12/2007 35,386 (14%) Ruby on Rails (RUB) 11/2004 - 06/2013 32,866 (19%)
Maven-2 (MAV) 09/2003 - 05/2012 5,399 (10%) Rhino (RHI) 04/1999 - 02/2013 2,955 (44%)
Mozilla (MOZ) 01/2000 - 12/2006 98,275 ( 5%) Median 32,866(24%)

cross-project prediction models actually outperform models
built using within-project data.

Menzies et al. [20] comparatively evaluate local (within-
project) vs. global (cross-project) lessons learned for defect
prediction. They report that a strong prediction model can
be built from projects that are included in the cluster that
is nearest to the testing data. Furthermore, Nam et al. [26]
use the transfer learning approach (TCA) to make feature
distributions in training and testing projects similar. They
also propose a novel transfer learning approach, TCA+, by
extending TCA. They report that TCA+ significantly im-
proves cross-project prediction performance in eight open
source projects.

While prior studies have empirically evaluated cross-project
prediction performance using traditional models, our study
focuses on cross-project prediction using JIT models.

3. RESEARCH QUESTIONS
We suspect that the performance of JIT cross-project pre-

diction models will improve if we select an appropriate train-
ing dataset [20, 33]. Hence, we set out to compare model
performance when we apply three techniques for training
dataset preprocessing. To structure our paper, we formu-
late each technique as a research question as listed below.

(RQ1) Are high performance within-project models
also high performance cross-project models?
High performance within-project models have es-
tablished a strong link between predictors and defect-
proneness within one project. We suspect that prop-
erties of the relationship may still hold if the model
is tested on another project.

(RQ2) Does similarity in the correlation between
predictor and dependent variables indicate
high performance cross-project models?
Defect prediction models assume that the distri-
butions of the metrics in the training and testing
datasets are similar [33]. Since the distribution of
metrics can vary among projects, this assumption
may be violated in a cross-project context. In such
cases, we would expect that cross-project model
performance would su↵er. On the other hand, we
expect that models trained using data from projects
with similar metric distributions will have strong
prediction performance.

(RQ3) Do ensemble techniques improve cross-project
prediction performance?
Since ensemble classification techniques have recently
proved useful in other areas of software engineer-
ing [15], we suspect that they may also improve
JIT cross-project defect prediction. Ensemble tech-
niques that leverage multiple datasets and/or meth-

ods could cover a large project characteristic space,
and hence provide high performance for general pre-
diction purposes, i.e., not only those of one project.

4. EXPERIMENTAL SETTING

4.1 Studied Systems
In order to address our three research questions, we con-

duct an empirical study using data from 11 open source
projects, of which 6 projects (Bugzilla, Columba, Eclipse
JDT, Mozilla, Eclipse Platform, PostgreSQL) are provided
by Kamei et al. [12] and 5 well-known and long-lived projects
(Gimp, Maven-2, Perl, Ruby on Rails, Rhino) needed to be
collected. We study projects from various domains in order
to combat potential bias in our results. Table 1 provides an
overview of the studied datasets.

4.2 Change Measures
A previous study of JIT defect prediction uses 14 metrics

from 5 categories derived from the Version Control System
(VCS) of a project to predict defect-inducing changes [12].
We remove six of these metrics in the History and Expe-
rience categories because these metrics are project-specific,
and hence cannot be measured from the software projects
that do not have change histories (e.g., a new development
project).
Identification of defect-inducing changes: To know
whether or not a change introduces a defect, we used the
SZZ algorithm [31]. This algorithm identifies when a bug
was injected into the code and who injected it using a VCS.

Table 2 provides a brief description of each metric and the
rationale behind it. We briefly describe each metric below.
Di↵usion category: We expect that the di↵usion dimen-
sion can be leveraged to determine the likelihood of a defect-
inducing change. A total of four di↵erent factors makes up
the di↵usion dimension, as listed in Table 2.

Prior work has shown that a highly distributed change can
be more complex and harder to understand [22]. For exam-
ple, Mockus and Weiss [22] show that the number of changed
subsystems is related to defect-proneness. Hassan [8] shows
that change entropy is a more powerful predictors of the inci-
dence of defects than the number of prior defects or changes.
In our study, we normalize the change entropy by the maxi-
mum entropy log2n to account for di↵erences in the number
of files n across changes, similar to Hassan [8].

