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Abstract—Object detection models are widely used in
safety-critical systems in industrial fields such as autonomous
driving. It is essential to improve the robustness of object
detection models capable of avoiding failures in realistic
scenarios. This study proposes metamorphic testing on the
object detection model robustness. The metamorphic testing
generates metamorphic tested images that simulate the realistic
perturbations in production environments. In order to evaluate
the model robustness, Bayesian uncertainty is used to describe
how the model maintains its reliability on the prediction. This
paper shows how metamorphic testing performs the evaluation
of the model robustness with Bayesian uncertainty, and how
metamorphic testing can improve the model robustness by
retraining the models.

Keywords—metamorphic testing, robustness, object detec-
tion model

1. INTRODUCTION

The object detection system is an important application
system of computer vision in recent years. Object detection
systems using models such as convolutional neural networks
or transformers as the framework are widely used in various
industrial fields.

However, object detection systems still face severe issues
regarding reliability and safety. In real-world scenarios, it has
been found that object detection systems are susceptible to
small disturbances triggering failures [1, 2]. For instance, op-
erational autopilot systems often overlook or misjudge sudden
flying objects (birds) [3], resulting in temporary system failure.
These failures are fatal and unacceptable. A robust object
detection system needs to avoid failures as much as possible,
and it can be achieved by improving the robustness of the
model, which is pivotal in the object detection system.

Software testing can be used to verify the robustness of the
object detection model. Wang and Su [4] applied metamor-
phic testing, a software testing technique, to object detectors.
Metamorphic testing of object detection is proposed to test the
performance of a model in a production environment, in which
a synthetic image was synthesized from the original data image
by inserting an object instance similar to the background, is
transformed into metamorphic testing, which verifies whether
the model maintains the predictability. However, existing stud-
ies [4, 5] have not discussed how metamorphic testing is used
to improve the object detection model robustness.

This study aims to evaluate and improve the robustness of
the object detection model using the metamorphic testing. The
robustness of the model shows the model performance against
realistic perturbations under the production environment [6].
In our research, we use Bayesian uncertainty [7] (how much

confidence the model itself has in the prediction results) and
failure rate (how often each image fails during metamorphic
testing) to evaluate the model robustness with metamorphic
testing. A robust model shall have lower uncertainty and
failure rate.

Metamorphic testing evaluates the robustness by assessing
the metamorphic relations. A metamorphic relation is estab-
lished when the model still keeps the same prediction results
before and after the tested images are transformed into their
metamorphic images. In our experiments, the tested images
and extracted instances are selected by their different charac-
teristics from the whole dataset - COCO dataset [8], which is a
large-scale object detection dataset with many features. During
the metamorphic testing, models are tested by predicting both
the original tested images and their metamorphic ones in order
to see whether the model maintains the metamorphic relations
or not. Metamorphic images that become unpredictable and
break the metamorphic relations are called failed test cases.
After the metamorphic testing, those failed test cases are used
to create a new training dataset to retrain the model in order
to improve its robustness. Based on this experiment, we aim
to reconsider how to generate metamorphic tested images with
more efficient test approaches in this study.

The rest of the paper is organized as follows. Section 2
briefly introduces the background knowledge of metamorphic
testing for object detectors and Bayesian uncertainty for deep
learning models. Section 3 describes the method workflow
in detail. Experimental Setups are presented in Section 4.
The results and analysis of experiments are explained in
Section 5. Sections 6 and 7 discuss the remained questions
and the validity of the research. Lastly, Section 8 comes to
the conclusion.

2. TESTING OBJECT DETECTION MODELS
2.1. Object detection model

Current object detection models combine deep learning
models with traditional image processing technology. An
object detection model detects the location, contour, classes,
and semantic information of various instances in an image.
To evaluate the quality of an object detection model, it is
necessary to test many aspects that are related to the prediction
results. Our research mainly concentrates on the robustness of
object detection models.

2.2. Testing robustness of deep learning models

Model robustness refers to how much model performance
varies when using new data. Model robustness ensures the
reliability and safety of deep learning models [9]. To ensure
that a model is working as expected, it is critical to monitor
and manage robustness. Therefore, almost all applications and



Figure 1: Synthesizing images by pasting an inserting instance. The
left is the original image. The right with the cellphone pasted is the
metamorphic image.

studies of deep learning models require robustness testing.
Some robustness testing uses adversarial samples [10, 11].
Instead of this approach, we decided to adopt a metamorphic
testing method for our research to test the object detection
models’ robustness in a realistic environment, which simulates
a realistic attack in a production environment. This is because
we aim to open a new research direction to assess the
robustness of models.

