
Poster: Conquering Uncertainty in Java Programming
Takuya Fukamachi∗, Naoyasu Ubayashi∗, Shintaro Hosoai∗ and Yasutaka Kamei∗

∗Kyushu University
Fukuoka, Japan

Email: {fukamachi@posl.ait, ubayashi@ait, hosoai@qito, kamei@ait}.kyushu-u.ac.jp

Abstract—Uncertainty in programming is one of the challeng-
ing issues to be tackled, because it is error-prone for many
programmers to temporally avoid uncertain concerns only using
simple language constructs such as comments and conditional
statements. This paper proposes ucJava, a new Java programming
environment for conquering uncertainty. Our environment pro-
vides a modular programming style for uncertainty and supports
test-driven development taking uncertainty into consideration.

I. INTRODUCTION

Uncertain concerns can appear in all software development
phases: uncertain user needs in requirements analysis, vague
architectural decisions in design modeling, and alternative
algorithms in programming. Recently, uncertainty has attracted
a growing interest among researchers [1]. However, uncer-
tainty in programming has not been well explored. Assume
the following situations: 1) uncertain whether a portion of a
program is really needed or should be replaced by other code
in terms of refactoring; 2) uncertain which algorithm should be
adopted to realize performance requirements, and 3) uncertain
which code is finally used because of changeable stakeholder
requirements. We have to temporally comment out the target
statements to skip an uncertain concern, insert a superfluous if
statement to be able to select an alternative uncertain choice,
or use conditional compilation with preprocessor directives.
After that, we have to test the program. These comments,
conditional statements, and preprocessor directives make diffi-
cult to understand the program code, because they impede the
separation of concerns in terms of modularity. The exploratory
modification process may be repeated again and again until all
uncertain concerns are fixed. If an uncertain concern cross-cuts
over multiple places in a program, the number of comments or
conditional statements increases and the version control of the
modified code becomes tremendously difficult. Moreover, we
may have to return all of the modified portions to the original
code or one of the final decided code if the uncertain concern
is fixed to be certain. This task is tedious and error-prone. It
may become a cause of a meaningless defect. We consider
that many programmers have an experience of encountering
this kind of problems. Currently, we have neither any method
nor tool for conquering uncertainty.

One of the reasons why uncertainty cannot be dealt with
in current programming languages is that the state-of-the-art
module mechanisms do not regard an uncertain concern as a
first-class pluggable software module. If uncertainty can be
dealt with modularly, we can add or delete uncertain concerns
to/from code whenever these concerns appear or disappear.

This paper proposes ucJava, a Java programming envi-
ronment for conquering uncertainty, that provides a modular
programming style for uncertainty and supports test-driven
development taking uncertainty into consideration.

II. OVERVIEW OF UCJAVA

We extend Archface [5], [6], an interface mechanism among
models and programs, to support uncertainty. Currently, we
are proceeding a research project “Model-Driven Development
Embracing Uncertainty” under the support of the Grant-in-aid
for Scientific Research in Japan [2]. Archface plays an impor-
tant role in this project, because we can explicitly describe
uncertainty in requirements, design models, and programs. In
this paper, we focus on uncertainty in programming.

A. Uncertainty as Pluggable Interface

Archface, which supports component-and-connector archi-
tecture, consists of two kinds of interface, component and
connector. The former is the same with ordinary Java interface
and the latter defines the message interactions among compo-
nents. A connector is specified using the notation similar to
FSP (Finite State Processes) [4]. An Archface definition of the
Observer pattern is shown in List 1.
[List 1] -- Java & FSP-like Syntax
01: interface component cSubject {
02: public void addObserver(Observer);
03: public void removeObserver(Observer);
04: public String getState();
05: public void setState(String);
06: public void notify();
07: }
08:
09: interface component cObserver {
10: public void update();
11: }
12:
13: interface connector cObserverPattern
14: (cSubject, cObserver){
15: cSubject = (cSubject.setState->cSubject.notify
16: ->cObserver.update->cSubject.getState->cSubject);
17: cObserver = (cObserver.update->cSubject.getState
18: ->cObserver);
19: }

As a representative work, a method for expressing uncer-
tainty using a partial model is proposed in [1]. We apply this
idea to ucJava. A partial model is a single model containing
all possible alternative uncertain designs and is encoded in
propositional logic. We can check whether or not a model
including uncertainty satisfies some interesting properties.

In ucJava, uncertainty is introduced modularly by extending
the existing interface as illustrated in Figure 1. The symbols{}

and
[]

represent alternative and optional, respectively.

!"#$$%&"'

()*'+,%-).

/+*01%*'

2'+,%-).

/+*01%*'
!"#!$%&

20'*3

20'*3

!"#$$%&"#$$'%

!"#$%&'()*#+,')-"$./01%

!"#$%2+&'()*#+,')-"$./01%

(

4%5%.267'.

89:'.*0'*3-)$.*'+,%-).;.#)*'+,%-).<',067=

!"#$$%&"#$$'%

!"#$%&'()*#+,')-"$./01%

!"#$%2+&'()*#+,')-"$./01%

(

4%5%.267'

89:'.*0'*3-)$.6)"9.*'+,%-).<',067=

2'+,%-).