For each change, we count the number of distinct names
of modified: (1) subsystems (i.e., root directories) (NS), (2)
directories (ND) and (3) changed files (NF). To illustrate, if
a change modifies a file with the path: org.eclipse.jdt.

core/jdom/org/eclipse/jdt/core/dom/Node.java, then the
subsystem is org.eclipse.jdt.core, the directory is org.

eclipse.jdt.core/jdom/.../dom and the file name is org.



Table 2: Summary of change measures [12]
Dim. Name Definition Rationale Related Work

D
i↵
u
si
on

NS Number of mod-
ified subsystems

Changes modifying many subsystems are
more likely to be defect-prone.

The defect probability of a change
increases with the number of modi-
fied subsystems [22].

ND Number of mod-
ified directories

Changes that modify many directories are
more likely to be defect-prone.

The higher the number of modified
directories, the higher the chance
that a change will induce a de-
fect [22].

NF Number of mod-
ified files

Changes touching many files are more likely
to be defect-prone.

The number of classes in a module
is a good feature of post-release de-
fects of a module [25]

Entropy Distribution of
modified code
across each file

Changes with high entropy are more likely
to be defect-prone, because a developer will
have to recall and track large numbers of
scattered changes across each file.

Scattered changes are more likely to
introduce defects [5, 8].

S
iz
e

LA Lines of code
added

The more lines of code added, the more likely
a defect is introduced.

Relative code churn measures are
good indicators of defect modules
[23, 24].LD Lines of code

deleted
The more lines of code deleted, the higher
the chance of a defect.

LT Lines of code in
a file before the
change

The larger a file, the more likely a change
might introduce a defect.

Larger modules contribute more de-
fects [16].

P
u
rp
os
e FIX Whether or not

the change is a
defect fix

Fixing a defect means that an error was
made in an earlier implementation, therefore
it may indicate an area where errors are more
likely.

Changes that fix defects are more
likely to introduce defects than
changes that implement new func-
tionality [7][28].

H
is
to
ry

⇤

NDEV The number of
developers that
changed the
modified files

The larger the NDEV, the more likely a de-
fect is introduced, because files revised by
many developers often contain di↵erent de-
sign thoughts and coding styles.

Files previously touched by more
developers contain more defects
[19].

AGE The average
time interval
between the last
and the current
change

The lower the AGE (i.e., the more recent
the last change), the more likely a defect will
be introduced.

More recent changes contribute
more defects than older changes [6].

NUC The number of
unique changes
to the modified
files

The larger the NUC, the more likely a defect
is introduced, because a developer will have
to recall and track many previous changes.

The larger the spread of modified
files, the higher the complexity [5,
8].

E
x
p
er
ie
n
ce

⇤

EXP Developer expe-
rience

More experienced developers are less likely
to introduce a defect.

Programmer experience significantly
reduces the likelihood of introducing
a defect [22]. Developer experience
is measured as the number of
changes made by the developer
before the current change.

REXP Recent devel-
oper experience

A developer that has often modified the files
in recent months is less likely to introduce a
defect, because she will be more familiar with
the recent developments in the system.

SEXP Developer expe-
rience on a sub-
system

Developers that are familiar with the subsys-
tems modified by a change are less likely to
introduce a defect.

⇤ These metrics cannot be measured from the software projects that do not have change histories, and hence cannot be used
in cross-project context.

eclipse.jdt.core/jdom/org/eclipse/jdt/core/dom/Node.

java.
Size category: In addition to the di↵usion of a change,
prior work shows that the size of a change is a strong indi-
cator of its defect-proneness [23, 24]. Hence, we use the size
dimension to predict defect-inducing changes. We use three
di↵erent LA, LD, and LT metrics to measure the size dimen-
sions as shown in Table 2. These metrics can be extracted
directly from a VCS.

Purpose category: A change that fixes a defect is more
likely to introduce another defect [7, 28]. The intuition being
that the defect-prone modules of the past tend to remain
defect-prone in the future [6].

To determine whether or not a change fixes a defect, we
scan VCS commit messages that accompany changes for key-
words like “bug”, “fix”, “defect” or “patch”, and for defect
identification numbers. A similar approach to determine
defect-fixing changes was used in other work [12, 14].