2.3. Metamorphic testing

Metamorphic testing is a property-based software testing
technique [12, 13]. It describes and evaluates system func-
tionality through metamorphic relations [14]. A metamorphic
relation ensures that the output keeps consistency between the
original and metamorphic inputs (i.e., whether the predictions
for these inputs remain unchanged). We made such metamor-
phic inputs by inserting various objects into the original inputs
and assessed the consistency. In our research, we discuss the
consistency of predictions based on three aspects of object
detection models as follows:

o Class consistency: The predicted class before and after
the insertions should be the same.

o Localization consistency: The predicted bounding box
(the predicted rectangle containing the instance) should
remain similar in shape and coordinates before and after
the insertions.

« Recognition consistency: The consistency of whether the
model still retains the ability of successful prediction.

The above are the consistencies for all aspects of the prediction
of an object detection model in this study. The metamorphic
relation is kept if all three consistencies are kept; otherwise, it
is broken. When the metamorphic relations of predictions are
broken, the model robustness is degraded.

Metamorphic testing is used to evaluate the performance
of object detectors [4]. They explored the technique of in-
stance segmentation to create a data pool of instances after
extracting high-quality object instances from the images, as
shown in Figure 1'. These instances are inserted into the
original images and combined with the original images to
synthesize new images. Hence, metamorphic relations between
the model predictions are the following: all model predictions
for the metamorphic images (images synthesized by pasting
instances onto the original image during metamorphic testing)
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and the original image (the raw images without the insertion)
should remain equivalent. They [4] use delta-debugging styled
insertion to find locations where the metamorphic relations
are broken. Delta-debugging styled insertion is constantly
bringing the instances closer to the base instance’s bounding
box boundaries to be detected.

The advantage of metamorphic testing is that it reveals
the vulnerabilities of the object detector against interference
under a production environment. This is more relevant in
reality than the other method using adversarial attacks, such
as the Fast Gradient Sign Method (FGSM) [15]. We further
improved the delta debugging-styled insertion using Grad-
CAM [16], considering that many instances have unusual
shapes and are not suitable as reference points merely by their
boundaries. Moreover, to evaluate the model robustness for
a single image without including the accuracy of the entire
dataset, we mainly used two metrics as the evaluation criteria:
Bayesian uncertainty, which is introduced in Section 2.4, and
the failure rate, which is introduced in Section 3.4.

2.4. Bayesian uncertainty

Bayesian uncertainty [7] is derived from Bayesian neural
networks and is used to evaluate the reliability of model
predictions. Bayesian neural networks convert the determined
parameters and predicted outcomes into corresponding prob-
ability distributions, where the variance of these distributions
can be called Bayesian uncertainty. To simplify the complex-
ity of deriving Bayesian uncertainty, the MC Dropout [17]
treats the variance in the probability distribution of the final
prediction outcome as uncertainty. During the model training
process, variance is similarly embedded in the loss function
for training.

Bayesian uncertainty is applied to object detection models
[7]. This study uses a probabilistic model of object detection
to enhance the training effect, improves the overall accuracy
of the bounding box prediction, and obtains fewer incorrect
predictions of class. In our research, we use MC Dropout to
rewrite the YOLO [18], a type of object detection model, into
Bayesian YOLO to derive uncertainty and use uncertainty as
one of the evaluation metrics.

3. OUR APPROACH

3.1. Overview

In this section, we introduce the methods and the mech-
anism of metamorphic testing to evaluate the robustness of
object detection models.

As shown in Figure 2, metamorphic testing performs the
prediction of a series of data characteristics (characteristics of
data that can be explored after the prediction) on test cases and
stores the prediction result into prediction databases, which
record the data characteristics of both successful and failed
test cases detected by metamorphic testing. In our research,
through metamorphic testing of object detection models, we
analyze what data characteristics influence the robustness of
models by evaluating the difference in the prediction uncer-
tainty and failure rate. Moreover, we retrain the failed test
cases to improve the robustness of the object detection model.
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Figure 2: The metamorphic testing workflow: generation of databases of successful test cases and failed test cases.

