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Abstract—With the prevalence of software systems adopting
neural network models, the quality assurance of these systems has
become crucial. Hence, various studies have proposed repairing
methods for neural network models so far to improve the
quality of the models. While these methods are evaluated by
researchers, it is difficult to tell whether they succeed in all
models and datasets (i.e., all developers’ environments). Because
these methods require many resources, such as execution times,
failing to repair neural networks would cost developers their
resources. Hence, if developers can know whether repairing
methods succeed before adopting them, they could avoid wasting
their resources. This paper proposes prediction models that
predict whether repairing methods succeed in repairing neural
networks using a small resource. Our prediction models predict
repairs and side-effects of repairing methods, respectively. We
evaluated our prediction models on a state-of-the-art repairing
method Arachne on three datasets, Fashion-MNIST, CIFAR-10,
and GTSRB, and found our prediction models achieved high
performance, an average ROC-AUC of 0.931 and an average f1-
score of 0.880 for the side-effects and an average ROC-AUC of
0.768 and an average f1-score of 0.725 for the repairs.

Index Terms—software engineering for AI, neural network,
repair, side-effect

I. INTRODUCTION

An increasing number of software systems have incorpo-
rated neural network models, such as autonomous driving [5],
[8], medical image analysis [9], [12], and programming [4],
[6]. Because of these various software systems, their misbe-
havior may incur serious accidents, such as auto-driving cars
slamming into a truck [1], [2]. Hence, the software engineering
research community has started to study the quality assurance
of neural network models as part of Software Engineering for
AI (SE4AI) [3], [10]. One of the research topics is repairing
neural network models [7], [13], [17], [20], [21], [23]–[25] to
prevent software systems from incurring accidents.

To repair neural network models, various studies proposed
repairing methods [7], [13], [17], [20], [21], [23]–[25]. For
example, Sohn et al. [17] proposed Arachne, repairing neural
networks by adjusting the weights that cause misbehavior
using a search-based approach. Eniser et al. [7] proposed
DeepFault, which identifies suspicious neurons from neural
networks that are responsible for misbehavior and generates
new data samples to repair the models by retraining.

While these repairing methods have been evaluated for each
study, they are not always performing well for all neural net-
work models and datasets because there are external validities,
such as the number of studied datasets being limited. Hence,
failing to repair neural network models may occur (e.g., the

TABLE I: The concept of repairs and side-effects

incorr. (aft.) corr. (aft.)

incorr. (bef.) non-repaired samples repaired samples
(repairs)

corr. (bef.) broken samples
(side-effects) non-broken samples

bef./aft. = a model before/after adopting repairing method
incorr./corr. = incorrectly/correctly predicted

performance of models does not change; a critical issue, such
as fairness problems, occurs). Such failures cost developers
their resources. For example, the time, energy consumption,
and expense of adopting repairing methods come to nothing.

Unfortunately, it is difficult to tell whether repairing meth-
ods will succeed in repairing models before applying them to
models. In other words, developers cannot know whether they
have to apply repairing methods to neural network models in
terms of their cost. If they make this decision before adopting
repairing methods, they could avoid wasting their resource.

In this paper, we conduct the first study to predict whether
repairing methods succeed in repairing neural networks only
using a small resource to support the developers’ decision.
More specifically, we built two types of models; the repair
prediction model and side-effect prediction model. The repair
prediction model predicts repairs indicating that incorrectly
predicted samples become correctly predicted by a repairing
method. We call these correctly predicted samples repaired
samples. The side-effect prediction model, on the other hand,
predicts side-effects indicating that correctly predicted sam-
ples become incorrectly predicted. We call these incorrectly
predicted samples broken samples.

Table I shows the concept of repairs and side-effects in
this study. As shown in the table, we can divide data samples
into four categories; non-repaired samples, repaired samples,
broken samples, and non-broken samples. In other words,
the repair (side-effect) prediction model is a binary classifi-
cation model that predicts whether an incorrectly (correctly)
predicted sample is non-repaired (non-broken) or repaired
(broken). The key idea is to predict not only positive outcomes
(i.e., repairs) of repairing methods but also negative outcomes
(i.e., side-effects). It allows developers to make the decision
based not only on the repaired misbehavior of neural networks
but also on the injected misbehavior by repairing methods.