4.3 Data Preparation
Minimizing collinearity. To combat the threat of mul-
ticollinearity in our models [12, 22], we remove highly cor-
related metrics (Spearman ⇢ > 0.8). We manually remove
the highly correlated factors, avoiding the use of automatic
techniques, such as stepwise variable selection because they
may remove fundamental metrics (e.g., NF), in favour of a
non-fundamental ones (e.g., NS) if the metrics are highly
correlated. Since the fundamentality of a metric is some-
what subjective, we discuss each metrics that we discarded
below.

We found that NS and ND are highly correlated . To
address this, we exclude ND and include NS in our prediction
models. We also found LA and LD are highly correlated.
Nagappan and Ball [24] reported that relative churn metrics
perform better than absolute metrics when predicting defect
density. Therefore, we adopt their normalization approach,
i.e., LA and LD are divided by LT. We also normalized LT
by dividing it by NF, since this metric is highly correlated
with NF. In short, the NS, NF, Entropy, relative churn (i.e.,
(LA+LD)/LT), LT/NF and FIX metrics metrics survive our
correlation analysis.

Handling class imbalance. Our datasets are imbal-
anced, i.e., the number of defect-inducing changes represents
only a small proportion of all changes. This imbalance may
cause the performance of the prediction models to degrade
if it is not handled properly [11]. Taking this into account,
we use a re-sampling approach for our training data. We
reduce the number of majority class instances (i.e., non-
defect-inducing changes in the training data) by deleting
instances randomly such that the majority class drops to
the same level as the minority class (i.e., defect-inducing
changes). Note that re-sampling is only performed on the
training data – the testing data is not modified.

4.4 Performance Measure
To evaluate model prediction performance, precision, re-

call and F-measure are often used [14, 26]. However, as
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Figure 1: An example of ROC curve in the case of
AUC=0.8 and AUC=0.5

Lessmann et al. point out [17], these criteria depend on the
threshold that is used for classification. Choosing a di↵erent
threshold may lead to di↵erent results.

To evaluate model prediction performance in a threshold-
insensitive manner, we use the Area Under the Curve (AUC)
of the Receiver Operating Characteristic (ROC) plot. Fig-
ure 1 shows an example ROC curve, which plots the false
positive rate (i.e., the proportion of changes that are incor-
rectly classified as defect-inducing) on the x-axis and true
positive rate (i.e., the proportion of defect-inducing changes
that are classified as such) on the y-axis over all possible
classification thresholds. The range of AUC is [0,1], where
a larger AUC indicates better prediction performance. If
the prediction accuracy is higher, the ROC curve becomes
more convex in the upper left and the value of the AUC ap-
proaches 1. Any prediction model achieving an AUC above
0.5 is more e↵ective than random predictions.

5. CASE STUDY
In this section, we present the results of our case study

with respect to our three research questions.

(RQ1) Are high performance within-project mo-
dels also high performance cross-project mod-
els?
Approach. We test all JIT cross-project model combina-
tions available with our 11 datasets (i.e., 110 combinations
= 11⇥10). To address RQ1, we build prediction models us-
ing the historical data from one project for training and test
the prediction performance using the historical data from
each other project.

We validate whether or not datasets that have strong
within-project prediction performance also perform well in
a cross-project context. To measure the cross-project model
performance, we test each within-project model using the
data of all of the other projects. We use all of the data of
each project to build the within-project model. We perform
ten combinations of cross-project prediction (11 projects -
1 for training). We then select the median of the ten AUC
values. This median value is referred to as the cross-project
AUC.

To measure within-project performance, we select one pro-
ject as the training dataset, perform tenfold cross-validation
using data from the same project and then calculate the
AUC value. The tenfold cross-validation process randomly
divides one dataset into ten folds of equal sizes. The first
nine folds are used to train the model, and the last fold is
used to test it. This process is repeated ten times, using a
di↵erent fold for testing each time. The prediction perfor-
mance results of each fold are then aggregated. We refer to
this aggregated value of within-project model performance
as within-project AUC.

Finally, to evaluate RQ1, we compare within-project and
cross-project AUC values.