3.2. Preparation of base and inserting instances

The data in our research are the instances in the image.
In this study, we use two types of instances to synthesize
metamorphic images: base instances and inserting instances.
Base instances are instances to be tested. In all experiments,
the model robustness is evaluated by observing the uncer-
tainty and testing failure rate of the base instance, which are
described later in the section. On the other hand, inserting
instances are extracted from all images in the dataset by the
instance segmentation model YOLACT [19] and pasted onto
the background containing the base instance. Like in Figure 1,
the man is the base instance, and the cellphone placed near the
man is the inserting instance. For the inserting instances, the
following criteria are adopted to extract high-quality inserting
instances for each base instance used for metamorphic testing:

« Instance size: It is necessary to control the size of the
inserting instance compared to the base instance.

o Uncertainty: We use YOLACT to derive the prediction
uncertainty for all instances. Bayesian uncertainty can
be approximately considered as the variance of the cor-
responding classes’ probability distribution or bounding
box localization’s probability distribution in terms of
classification uncertainty and bounding box uncertainty,
respectively. For the following experiments, instances of
different values of bounding box uncertainty and class
uncertainty are used in metamorphic testing to evaluate
the model.

o Scores of the instances (related to the ground truth):
Scores describe the accuracy of the prediction. The
scores of the instances also reflect the accuracy of the
model’s prediction on the instances w.r.t the ground
truth. Similar to the uncertainty, the instances of different
scores are to be used in metamorphic testing. It is

calculated as:
Score = P(inst) * IoU * 100% (1)

P(inst) is the predicted probability of the targeted

instance’ true category or bounding box coordinates. [oU
represents the intersection over the union between the
predicted bounding box and the ground truth bounding
box.

o Semantic similarity: Maintaining a similarity between the
image background and the inserting instance is necessary
for simulating realistic scenarios. We used phash [20], an
image hashing algorithm, to calculate the similarity.

o No occlusions: After recording the coordinates of the
base instance and the inserting instance, the instances
should be prevented from occluding with each other as
much as possible.

For each base instance, the inserting instances are filtered
and chosen by the above criteria; thus, each base instance
corresponds to appropriate inserting instances. Besides, the
uncertainty and scores of instances are considered as the data
characteristics used for research questions, as described in
Section 4.5.

3.3. Determine the location of inserting instances check

We extend a method of delta-debugging styled insertion [4]
to determine the locations of inserting instances: gradually
moving the inserting instances closer to the base instance from
a distance. The existing method [4] determines the locations
merely based on the bounding box, which is not always
correct (e.g., triangular-shaped instances). In our research, it is
noteworthy that CNN-based model prediction shows varying
confidence for each pixel of the image, and the confidence
from all pixels is aggregated to the image as a Grad-CAM
heatmap [16]. Therefore, we use the Grad-CAM heatmap to
better determine the location of insertion.

The delta-debugging styled insertion is used to gradually
shift the instances closer to the contours. As shown in Figure
3, the warm-colored area of the heatmap has a high influence
on predictions, while the cool-colored areas have no influence
at all. We use the edges of the warm regions as contours and
then sample a number of points on the contours. There is a
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Figure 3: Generation of Grad-CAM heatmap’s contours.

point among those sampled points with the closest distance
to the inserting instance, which is the distance between the
contour and the inserting instance. The delta-debugging styled
insertion moves the inserting instances from a very remote
place to the contour, with each time the distances halved (in
a manner like 100%, 50%, 25%, ...).

3.4. Metamorphic testing workflow

In this section, the workflow of metamorphic testing is
introduced.
(1) Prepare a data pool of instances including base and
inserting instances after synthesizing the images.
(2) For each base instance to be tested, the metamorphic
testing generates hundreds of metamorphic synthesized
images, where the insertions are done in a delta-debugging
styled way on different locations on the background of
the images. Therefore, failure rate F). is used to evaluate
how frequently the metamorphic testing for one image fails,
and it is one of the evaluation criteria of the model robustness:

Np
Wa
where N indicates the preset total number of metamorphic
testing on one image and Ny indicates the number of failures
of metamorphic testing on the image.

(3) Use the object detection model to predict all synthe-
sized images and record the predictions (Bayesian uncertainty,
scores) into the prediction databases. Then, compare the dif-
ference with the predicted result of the corresponding original
tested image.

(4) The images that successfully predicted and maintained the
metamorphic relations are classified as successful test cases,
while the images that failed to be predicted or break the
metamorphic relations are classified as failed test cases.

(5) By analyzing the variation of the uncertainty and the
failure rate, metamorphic testing can be used to evaluate
the robustness of the model according to data with different
characteristics. Bayesian uncertainty describes whether the
model has consistent confidence in predicting the same base
instance. The failure rate shows the robustness of the object
detection model against realistic attacks.