As the studied repairing method, we use Arachne [17],
a state-of-the-art method. We use fully connected and con-
volutional neural networks as the studied neural networks



and Fashion-MNIST [22], CIFAR-10 [11], and GTSRB [18]
datasets as the studied datasets.

We investigate the following three research questions (RQs)
to propose our prediction models.
RQ1: How different are repaired and non-repaired sam-
ples?
This RQ identifies the differences between repaired and non-
repaired samples for repair prediction. We use four explanatory
metrics (i.e., entropy, Prediction Confidence Score (PCS),
Label Prediction Score (LPS), and loss) to identify the dif-
ferences.
RQ2: How different are broken and non-broken samples?
This RQ identifies the differences between broken and non-
broken samples for side-effect prediction. We use the same
explanatory metrics as RQ1 to identify the differences.
RQ3: To what extent can repairs and side-effects be
predicted?
Given the previous RQs, we found that the repair and side-
effect are predictable by the four explanatory metrics. Based
on these metrics, we build the repair and side-effect prediction
models. We evaluate these models in this RQ.

We revealed that (1) the repaired and non-repaired samples
and the broken and non-broken samples are distinguishable
by the studied four explanatory metrics; (2) our prediction
models achieved high performance, an average ROC-AUC of
0.931 and an average f1-score of 0.880 for the side-effects
and an average ROC-AUC of 0.768 and an average f1-score
of 0.725 for the repairs.

II. RELATED WORK

In recent years, as neural networks have been incorporated
into practice, many studies have been conducted to repair the
misbehavior of the model [7], [13], [17], [20], [21], [23]–[25].

Sohn et al. [17] proposed Arachne, directly correcting the
weights related to the misbehavior of deep neural networks by
a search-based approach. Arachne takes as input an original
model, which is a trained neural network model that misbe-
haves, and outputs a patched model in which the weights that
cause the original model to misbehave are corrected, as shown
in the upper part of Figure 1. Arachne is the studied repairing
method in this paper because it is a state-of-the-art method.

Arachne consists of two phases: localization and patch
generation. The localization phase identifies the suspicious
weights to be corrected. The authors propose bidirectional
fault localization that identifies the suspicious weights that
have a high impact on the output and are responsible for the
misbehavior. The patch generation phase uses Differential
Evolution (DE) [19] to correct the localized weights. DE
is a population-based optimization algorithm that iteratively
searches for candidate solutions with a higher value of a fitness
function. In the DE implemented in Arachne, the candidate
solution is the vector consisting of the weight values identified
in the localization phase. The fitness function is computed
using the loss value when the candidate solution is set to the
identified weights. Arachne corrects the suspicious weights by
iteratively generating new candidate solutions and computing
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Fig. 1: The overview of our approach

the fitness function. The advantage of Arachne is that it can
repair models without having to generate new data samples
and retrain them.

Tokui et al. [20] proposed NeuRecover, a repairing method
of deep neural networks using training history. NeuRecover
has two phases similar to Arachne (localization and patch gen-
eration phases) and uses a search-based approach to generate
the patch. However, this method differs from Arachne in that
it uses training history to suppress side-effects.

Therefore, it is an important research direction to focus
not only on the positive outcomes of repairing methods but
also on the negative outcomes. Our study aims to characterize
and predict these positive and negative outcomes (i.e., repairs
and side-effects) before adopting repairing methods, giving
developers a hint of whether they should adopt these methods.

III. EXPERIMENTAL SETUP

A. Overview

Figure 1 shows the overview of our approach. To build
and evaluate our repair and side-effect prediction models, we
conducted the following steps: (i) training original models to
be repaired, (ii) making repair and side-effect datasets that
have repaired and non-repaired samples and broken and non-
broken samples, respectively, based on the prediction results



TABLE II: Top-3 frequent faults (The number in each cell
represents the number of samples misclassified, and in paren-
theses represents the correct label → predicted label.)

dataset fault1 fault2 fault3

FM 62 (6 → 0) 48 (0 → 6) 27 (2 → 4)
C10 175 (3 → 5) 156 (5 → 3) 89 (1 → 9)

GTSRB 30 (17 → 38) 23 (27 → 2) 22 (26 → 25)

of the original and patched models, and (iii) building repair
and side-effect prediction models using repair and side-effect
datasets. In Figure 1, the part annotated with Roman numerals
is the output of each step. We describe the details of them
below.