/+*01%*'

Fig. 1. Pluggable Uncertainty

This notation, which is inspired from software product lines
[7], can have an expressive power equal to a partial model.
If a programmer doubts whether or not notify is really
needed for understandability, he or she only has to change
Archface as shown in List 2. It is also uncertain which of
removeObserver or deleteObserver should be de-
fined; and whether notify is called from setState.
[List 2]
01: interface component uSubject extends cSubject {
02: public void {removeObserver(), deleteObserver()};
03: [public void notify();]
04: }
05:
06: interface connector uObserverPattern
07: extends ObserverPattern(cSubject, cObserver) {
08: cSubject = (cSubject.setState-> [cSubject.notify]
09: ->cObserver.update->cSubject.getState->cSubject);
10: }

B. Type Checking in ucJava

Uncertainty is a target of compilation in ucJava whose type
checker verifies not only the conformance of a Java program
to its Archface but also the consistency among components
and connectors. The ucJava compiler generates a partial model
from Archface definitions and verifies whether a Java program
is an instance of the partial model. In List 2, type check
is passed if a Java program corresponds to either of the
following: 1) notify is defined and is called in the pro-
gram; 2) notify is not defined; 3) both deleteObserver
and removeObserver are defined and either of them is
called in the program; or 4) either deleteObserver or
removeObserver is defined and is called in the program.
Otherwise, type checker generates an error. In case of List
2, we can continue the development regardless of whether or
not notify is defined, because there are no inconsistencies in
the Archface definition. We can make a program without using
comments or conditional statements even if uncertain concerns
are contained in the program. We have only to declare an
uncertain Archface and implement it.

C. Test-Driven Development with Uncertainty

Unfortunately, unit testing tools such as JUnit cannot be
applied without making extra test cases taking optional and
alternative into account. We cannot reuse the original test
cases and the modification of test cases occurs whenever the
specification of uncertainty is changed. This rework is repeated
again and again until uncertain concerns disappear.

To deal with this problem, original test cases are auto-
matically modified in ucJava using AspectJ to test uncertain
methods as illustrated in Figure 2. The call to an optional
method can be skipped and the call to a method defined in the
original test case can be replaced by an alternative method. In

!

"#$%%!&'%&(#$%%)!

*+'%&!

,-./!&'%&($%'01)!

!"#$%&'("$)*+,-./

0/

1$&'%2("$)*+,-./

0/

%2$"#'%$&3"("$)*+4,-./

0/

2/

2

!"#$%&'()%&*+)(!

.3&'45$"'!"-67-3'3&!52%66)!

!"#$%&'("$)*+,-./

2!

!

.3&'45$"'!83"'4&$.3!752%66!

!"#!$%&'52%66)!

8*1$&*'%2("$)*+,-.9/

:%2$"#'%$&3"("$)*+4,-;/

%2$"#'%$&3"("$)*+<,-;/

%2$"#'%$&3"("$)*+=,->./

2

,-./0+.(

!"#$%&'&()*+,

-&$./(&%0&12+3

!"#$%&'()+12$)(&

%2$"#'%$&3"("$)*+<,-
3(4(.%&%/(&%()%&&%+-5(%&6(%/71

!"#$"

Fig. 2. Automated Test Case Generation and Execution

!"#$%&#'(&)& Code

(*+,- Test Case

*+#'"-&,+./$,#$.&012",-$3.4$2506.

7'.&628-'6.

9!0-'"+&:)';

*+#'"-&,+./$'-$'".-$,4.3'-$26.,4.54'6.

9<8:2+&0;

!5-2=1'+'"&:2+

!"#$"

82,+-#5-
82,+-#5-

!"#$%&#'.>?8'.@$'#A,+1
B'0'#-.-$'.-'4-.-&"1'-.3'-$26

Fig. 3. Programming and Testing in ucJava

this case, around advice is used. All possible test cases can
be covered automatically.

D. Example

Assume that a performance issue “sort has to be performed
within one second” is tested using a given data set and there
are three sort programs: bubble, merge, Java Collections.sort.
It is uncertain which algorithm should be selected. Figure
3 illustrates the programming and testing in ucJava. In this
example, uncertainty is fixed by selecting an algorithm that
satisfies the performance constraint.

III. CONCLUSIONS AND FUTURE WORK

The ucJava programming environment is the first result of
our ongoing project “Model-Driven Development Embracing
Uncertainty”. As the next step, we plan to pursue the follow-
ing research items: 1) support of uncertainty in requirements
and design modeling; 2) empirical studies using OSS projects;
and 3) support of concolic testing [3], a hybrid verification that
performs both symbolic execution and concrete testing.

REFERENCES

[1] Famelis, M., Salay, R., Chechik, M.: Partial Models: Towards Modeling
and Reasoning with Uncertainty, In Proceedings of the 34th Interna-
tional Conference on Software Engineering, pp.573-583, 2012.

[2] Grants-in-Aid for Scientific Research, http://www.jsps.go.jp/english/e-
grants/index.html, 2014.

[3] Koushik, S., Marinov, D., and Agha, G.: CUTE: A Concolic Unit Testing
Engine for C, In Proceedings of the 13th ACM SIGSOFT international
Symposium on Foundations of Software Engineering, pp.263-272, 2005.

[4] Magee, J. and Kramer, J.: Concurrency: State Models & Java Programs
second edition, Wiley, 2006.

[5] Ubayashi, N., Nomura, J., and Tamai, T.: Archface: A Contract Place
Where Architectural Design and Code Meet Together, In Proceedings of
the 32nd International Conference on Software Engineering, pp.75-84,
2010.

[6] Ubayashi, N., Ai, D., Li, P., Li, Y., Hosoai, S., and Kamei, Y.:
Abstraction-aware Verifying Compiler for Yet Another MDD, In Pro-
ceedings of the 29th International Conference on Automated Software
Engineering, pp.557-562, 2014.

[7] Zhang, H. and Jarzabek, S.: XVCL: A Mechanism for Handling Variants
in Software Product Lines, Sci. Comput. Program., vol.53, no.3, pp.381-
407, 2004.