Results. Table 3 shows the AUC values we obtain. Each
row shows the projects used for testing and each column
shows the projects used for training. Diagonal values (gray-
colored cells) show the within-project AUC values. For ex-
ample, the COL-COL cell is the AUC value of the tenfold
cross-validation in the Columba project. Other cells show
the cross-project prediction results. For example, the cell
shown in boldface shows the performance of the prediction



Table 3: Summary of AUC values for within-project prediction and cross-project prediction

Training project
BUG COL GIP JDT MAV MOZ PER PLA POS RUB RHI

T
es
ti
n
g
p
ro
je
ct

BUG 0.75 0.55 0.66 0.72 0.66 0.71 0.68 0.68 0.69 0.69 0.69
COL 0.56 0.77 0.63 0.73 0.62 0.74 0.64 0.76 0.71 0.61 0.65
GIP 0.47 0.47 0.79 0.69 0.63 0.58 0.68 0.60 0.66 0.62 0.69
JDT 0.61 0.66 0.68 0.75 0.62 0.73 0.67 0.72 0.70 0.68 0.68
MAV 0.38 0.63 0.76 0.72 0.83 0.76 0.75 0.79 0.72 0.73 0.75
MOZ 0.69 0.64 0.74 0.74 0.69 0.80 0.73 0.74 0.77 0.74 0.75
PER 0.57 0.49 0.69 0.67 0.65 0.63 0.75 0.60 0.66 0.69 0.72
PLA 0.69 0.68 0.69 0.75 0.65 0.74 0.68 0.78 0.70 0.67 0.68
POS 0.50 0.56 0.68 0.71 0.69 0.74 0.72 0.73 0.79 0.72 0.72
RUB 0.51 0.60 0.63 0.65 0.62 0.65 0.70 0.64 0.66 0.74 0.68
RHI 0.55 0.68 0.77 0.62 0.72 0.77 0.79 0.73 0.73 0.72 0.81
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Figure 2: [RQ1] Within-project vs. cross-project model performance. Projects are sorted by within-project
performance along the x-axis.

model learned using Bugzilla project data and tested using
Columba project data.

Figure 2 groups the results of Table 3 in a boxplot. The
projects are sorted along the X-axis by the AUC value of
within-project prediction in descending order, and the Y-
axis shows the 10 AUC values for cross-project performance.
If there were truly a relationship between good within-project
and cross-project prediction, one would expect that the boxes
should also descend in value from left to right. Since no such
pattern emerges, it seems that there is no relationship be-
tween good within-project predictors and good cross-project
predictors. We validate our observation statistically using
Spearman correlation tests. We calculate Spearman corre-
lation between the rank of the AUC value of within-project
prediction and the median of AUC value of cross-project
prediction. The resulting value is ⇢ = 0.036 (p = 0.9244).

Strong within-project performance of a model does not
necessarily indicate that it will perform well in a cross-
project context.

(RQ2) Does similarity in the correlation between
predictor and dependent variables indicate high
performance cross-project models?
Approach. We validate whether or not we obtain better
prediction performance when we use the models trained us-
ing a project that has similar characteristics with a testing
project. Figure 3 provides an overview of our approach to
calculate the similarity between two projects. We describe
each step below:

1. We calculate Spearman correlation between a depen-
dent variable and each predictor variable in the train-
ing dataset (Step 1 of Figure 3).

2. We select the three predictor variables (q1, q2 and
q3) that have the highest Spearman correlation val-
ues (the gray shaded variables in Step 2 of Figure 3).
We perform this step because we would like to focus on
the metrics that have strong relationships with defect-
inducing changes.
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Change 1 1 2 0.9 0 0.2 39
Change 2 1 3 0.7 0 0.4 102

・・・ ・・・ ・・・ ・・・ ・・・ ・・・ ・・・

Step.3

Step.4
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Figure 3: The five steps in the technique for calcu-
lating the similarity between two projects.

3. We then select the same three predictor variables (r1,
r2 and r3) from testing dataset (the grey shaded vari-
ables in Step 3 of Figure 3).

4. We calculate the Spearman correlation between q1 and
q2 (Q1), q2 and q3 (Q2), and q3 and q1 (Q3) to obtain
a three-dimensional vector (Q1, Q2, Q3). We repeat
these steps using the r1, r2 and r3 to obtain another
vector (R1, R2, R3) for testing dataset.

5. Finally, we obtain our similarity measure by calculat-
ing the Euclidean distance between (Q1, Q2, Q3) and
(R1, R2, R3).