Fr = (2)

4. EXPERIMENTAL SETUP

In this section, the experiment settings and two research
questions are introduced.

4.1. Models in use

We use an instance segmentation model to extract the
instances in the first step of metamorphic testing and another

object detection model to conduct the metamorphic testing.

1) Instance segmentation model: YOLACT, the model
used to extract the instances as described in Section 3.2.

2) Object detection model: Bayesian YOLO model, the
model used to be trained, retrained, and derive the
uncertainty and failure rate in metamorphic testing. This
model is also to be retrained in RQ2.

4.2. Data in use

Data in our research refer to instances of two types: base
and inserting instances. At the beginning of metamorphic
testing, we prepare the base instance to be tested (test cases).
Then, we use the criteria as described in Section 3.2 to choose
inserting instances for them. All instances are from the COCO
dataset, containing over 83 thousand train images and 41
thousand test images [8]. There are totally over 180 thousand
instances that can be extracted from COCO test images and are
available to be used as base instances in metamorphic testing.

Each research question uses different base instances (test
cases) for different purposes, which are introduced in the
later sections. Since the configurations in experiments for
choosing the inserting instances are important, we adjust such
configurations for each RQ.

The experiments are conducted on Google Colaboratory
using PyTorch [21].

4.3. Prediction databases in metamorphic testing

After the metamorphic testing, the prediction databases, like
in Figure 4, record the data characteristics such as categories,
uncertainty, scores, and so forth. Prediction databases record
the following information of data:

(1) Firstly, select the base instance whose scores are over
the recognizable threshold (instances’ scores greater than 0.7).
Since the test cases need clear baselines to evaluate the model
robustness in metamorphic testing, we only use the instances
that are steadily detected by the model with scores over 0.70.
Instances whose scores are below the recognizable threshold
can not be steadily detected and provide the baselines for
metamorphic testing. Hence, there are a total of 183,361
instances that can be regarded as tested images.

(2) Then, for each base instance, select its proper inserting
instances from the instance pool by the criteria described in
Section 3.2. For each base instance, there are variable numbers
of available inserting instances for them to synthesize into a
metamorphic image.

(3) Thirdly, conduct delta-debugging styled insertion, which
determines the locations of different distances to the contour
of base instances’ Grad-CAM heatmap central region as
described in Section 3.3. We set five levels of the inserting
location to 0, 12.5%, 25%, 50%, and 100% distances at
levels 1, 2, 3, 4, and 5, respectively. In short, these levels
represent the closeness of insertion locations to the contour.
Testing a base instance conducts 100 times of synthesizing
new metamorphic images for each level, and there are totally
hundreds of times of metamorphic testing on one single image.
After that, the number of failure occurrences is recorded
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Figure 4: RQ1: experiment workflow.

and divided by the preset total number (e.g., 500 times) of
metamorphic testing to calculate the failure rate F,.

The prediction databases record the data characteristics of
all these metamorphic synthesized images. They are used in
both research questions.

4.4. Metrics in use

For most experiments, the model robustness is evaluated by
Bayesian uncertainty Unc, which is introduced in Section 2.4,
and failure rate Fj., which is introduced in Section 3.4.

4.5. Research questions

RQ1. What are the main data characteristics that
influence the metamorphic tested results of the model?

The objective of this study question is to find whether
certain characteristics in metamorphic testing, including un-
certainty and scores, affect the test results of metamorphic
testing. For testing instances with different data characteristics,
the metamorphic relation of the model’s predictions might be
kept or broken. The model shows different robustness against
data with different characteristics, and it deserves investigation
of which data characteristics are more influential.

RQ2. How to improve the robustness of the model
against realistic insertion attack after data augmentation
with failed test cases found in metamorphic testing?

This study question aims to reorganize the training dataset
by data augmentation with metamorphic images and retrain the
model to improve its robustness in a production environment.
Also, in this study question, we focus on the usage of the
data characteristics in RQ1 to improve the effectiveness of
retraining in terms of repairing existing failures and reducing
the occurrence of new failures that do not occur in the
metamorphic testing for the original prediction model, which
is called overfitting.

5. EXPERIMENTAL RESULTS

In this section, the approaches and results of the experi-
ments for each research question are described.

5.1. RQ1. What are the main data characteristics that influence
the metamorphic tested results of the model?

In this section, the influence of different data characteristics
including uncertainty and score is investigated. Uncertainty is
the property of the model that describes the model’s confidence
in the prediction. The score represents the accuracy of the

TABLE I: Average instances’ uncertainty and score of each
preset level. The intervals show the equivalent numerical
intervals divided from the numerical interval from the highest
value and the lowest values. Collected number are the numbers
of instances for each level of uncertainty or score.