B. Training original models

Our study uses the same three image classification datasets
(studied datasets) as those studied in Arachne [17]. For each
studied dataset, we train one original model used in Arachne.
Each studied dataset has a training and test set, and we use the
entire training set to train the original models, and the entire
test set to apply Arachne to the original models to repair their
weights. The details of these models and our experimental
results are all available as our replication package.1

Fashion-MNIST [22]. Fashion-MNIST (FM) is a dataset for
the classification of fashion images. Each sample is a 28x28
grayscale image and corresponds to a category of fashion
images; a label is a number from zero to nine representing
a category. This dataset has 60,000 training samples and
10,000 test samples. The corresponding model consists of two
convolutional layers followed by two fully connected layers.
CIFAR-10 [11]. CIFAR-10 (C10) is an image dataset for 10-
class classification. Each image is 32x32 in size and has three
channels (i.e., RGB). This dataset has 50,000 training and
10,000 test samples. The corresponding model consists of four
convolutional layers followed by three fully connected layers.
GTSRB [18]. GTSRB is a traffic sign image dataset for the
automatic recognition of traffic signs. Each image has three
channels (i.e., RGB) and is resized to 48x48 to use the same
model used in Arachne. This dataset has 43 labels in total,
such as speed limit and stop signs. This dataset has 39,209
training samples and 12,630 test samples. The corresponding
model consists of three convolutional layers followed by two
fully connected layers.

C. Making repair and side-effect datasets

In our experiments, we make two types of datasets: a
repair dataset and a side-effect dataset as the history of
applying Arachne to original models. This section describes
the procedure for making these datasets. The Arabic numerals
in Figure 1 correspond to the procedure described below.
(1) Apply Arachne to original models. Arachne is applied
to original models to repair their faults using the test set
of studied datasets. Here, faults indicate the cases where
original models incorrectly predict the labels of samples.

1https://doi.org/10.5281/zenodo.7329278

Because Arachne in the original paper concentrates on the
most frequently appearing top-3 faults, we also used top-3
faults as the studied types of faults. Table II shows the type of
top-3 faults and their frequency. For example, in the model in
the FM dataset, the most frequent fault is to classify samples of
the label of six into zero (62 samples). We get nine patched
models (three studied datasets and three types of faults) by
Arachne using the algorithm as described in Section II.
(2) Verify repairs and side-effects. The original and patched
models predict the samples in the test set of studied datasets.
Based on whether the predictions of the original and patched
models are correct, the data sample is divided into four
categories as shown in Table I. The repair dataset consists of
repaired and non-repaired samples (the second row in Table I),
and the side-effect dataset consists of broken and non-broken
samples (the third row in Table I).
(3) Compute metrics. In the repair and side-effect datasets,
we also compute and store four explanatory metrics for each
sample. Our repair and side-effect prediction models use these
metrics to distinguish repaired samples in the repair dataset
and broken samples in the side-effect dataset. We describe the
details of these metrics in Section III-D1.

D. Building repair and side-effect prediction models

1) Explanatory metrics: We use four explanatory metrics
since we assume that repairs and side-effects can be predicted
using confidence and ambiguity of the model’s output. These
metrics are calculated given an original neural network model
M , a sample x, and its ground truth label y.
Entropy. Entropy indicates the ambiguity of the prediction.
We use the well-known Shannon entropy [16].

Entropy(x,M) = −
∑
i∈C

(Px[i] ∗ logPx[i]) (1)

where Px[i] means the prediction probability that the model
M predicts that x belongs to label i. C is the set of labels.
PCS (Prediction Confidence Score). PCS [26] is the dif-
ference between the highest prediction probability and the
second-highest prediction probability. The closer this value is
to one, the more confident the model is in its prediction, and
the closer it is to zero, the less confident the model is in its
prediction. The PCS for a sample x of a model M is defined
as follows;

PCS(x,M) = Px[cpred]− max
i∈C\cpred

Px[i] (2)

where cpred is the label predicted by M , which is the label
with the highest prediction probability.
LPS (Label Prediction Score). We named LPS the predicted
probability for the ground truth.