In RQ2, we build a prediction model using the most similar
project with a testing project based on our similarity metric.

In a prediction scenario, we will not know the value of
the dependent variable, since it is what we aim to predict.
Hence, our similarity metric does not rely on the dependent
variable of the testing dataset.

Results. Figure 4 shows the results of RQ2. Base.RF
is used as a baseline, which shows the median AUC values
for all cross-project predictors, i.e., o↵-diagonal elements in
Table 3.

Figure 4 shows that all of the models selected using our
similarity metric have AUC values over 0.65. Furthermore,
RQ2 models tend to outperform Base.RF in terms of me-
dian value. A one-tailed Mann-Whitney U test indicates
that the di↵erence between Base.RF and RQ2 is statisti-
cally significant (↵ = 0.05). These results suggest that our
similarity metric helps to identify stable models with strong
cross-project prediction performance from a list of candi-
dates.

To understand how well the similarity-based approach
works, we check the relationship between similarity ranks
and actual ranks. While the similarity ranks are measured
by ordering projects using our similarity metric, the actual
ranks are measured by ordering projects by the AUC of
cross-project prediction. When we use our similarity met-
ric for model selection, the actual top ranked project (i.e.,
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Figure 4: [RQ2] E↵ect of selecting training data by
degree of similarity
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Figure 5: [RQ3] E↵ect of ensemble learning

the project to provides the best prediction model) is chosen
for 3 of the 11 projects (Columba, Gimp and Platform), the
second rank project is chosen for 1 project (Mozilla) and
the third rank project is chosen for two projects (Bugzilla
and Perl). This result suggests that our similarity metric
approach helps to select high performance JIT models.

Furthermore, we check the impact of the number of pre-
dictor variables that are used to calculate the similarity be-
tween two projects from 2 to 6 (3 was used in this RQ). The
result shows that when we use 2 and 3 as the number of pre-
dictor variables to calculate the similarity, the median AUC
values of RQ2 models are better than Base.RF. However,
use of additional variables in the similarity calculation actu-
ally degrades RQ2 model performance. This result suggests
that the step 2 of RQ2 models works well.

Similar predictor-dependent variable correlations tend to
produce cross-project models that perform well in a cross-
project context.

(RQ3) Do ensemble techniques improve cross-
project prediction performance?
Since we possess several projects, we suspect that we using
all datasets in tandem with each other may produce more
powerful cross-project prediction models than ones built us-
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Figure 6: The result of hybrid approaches

ing only one project [21, 32]. We evaluate voting and joining
ensemble approaches that leverage the entire dataset, and
hence, divide RQ3 into two parts respectively (RQ3-1 and
RQ3-2).

Approach. In RQ3-1, we build separate prediction mod-
els using each dataset. To calculate the likelihood of a
change being defect-inducing, we push the change through
each prediction model and then take the mean of the pre-
dicted probabilities.

We illustrate the voting method using an example in the
case of Mozilla as the testing project below. First, we build
10 prediction models using each of the other datasets. Given
a change from Mozilla project, we obtain 10 predicted prob-
abilities from the 10 models. Finally, we calculate the mean
of the 10 probabilities.

In RQ3-2, rather than using each dataset individually, we
merge them together to make one dataset. Naturally, we
exclude the testing dataset from the merge operation. We
then build one prediction model using all of the data in the
merged dataset.

Results. Figure 5 shows the results of RQ3-1 and RQ3-2.
RQ3.Voting shows the result of the voting method in RQ3-
1, while RQ3.Join shows the result of the joining method in
RQ3-2.

The results indicate that both RQ3-1 and RQ3-2 outper-
form the baseline, including our similarity metric approach
(RQ2) in terms of the median value. One tailed Mann-
Whitney U tests confirm that the improvements are sta-
tistically significant (↵ = 0.05). Furthermore, RQ3.Voting
tends to perform better than the other cross-project pre-
diction models, including RQ3.Join in terms of all boxplot
statistics, i.e., minimum, 25th, 50th and 75th percentiles
and maximum values.

Ensemble learning methods tend to produce JIT defect
models that perform well in a cross-project context.