The intervals  Average uncertainty Collected number

all instances 2.214 183,361
0% - 20% 1.435 66,872
20% - 40% 1.973 51,634
40% - 60% 2.305 32,308
60% - 80% 2.456 27,860
80% - 100% 2.720 4,687

The intervals  Average scores Collected number

all instances 0.9075 183,361
0% - 20% 0.7623 9,901
20% - 40% 0.8328 23,984
40% - 60% 0.8990 44,355
60% - 80% 0.9251 59,720
80% - 100% 0.9632 45,401

model’s prediction compared with the ground truth values.
Through experiments, it deserves investigation on which is
more influential to model robustness by counting the occur-
rence of failures in metamorphic testing.

Approach: We analyze the relationship between the failure
rate and two data characteristics (uncertainty and scores) of
two types of instances (base instances and inserting instances)
separately. For each experiment, metamorphic images (each
image contains one base instance and several inserting in-
stances) are synthesized by controlling the base instances of
different data characteristics. Then, metamorphic testing on
those different metamorphic images starts. The workflow of
RQ1 is almost the same as the workflow introduced in Section
3, as shown in Figure 4.

1) Preparation of instances: Before the metamorphic test-
ing, we prepare the instance pool for base instances
and their available inserting instances. For instance,
if performing the experiments on low uncertain base
instances, we only synthesize metamorphic images with
the low uncertain base instances. Then, we perform
delta-debugging styled insertion to determine the inser-
tion location. Finally, we synthesize the metamorphic
images from the chosen base instances and insert in-
stances to form a new dataset.

2) Prediction and testing: We feed the new dataset, which
consists of the chosen metamorphic images and the
original tested images, to the object detection model. In
the meantime, the predicted uncertainty, score, and other
information are recorded in the prediction database.

3) Comparative analysis: After obtaining the prediction
databases of metamorphic images and the original tested
images, we can analyze the influence of the data char-
acteristics on the metamorphic relations of prediction.
To evaluate the robustness, we use the failure rate Fi.
as the criteria and compare the difference between the
successful metamorphic testing cases and failed ones
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Lowest

uncertainty Uncertaintyiscore  0-20% 20%-40% 40-60% 60%-80%  80%-100%
0-20% 0.3675 0.2712 0.2478 0.1854 0.1446
20%-40% 0.2581 0.2336 0.2045 0.1832 0.125
40%-60% 0.225 0.2653 0.1729 0.1564 0.05
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Figure 5: RQ1 results of 25 combinations of base instances and
inserting instances. The numbers inside the table are the failure rate
during the metamorphic testing. Each row represents the failure rate
of instances of different numerical intervals of uncertainty. Each
column represents different numerical intervals of scores. In fact,
the amount of the high-uncertain data and low-scored data is small
so there is no data with both high uncertainty and high scores, and
it is acceptable to see some unexpected failure rate for those parts of
the data.

in terms of their data characteristics. The workflow is
demonstrated in Figure 4.

Results and analysis: For all base instances to be tested, we
measure the uncertainty (both bounding box uncertainty and
classification uncertainty) and scores. We computed the bound-
ing box and classification uncertainties for each instance and
found the bounding box uncertainty is a dominant uncertainty
compared to the classification uncertainty after the realistic
insertions. Hence, two types of uncertainty are deemed as one
uncertainty by summing up these two uncertainties instead
of considering them separately. Five levels of uncertainty or
scores are set to separate all instances by their values of
uncertainty or scores, which represent the numerical inter-
vals of their values. Specifically, we divided the range of
uncertainty and scores into five regions from the lowest to
the highest value. For instance, as Table I shows, 0% - 20%
of uncertainty represents the instances that have the lowest
uncertainty (highest confident predictions from the model). 0%
- 20% of scores represent the instances that have the lowest
accuracy compared to the ground truth values.

As shown in Figure 5, there are 25 combinations of levels
to classify instances. We experiment with all 25 combinations
of uncertainty and scores of the base instances and collect the
results of their failure rate F, during metamorphic testing.
Observation of the failure rate change can reveal which
characteristics are more influential to model robustness.

Figure 5 shows that data with lower uncertainty has a higher
failure rate when comparing each row in the same column.
Also, data with high scores have a lower failure rate when
comparing each column in the same row.