LPS(x, y,M) = Px[y] (3)
Loss. Loss is the value of the loss function during prediction,
and we use categorical cross entropy [14] as the loss function
since the model is for multi-class image classification.

Loss(x, y,M) = CategoricalCrossEntropy(x, y,M) (4)

https://doi.org/10.5281/zenodo.7329278


2) Procedure: We build the repair and side-effect prediction
models using these explanatory metrics as independent vari-
ables and repaired or non-repaired (broken or non-broken) as
the label in the repair (side-effect) datasets. First, we perform
undersampling to balance the numbers of samples since the
distribution of the label of the repair and side-effects dataset
is imbalanced. As a result, the repair dataset has 402, and the
side-effect dataset has 580 samples for each label. Second, for
each of the repair and side-effect datasets, 80% of the samples
are used to train and validate the model through 5-fold cross-
validation to tune the hyperparameters of the repair and side-
effect prediction models. The remaining 20% is the test set.
We use three modeling techniques: logistic regression (LR),
random forest (RF), and LightGBM (LGB). We also use five
criteria to evaluate the prediction performance of the repair
and side-effect prediction models: accuracy (acc.), precision
(pre.), recall (rec.), f1-score (f1.), ROC-AUC, and PR-AUC.

IV. RESULTS

A. RQ1: How different are repaired and non-repaired sam-
ples?

Motivation and Approach. We investigate how repaired and
non-repaired samples differ in four explanatory metrics. We
compare their distribution of metrics in the repair dataset. To
depict the distribution of each metric, a box-cox transformation
[15] and standardization are applied to each metric.
Results. Figure 2 shows the distribution of four explanatory
metrics for repaired and non-repaired samples. The x-axis
shows the repaired (True) or non-repaired (False) samples, and
the y-axis shows the transformed (not actual) values of each
metric.

Confidently incorrectly predicted samples are difficult
to be repaired. The distribution of PCS for repaired and non-
repaired samples are the opposite; non-repaired samples tend
to have a higher PCS, but repaired samples tend to have a
lower PCS. The more confident the model is in predicting
the sample, the more difficult it is to repair the sample. In
addition, non-repaired samples tend to have a lower LPS. In
other words, the prediction probability for the correct label
is low. From this, we can see that non-repaired samples are
in which the model is confident in its predictions despite the
model’s mistake. The loss tends to be lower for the repaired
samples than for the non-repaired samples. On the other hand,
it is difficult to find a clear trend in the entropy.

Summary of RQ1

Non-repaired samples are the case where the model
confidently incorrectly predicts, with high PCS and
low LPS. On the other hand, repaired samples are
the case where the model less confidently incorrectly
predicts but has lower loss and higher LPS.
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B. RQ2: How different are broken and non-broken samples?

Motivation and Approach. In this RQ, we conduct the
same approach for broken and non-broken samples instead of
repaired and non-repaired ones. We compare their distribution
of metrics in the side-effect dataset.
Results. Samples in which the model’s prediction is am-
biguous are likely to be broken when adopting Arachne.
Figure 3 shows the distribution of four explanatory metrics
for broken and non-broken samples. Broken samples tend to
have higher entropy and loss compared to non-broken samples.
Entropy represents the ambiguity of prediction, and our loss
function includes a type of entropy. Thus, samples in which
the model’s prediction is ambiguous are more likely to be
broken when adopting Arachne. PCS and LPS are high for
both broken and non-broken samples because samples in the
side-effect dataset are originally correctly predicted; in other
words, the models confidently predict them.

Summary of RQ2

Broken samples are likely to be ambiguously predicted
by the model and have high entropy and loss. PCS and
LPS are ineffective for distinguishing between broken
and non-broken.



TABLE III: Prediction results of the repair prediction models

model acc. pre. rec. f1. ROC-AUC PR-AUC

LR 0.727 0.720 0.720 0.720 0.779 0.746
RF 0.723 0.695 0.771 0.731 0.774 0.724

LGB 0.715 0.684 0.771 0.725 0.752 0.696

Avg. 0.722 0.700 0.754 0.725 0.768 0.722

The bolded numbers indicate the model with the best value for each metric.