Summary
Although we do not find a relationship between strong within-
project prediction performance and cross-project prediction
performance (RQ1), our results suggest that the JIT predic-
tion models built using projects with similar characteristics
(RQ2) or using ensemble methods (RQ3) tend perform well

in a cross-project context. The di↵erences between models
built using similar projects or ensemble methods indicate
performance has improved to a statistically significant de-
gree (↵ = 0.05). Thus, we conclude that the answer to RQ1
is “no” and the answers to RQ2 and RQ3 are “yes”.

The median values of RQ2 (Similarity) in Figure 4 and
RQ3-1 (Voting) and RQ3-2 (Joining) in Figure 5 are 0.72,
0.73 and 0.71 respectively. We check the di↵erence of the
median values among three models using ANOVA and Tukey’s
HSD, which is a single-step multiple comparison procedure
and statistical test [4]. The test results indicate that di↵er-
ence between the three result sets are not statistically sig-
nificant. Hence, while we do not have evidence to indicate
which of the three high performance approaches a practi-
tioner should adopt, we do suggest that practitioners avoid
the RQ1 approach.

6. DISCUSSION

6.1 Hybrid Approaches
Since we find that project similarity and ensemble ap-

proaches tend to improve the prediction performance of cross-
project prediction models, we are interested in analyzing
hybrid approaches that combine them. While project simi-
larity provides an approach to select training projects from
candidates, ensemble approaches describe how to leverage
several datasets to build a more general model.

Approach. For each testing dataset, we use our similarity
metric to select several training datasets, and then perform
cross-project prediction by applying the voting and joining
approaches to combine them. Using this approach, we must
select the threshold n, i.e., the number of similar projects
to use for training. We evaluate n = 3 and n = 5 threshold
values.

As an alternative to using a threshold, we also evaluate
the performance of a weighting approach, which randomly
samples (10 - (r - 1))/10 ⇥ 100 % of the changes (where r

is the project rank based on our similarity metric) for each
dataset. For example, 100% of changes are picked up from
the most similar project, while 90% of changes are picked
up from the second most similar project, and so on.

Results. Figure 6 shows the results of applying our hy-
brid approaches. The dashed line shows the median value
of RQ3.Voting, i.e., the best median value among three high
performance models (similarity, voting and joining). We find
that either using (1) our similarity metric to select the top
five similar projects (Sim.Voting5) or (2) the weighting ap-
proach (Sim.Voting.W) tend to provide more powerful pre-
diction models than only using RQ3.Voting. We recommend
the use of the weighted approach, since it does not depend
on a threshold value.

6.2 What is the impact of model threshold se-
lection for classification?

Throughout our case study, we used AUC to evaluate the
performance across thresholds. Yet the AUC does not con-
sider the ease of selecting a good threshold for the model,
which one must do in practice. Therefore, in order to make
sure our approaches improve the prediction performance in
a more practical context, we evaluate the prediction perfor-
mance using F-measure with a model threshold of 0.5, since
0.5 is a frequently adopted threshold value [7, 12].



RQ2 RQ3.Voting RQ3.Join Sim.Voting3 Sim.Join3 Sim.Voting5 Sim.Join5 Sim.Voting.W Sim.Join.W

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

fm
ea
su
re

Figure 7: F-measure of all experiments

Results. Figure 7 shows the F-measure of our models
built using our hybrid approaches. The dashed line shows
the median value of the results of all cross-project predic-
tors (Base.RF), i.e., non-diagonal elements in Table 3. The
results show that the median value of F-measure of all ap-
proaches outperform the baseline. We, therefore, conclude
that the hybrid approaches perform well both in terms of
AUC and F-measure.

7. THREATS TO VALIDITY
In this section, we discuss the threats to the validity of

our case study.

External validity. We only study 11 open source sys-
tems, and hence, our results may not generalize to all soft-
ware systems. However, we study large, long-lived systems
from various domains in order to combat potential bias in
our results. Nonetheless, replication of our study using ad-
ditional systems may prove fruitful.

We use random forest to evaluate the e↵ect of the JIT
prediction across projects, since this modeling technique is
known to perform well for defect prediction. However, using
other modeling techniques may produce di↵erent results.

Internal validity. Although we study eight metrics span-
ning three categories, there are likely other features of defect-
inducing changes that we did not measure. For example, we
suspect that the type of a change (e.g., refactoring [23, 29])
might influence the likelihood of introducing a defect. We
plan to expand our metric set to include additional cate-
gories in future work.