About RQ1: There is an obvious relation between the
failure rate, uncertainty, and scores of the base instances.
The instances with low uncertainty, in the metamorphic
testing, have a higher failure rate compared to instances
with high uncertainty. The score shows a negative cor-
relation to the failure rate. High-scored instances are
usually behaving well, whereas low-scored instances
have a higher failure rate. For high-scored instances,
the failure rate tends to be zero, especially when its
instances’ uncertainty is not low.

Synthesizing new images from
the failed data

28-

Retrain dataset

18t metamorphic
testing

Failed dataset

New dataset:
Used for retraining

Original dataset
Successful dataset

Figure 6: RQ2: generation of new training dataset

5.2. RQ2. How to improve the robustness of the model against
realistic insertion attack after data augmentation with failed
test cases found in metamorphic testing?

In this section, we aim to improve the robustness of the
object detection model by retraining the model with failed data
(failed test cases). As shown in Figure 6, we make new training
datasets by adding the failed data with some changes to avoid
failed test cases. Through all experiments, the goal is to find an
appropriate retraining dataset using failed test cases found in
metamorphic testing. We assume that retraining the model with
synthesized images whose insertions are localized onto the
failure locations (location on the background where failures
in metamorphic testing occur) improves the robustness rather
than retraining with images that are synthesized randomly. But
this is an assumption; hence, it is necessary to prove that the
retraining dataset is better at improving the robustness when its
synthesized images are from the failed test cases but randomly
synthesized images.

Approach: Repairing the failures: We aim to find an effective
solution to making training datasets to improve the model
robustness through retraining the model. Figure 6 illustrates
the generation of new training datasets in this study question.
The instances from the images are separated into the successful
dataset and failed dataset, whose images pass or fail the
metamorphic testing in the first time. Then, we synthesize
new training data from the original images of the failed test
cases and their prediction databases. The prediction databases
for the metamorphic testing record the uncertainty, scores of
the metamorphic images’ instances, and the locations where
the failures are triggered. Next, the new training dataset is fed
into the prediction model to retrain. The retraining is done in a
few epochs, with 1,000 to 3,000 epochs by YOLO. Ultimately,
we put the retrained model into the second time metamorphic
testing and see whether the robustness is improved.

Reduction of the overfitting: New failures are detected
during the second time metamorphic testing. It is worthy of
notice that retraining can not always reduce model prediction
failures for all instances. As Table II shows, in all experiments,
there are over 20% (Pr3) of instances whose failure rate is
increased after the retraining. There are probably unremovable
new failures for each tested image. These are called overfitting
for retraining. In the following experiments, we aim to reduce
overfitting by two methods:

1) Clusters are defined as the locations where some failure



TABLE II: Retrain dataset with synthesized images of the different
number of preset failure locations. Each column stands for the
following: Unc: average uncertainty. F.: average failure rate. Pri:
proportions of data with almost no failures. Pra: proportions of data
with fewer failures than the original prediction, excluding Pry. Prs:
proportions of data with more failures than original prediction. The
sum of these proportions equals 1. f and r represent the images
synthesized by how many numbers of inserting instances from the
failure locations (the lower table) or random locations (the upper
table). The baseline row indicates the uncertainty and failure rate
after the first time metamorphic testing before retraining.

Unc F. Prq Pro Prs
Of + 1 2351 0.136 0286 0.322 0.393
Of +2r 2463 0.131 0260 0.339 0.402
Of +3r 2438 0.141 0.250 0.378 0.383
Of +4r 2890 0.150 0.267 0.401 0.333
Of +5r 2692 0.165 0.308 0.328 0.364
baseline 2.314 0.142 - - -

Unc F, Prq Pry Prs
1f+0r 2130 0.133 0.395 0.284 0.325
2f +0r 1.875 0.125 0.351 0.343 0.307
3f +0r 2.027 0.103 0.331 0.405 0.262
4f +0r 2257 0.105 0.233 0493 0274
5f+0r 2325 0.114 0221 0468 0.324
baseline 2.314 0.142 - - -

locations in the test images are located closely. Other
failure locations that do not cluster in test images are
scattered randomly on test images. It is checked in the
experiments to see if retraining with images that are
inserted on the clusters of failure locations can further
erase the new failures.

2) Because we use the data characteristics from prediction
databases (uncertainty and scores) when synthesizing
the image data, we intend to find the instances having
specific combinations of data characteristics that reduce
overfitting.