TABLE IV: Prediction results of the side-effect prediction
models

model acc. pre. rec. f1. ROC-AUC PR-AUC

LR 0.888 0.858 0.924 0.890 0.936 0.901
RF 0.874 0.854 0.894 0.874 0.931 0.874

LGB 0.874 0.839 0.918 0.876 0.925 0.870

Avg. 0.879 0.850 0.912 0.880 0.931 0.882

The bolded numbers indicate the model with the best value for each metric.

C. RQ3: To what extent can repairs and side-effects be
predicted?
Motivation and Approach. Given RQ1 and RQ2, we found
that the studied metrics distinguish between repaired/broken
samples and non-repaired/non-broken samples. In this RQ, we
build and evaluate our repair and side-effect prediction models
as described in Section III-D.
Results. Table III and IV show the prediction results for the
repair and side-effect prediction models in the test set.

All evaluation criteria of the side-effect prediction model
are above 0.850 on average. We believe this is good per-
formance for an initial model. This high performance is be-
cause the four explanatory metrics can distinguish broken/non-
broken samples, as confirmed in RQ2. For all evaluation
criteria, the LR model showed the best values.

The repair prediction model achieves an average of 0.700
to 0.768, less than the side-effect prediction model. From
Table III and IV, we can see that distinguishing repaired/non-
repaired samples is more difficult than broken/non-broken
samples. This result is due to the difference in the distribution
of the four explanatory metrics shown in Figure 2 and 3.
These metrics for repaired/non-repaired samples overlapped
more than broken/non-broken samples resulting in difficulty
distinguishing repaired/non-repaired samples.

Summary of RQ3

The side-effect prediction model can tell broken/non-
broken samples with high performance, especially an
average ROC-AUC of 0.931 and an average f1-score
of 0.880. The repair prediction model, on the other
hand, can tell repaired/non-repaired samples with an
average ROC-AUC of 0.768 and an average f1-score
of 0.725. Hence, predicting repaired samples is more
difficult than predicting broken samples.

V. THREATS TO VALIDITY

Internal Validity. We used only four metrics, entropy, PCS,
LPS, and loss, as explanatory variables for the repair and

side-effect prediction models; however, this may not be suf-
ficient. Other explanatory variables, such as the variance of
the predicted probability and the quantities of information in
the data itself, may be effective for repair and side-effect
prediction. The number of samples of the repair and side-
effect datasets is limited to 804 and 1,160, respectively. It is
due to the undersampling described in Section III-D2. Our
results can be more reliable by increasing the number of
samples (e.g., considering faults after top-3) in the repair and
side-effect datasets. The number of folds for cross-validation
when training repair and side-effect prediction models are
set to five, but there is no strong evidence for this. It is
worth considering increasing the number of folds or using
alternatives such as bootstrap sampling for training.
External Validity. We used Arachne as a state-of-the-art
repairing method, but many other methods exist. Further
research is needed to investigate its applicability to other
repairing methods. We used three image datasets in the ex-
periments. For future work, we need to apply our method to
classification tasks for datasets other than image datasets (e.g.,
natural language datasets). When training the original model
described in Section III-B, the hyperparameters of the original
model were manually adjusted without having the validation
set. Therefore, it is necessary to investigate whether similar
results can be obtained for a well-tuned neural network model.

VI. CONCLUSION AND FUTURE WORK

In this study, we investigated the differences between re-
paired and non-repaired samples and broken and non-broken
samples when adopting a repairing method, Arachne, in terms
of four explanatory metrics (i.e., entropy, PCS, LPS, and loss).
Because of the cost of adopting Arachne, we built lightweight
models that predict whether repairs and side-effects occur,
called the repair and side-effect prediction models. The exper-
imental results showed that the side-effect prediction model
achieves an average ROC-AUC of 0.931 and an average f1-
score of 0.880; the repair prediction model achieves an average
ROC-AUC of 0.768 and an average f1-score of 0.725.

Our goal is to reduce costs for deep learning model de-
velopers by building repair and side-effect prediction models
that can handle multiple repairing methods. Hence, we plan
to extend the experiment as follows: (1) Compare multiple
repairing methods. (2) Use not only traditional models but
also state-of-the-art models as repair and side-effect prediction
models. (3) Evaluate the outcome of the repair and side-effect
with more evaluation criteria, such as the execution cost, the
robustness, and the fairness of the repaired/broken samples.
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