We use defect datasets provided by prior work [12] that
identify defect-inducing changes using the SZZ algorithm [31].
The SZZ algorithm is commonly used in defect prediction re-
search [14, 23], yet has known limitations. For example, if
a defect is not recorded in the VCS commit message or the
keywords used defect identifiers di↵er from those used in the
previous study (e.g., “Bug” or “Fix” [11]), such a change will
not be tagged as defect-inducing. The use of an approach to
recover missing links that improve the accuracy of the SZZ
algorithm [34] may improve the accuracy of our results.

8. CONCLUSIONS
In this paper, we study approaches for constructing Just-

In-Time (JIT) defect prediction models that identify source
code changes that have a high risk of introducing a defect.
Since one cannot produce JIT models if insu�cient training
data is available, e.g., a project does not archive change
histories in a VCS repository, we empirically evaluated the
use of the datasets collected from other projects (i.e., cross-

project prediction). Through a case study on 11 open source
projects, we make the following observations:

• Defect models with high within-project performance
are rarely high performance cross-project models (RQ1).

• Prediction performance can be improved by selecting
datasets for training that are highly similar to the test-
ing dataset (RQ2).

• Several datasets can be used in tandem to produce
more accurate models, especially when using the vot-
ing method (RQ3).

• Similarity and ensemble methods can be used in tan-
dem with each other to yield even more accurate JIT
cross-project models.

Future work. Our results suggest that the ensemble
methods yield high performance JIT defect prediction mod-
els for cross-project prediction. For example, all models gen-
erated using the voting method proposed in RQ3-1 generate
models with AUC values over 0.6. Hence, we plan to explore
more powerful ensemble methods (e.g., clustering [20, 33]).

TCA is a state-of-the art transfer learning approach and
makes feature distributions in training projects and testing
projects similar. We will apply the TCA approach to JIT
defect prediction models for cross-project prediction to make
training and testing projects similar.

9. ACKNOWLEDGMENTS
This research was partially supported by JSPS KAKENHI

Grant Numbers 24680003 and 25540026 and the Natural Sci-
ences and Engineering Research Council of Canada (NSERC).

10. REFERENCES

[1] V. R. Basili, L. C. Briand, and W. L. Melo. A validation
of object-oriented design metrics as quality indicators.
IEEE Trans. Softw. Eng., 22(10):751–761, 1996.

[2] N. Bettenburg, M. Nagappan, and A. E. Hassan. Think
locally, act globally: Improving defect and e↵ort predic-
tion models. In Proc. Int’l Working Conf. on Mining
Software Repositories (MSR’12), pages 60–69, 2012.

[3] L. Breiman. Random forests. Machine learning,
45(1):5–32, 2001.

[4] F. L. Coolidge. Statistics: A Gentle Introduction.
SAGE Publications (3rd ed.), 2012.

[5] M. D’Ambros, M. Lanza, and R. Robbes. An exten-
sive comparison of bug prediction approaches. In Proc.
Int’l Working Conf. on Mining Software Repositories
(MSR’10), pages 31–41, 2010.

[6] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Pre-
dicting fault incidence using software change history.
IEEE Trans. Softw. Eng., 26(7):653–661, 2000.

[7] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Mur-
phy. Characterizing and predicting which bugs get
fixed: An empirical study of microsoft windows. In
Proc. Int’l Conf. on Softw. Eng. (ICSE’10), volume 1,
pages 495–504, 2010.



[8] A. E. Hassan. Predicting faults using the complexity
of code changes. In Proc. Int’l Conf. on Softw. Eng.
(ICSE’09), pages 78–88, 2009.

[9] Y. Jiang, B. Cukic, and T. Menzies. Can data transfor-
mation help in the detection of fault-prone modules? In
Proc. Workshop on Defects in Large Software Systems
(DEFECTS’08), pages 16–20, 2008.

[10] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto,
B. Adams, and A. E. Hassan. Revisiting common bug
prediction findings using e↵ort aware models. In Proc.
Int’l Conf. on Software Maintenance (ICSM’10), pages
1–10, 2010.

[11] Y. Kamei, A. Monden, S. Matsumoto, T. Kakimoto,
and K.-i. Matsumoto. The e↵ects of over and under
sampling on fault-prone module detection. In Proc. Int’l
Symposium on Empirical Softw. Eng. and Measurement
(ESEM’07), pages 196–204, 2007.