Results and analysis: As Table II shows, we investigate
the variation of the uncertainty, failure rate, and repaired
failures based on the proportions of instances with fewer
failures. We compare the difference of these values between
the random insertions and insertions on failure locations. It
is obviously shown that retraining with synthesized images
whose insertions on the failure locations performs better
than the random locations. In the table, columns Unc and
F,. show data characteristics, uncertainty, and failure rate.
Columns Pry, Prsy, and Prg separately show the proportions
of data about how the retraining reduces the original failures
in metamorphic testing. Column Pr; is the best and the most
effective part of the data after retraining the model, whereas
Column Prs is the part of data, in which retraining triggers
more failures unexpectedly. Since inserting too many instances
is likely to overlap with the base instance and the other
inserting instances, in order to avoid this issue, a maximum
of five times of insertions onto an image is set for each new
training dataset.

As shown in Table II, the baseline of the failed tested data
is of 2.314 uncertainty and 14.24% failure rate. It is apparent
that the retraining images with randomly localized inserting

instances cause higher uncertainty to the model predictions.
With increasing numbers of random locations, the uncertainty
roars up, which points out the increasing prediction variance.
The proportions of data with more failures increase to 40%
(Column Prsz: Of + 2r in the first table), which is more
than the counterpart in the failure localized insertions (30%
around).

Retraining datasets with synthesized data whose insertions
are localized on the failure locations can improve the model
robustness by lowering the uncertainty from 2.314 to 2.027 and
failure rate from 0.142 to 0.103 (3f + Or in the second table).
The failure rates, as seen in the second table of Table II are
lower than the baseline, which suggests that the model after the
retraining reduces the possible failures than the original model.
Moreover, only increasing the number of failures localized
inserting instances does not have a positive influence, as
seen from the last rows of each table in Table II, on the
improvement of model robustness. To improve the retraining,
it is also crucial to control the number of instances inserted.

As seen in the results, it is inevitable that new failures
occur due to the retraining of the model, which is seen as
overfitting. In the next section, we introduce the results with
the methods to reduce overfitting as described in the approach
in this section.

1. Reduction of overfitting through the choices of failure

locations.
In this method, we focus on the choice of failure locations
of failed test cases. By observing the failed test cases (i.e.,
images), it is found that there are some specific locations on
which the prediction of base instances is more likely to be
affected during the metamorphic testing. Hence, we call a set
of failure locations, which are located near each other, the
cluster of the failure locations. Some of the images with the
clusters are called clusterable data, whereas the others without
the clusters are called the non-clusterable data. In the exper-
iments, for clusterable data, we place inserting instances onto
the failure locations’ cluster rather than randomly choosing
the failure locations, and synthesize the metamorphic images
for retraining. For non-clusterable data, we randomly insert the
inserting instances onto the failure locations. In the preliminary
experiments, it is found that there are 36.4% clusterable data
with 11.4% F;., and 63.6% non-clusterable data with 18.9%
F,.. Tt is investigated throughout all instances in the dataset
about how many new failures occur due to retraining.

As shown in Table III, the overfitting (new failures due
to the retraining) can be alleviated for the clusterable data,
with new failures reduced from 2.66 to 1.84 (new failures
in the second time metamorphic testing for C. and C)).
Additionally, there are 35.4% of the clusterable data retrained,
almost without new failures in the second time metamorphic
testing. On the other hand, the failures of around 15% non-
clusterable data are reduced no matter how the insertions are
located on the images. In contrast, retraining clusterable data
can reduce more failures than retraining non-clusterable data.

2. Reduction of ovefrfitting of data with different character-
istics of instances.

As seen from Table IV, low uncertain base instances show
more repaired failures (3.451 per hundred), and fewer new
failures (0.036 per hundred). This tendency is regardless of



TABLE III: Repairing the failures of the clusterable data and non-clusterable data for all instances of the category animal. The table
demonstrates the changes in uncertainty and the number of failures in the second time metamorphic testing. The first row is the specified
methods of inserting instances. C. is the insertions into the clusters of clusterable data. C.. is the insertions into the random failure locations
of clusterable data. N¢, is the insertions into regions near the contours of non-clusterable data. Ncy is the insertions into regions far from

the contours of non-clusterable data. The baseline represents the average values of all data in the first time of metamorphic testing.