[12] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan,
A. Mockus, A. Sinha, and N. Ubayashi. A large-scale
empirical study of just-in-time quality assurance. IEEE
Trans. Softw. Eng., 39(6):757–773, 2013.

[13] T. M. Khoshgoftaar and E. B. Allen. Modeling software
quality with classification trees. Recent Advances in
Reliability and Quality Engineering, 2:247–270, 2001.

[14] S. Kim, E. J. Whitehead, and Y. Zhang. Classifying
software changes: Clean or buggy? IEEE Trans. Softw.
Eng., 34(2):181–196, 2008.

[15] E. Kocaguneli, T. Menzies, and J. Keung. On the value
of ensemble e↵ort estimation. IEEE Trans. Softw. Eng.,
38(6):1403–1416, 2012.

[16] A. G. Koru, D. Zhang, K. El Emam, and H. Liu. An
investigation into the functional form of the size-defect
relationship for software modules. IEEE Trans. Softw.
Eng., 35(2):293–304, 2009.

[17] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch.
Benchmarking classification models for software defect
prediction: A proposed framework and novel findings.
IEEE Trans. Softw. Eng., 34(4):485–496, July 2008.

[18] P. L. Li, J. Herbsleb, M. Shaw, and B. Robinson. Expe-
riences and results from initiating field defect prediction
and product test prioritization e↵orts at ABB Inc. In
Proc. Int’l Conf. on Softw. Eng. (ICSE’06), pages 413–
422, 2006.

[19] S. Matsumoto, Y. Kamei, A. Monden, and K. Mat-
sumoto. An analysis of developer metrics for fault pre-
diction. In Proc. Int’l Conf. on Predictive Models in
Softw. Eng. (PROMISE’10), pages 18:1–18:9, 2010.

[20] T. Menzies, A. Butcher, D. Cok, A. Marcus, L. Lay-
man, F. Shull, B. Turhan, and T. Zimmermann. Lo-
cal versus global lessons for defect prediction and e↵ort
estimation. IEEE Trans. Softw. Eng., 39(6):822–834,
2013.

[21] A. T. Mısırlı, A. B. Bener, and B. Turhan. An industrial
case study of classifier ensembles for locating software
defects. Software Quality Journal, 19(3):515–536, 2011.

[22] A. Mockus and D. M. Weiss. Predicting risk of soft-

ware changes. Bell Labs Technical Journal, 5(2):169–
180, 2000.

[23] R. Moser, W. Pedrycz, and G. Succi. A comparative
analysis of the e�ciency of change metrics and static
code attributes for defect prediction. In Proc. Int’l
Conf. on Softw. Eng. (ICSE’08), pages 181–190, 2008.

[24] N. Nagappan and T. Ball. Use of relative code churn
measures to predict system defect density. In Proc. Int’l
Conf. on Softw. Eng. (ICSE’05), pages 284–292, 2005.

[25] N. Nagappan, T. Ball, and A. Zeller. Mining metrics
to predict component failures. In Proc. Int’l Conf. on
Softw. Eng. (ICSE’06), pages 452–461, 2006.

[26] J. Nam, S. J. Pan, and S. Kim. Transfer defect learning.
In Proc. Int’l Conf. on Softw. Eng. (ICSE’13), pages
382–391, 2013.

[27] N. Ohlsson and H. Alberg. Predicting fault-prone soft-
ware modules in telephone switches. IEEE Trans.
Softw. Eng., 22(12):886–894, 1996.

[28] R. Purushothaman and D. E. Perry. Toward under-
standing the rhetoric of small source code changes.
IEEE Trans. Softw. Eng., 31(6):511–526, 2005.

[29] J. Ratzinger, T. Sigmund, and H. C. Gall. On the re-
lation of refactorings and software defect prediction. In
Proc. Int’l Working Conf. on Mining Software Reposi-
tories (MSR’08), pages 35–38, 2008.

[30] E. Shihab, A. E. Hassan, B. Adams, and Z. M. Jiang.
An industrial study on the risk of software changes. In
Proc. European Softw. Eng. Conf. and Symposium on
the Foundations of Softw. Eng. (ESEC/FSE’12), pages
62:1–62:11, 2012.
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