Insertion locations C. C, Nc¢y, Ncey Baseline
1. uncertainty 2.617 2.936 2.072 1.996 2.568

2. total number of failures (among 100) 7.52 1141 8.15 7.43 12.39

3. repaired failures compared to the first time metamorphic testing 3.31 2.57 1.46 1.29 -

4. new failures in the second time metamorphic testing 1.84 2.66 1.62 1.37 -

5. proportions of data whose failures are mostly removed 23.61% 20.12% 25.61% 22.34% -

6. proportions of data with almost no new failures 3540% 19.50% 14.72% 16.88% -

TABLE IV: New failures and repaired old failures for different instances used in second time retraining. Each cell shows the number of
new failures and the parenthesis shows the number of total repaired failures. These numbers are the average numbers in 100 synthesized test

cases.

new failures(repaired old failures)
low uncertain base instance

high uncertain base instance

low score base instance

high score base instance

low uncertain inserting instance
0.036 (3.451)
1.825 (0.875)
1.215 (1.774)
1.657 (2.148)

high uncertain inserting instance
0.052 (3.447)
1.469 (0.924)
1.226 (1.554)
1.832 (1.843)

low score inserting instance
0.842 (3.325)
1.536 (0.843)
2.536 (1.197)
1.317 (1.486)

high score inserting instance
0.151 (2.632)

1.057 (0.617)

2.057 (0.383)

3.057 (2.57)

the uncertainty of inserting instances. Comparatively, high
uncertain base instances generate more new failures (1.825
per hundred) when inserting low uncertain inserting instances.
Also, the number of new failures is larger than repaired
failures.

About RQ2: Retraining the model with the synthesized
images inserted instances from the failure location rather
than from the random location improves the robustness
of the model. However, it is difficult to avoid overfitting.
The low uncertain base instances are more easily repaired
than the high uncertain ones in terms of the reduction
of the old failures and the addition of new failures.
Moreover, to avoid overfitting, it is necessary to make
choices of failure locations and inserting instances.

6. DISCUSSIONS

6.1. About RQI: The relation of failure rate and uncertainty
reflects the latent problems of the models.

The uncertainty can be explained by the prediction of
variance derived from the object detection model itself. Thus,
it is unstable for an object detection model to evaluate ro-
bustness merely by uncertainty. Given our results, the low-
uncertainty instances highly trusted by the model are not
reliable. The instability of the model when predicting low-
uncertainty instances during metamorphic testing shows that
a self-confident model requires further training to improve its
robustness.

In the COCO dataset, the highly uncertain instances were
mostly from images with sophisticated semantic contexts (with
many instances located at every corner). They were not vul-
nerable to realistic attacks during metamorphic testing. Thus,
when retraining highly uncertain instances, the failure rates
for some metamorphic images should be lower than those of
the original tested images. The object detection model shows
unstable predictions for highly uncertain instances.

6.2. About RQ2: Repairing through retraining is effective for
only part of the data.

Model retraining is a commonly used method to improve it.
However, the retraining requires practical solutions. Currently,
the questions discussed in RQ2 relate to the data characteristics
of a realistic attack, such as those in the production environ-
ment. The detection of instances in an image is complex. Some
data improved after retraining, whereas others retained their
failures in metamorphic testing. From the results of RQ2, we
found that the low-uncertainty data, which are highly trusted
by the model, deserve further retraining to improve model
robustness.

7. THREATS AND VALIDITY
7.1. Construct validity

The metamorphic testing requires instances that can be
detected with low uncertainty. Most of the instances to be
tested can be easily detected by the object detection model.
For the undetectable instances with low scores, metamorphic
testing is not effective in improving the robustness of the object
detection model. There remains the issue of how to utilize
the undetectable instances to improve the current metamorphic
testing.

7.2. External validity

Instance insertion in our current metamorphic testing can
not be applied to the dynamic object detection scene, such as
object tracking. The influence of the inserting instance might
have a great difference between static images and dynamic
images (videos). To ensure the validity of metamorphic testing
for object detection, it is necessary to validate our metamor-
phic testing in a dynamic scene.

8. CONCLUSION

In this paper, metamorphic testing to evaluate and im-
prove the robustness of object detection models is discussed.
Metamorphic testing asserts the metamorphic relations of



object detection model prediction to evaluate the robustness.
Our results show that the metamorphic testing reveals the
differences in the robustness of the models due to the input
data characteristics, including the uncertainty and scores. Re-
training the model with data augmentation of failed test cases
improves the model robustness by repairing the failures and
preventing new failures.

In future research, we will find more effective methods to
augment the training dataset to improve the model robustness.
The data characteristics are limited to describing all realistic
scenarios since it is essential to improve the model robustness
for highly uncertain instances.
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