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Abstract—Practical guidelines on what code has better quality
are in great demand. For example, it is reasonable to expect
the most complex code to be buggy. Structuring code into
reasonably sized files and classes also appears to be prudent.
Many attempts to determine (or declare) risk thresholds for
various code metrics have been made. In this paper we want
to examine the applicability of such thresholds. Hence, we
replicate a recently published technique for calculating metric
thresholds to determine high-risk files based on code size (LOC
and number of methods), and complexity (cyclomatic complexity
and module interface coupling) using a very large set of open
and closed source projects written primarily in Java. We relate
the threshold-derived risk to (a) the probability that a file would
have a defect, and (b) the defect density of the files in the high-
risk group. We find that the probability of a file having a defect is
higher in the very high-risk group with a few exceptions. This is
particularly pronounced when using size thresholds. Surprisingly,
the defect density was uniformly lower in the very high-risk
group of files. Our results suggest that, as expected, less code is
associated with fewer defects. However, the same amount of code
in large and complex files was associated with fewer defects than
when located in smaller and less complex files. Hence we conclude
that risk thresholds for size and complexity metrics have to be
used with caution if at all. Our findings have immediate practical
implications: the redistribution of Java code into smaller and less
complex files may be counterproductive.

Index Terms—Software metrics; Thresholds; Defect models;

I. INTRODUCTION

There has been a considerable amount of research in the
field of software defect prediction, especially in the last
decade. Over 100 papers have been published just from 2000
- 2011 in this area of Empirical Software Engineering (ESE)
research alone [16, 27]. The primary goal of such research is
to be able to provide guidelines to practitioners on what kind
of code has better quality. This goal has two purposes: (a)
identifying the metrics that are most useful for the practitioner
(often usefulness is measured by how accurately the metrics
identify bad code, how easy is it to collect the metrics, and
how actionable the metrics are), and (b) what values of these
metrics indicate good code or bad code.

We focus on the second purpose. In particular, over the last
30 years, many publications investigated “best” values for the
various software metrics. Among other methods, thresholds
were derived based on experience [8, 23, 25], analysis of the

metrics themselves [11, 14], error models [6, 10, 26], cluster
techniques [22, 34], and metric distributions [31, 32].

Almost all of these approaches treat extreme values of file
metrics as detrimental. Defect prediction approaches that use
a linear statistical model, conclude that an extreme value of
the metrics implies poor quality of code, by virtue of choosing
such a model. For example, ‘larger files will have more de-
fects’ is a common refrain in ESE research [15]. Alternatively
the “Goldilocks Principle” suggests that extreme values of a
metric are a sign of poor quality code [17, 18]. Fenton and
Neil provide a more comprehensive list of research studies
with respect to metrics based defect prediction [12]. They
find that the literature has contradictory evidence regarding
the relationship between software defects and software metrics
like size and complexity. It is, thus, unclear if metric thresholds
should be used to identify source code files that are at high
risk.

Consequently, we aim to observe if a consistent relationship
between metric thresholds and software quality is present in
OSS and industrial projects. Therefore we conduct a case
study on three OSS and four industrial projects. The metrics
that we choose to evaluate are size based (Total LOC in
a file, and Module interface size in a file), and complexity
based (cyclomatic complexity and module inward coupling).
We evaluate software quality using two criteria - (a) defect
proneness (probability of a file having a defect), and (b) defect
density (the number of defects/LOC).

We replicate the most recently published state-of-the-art
technique (proposed by Alves et al. [3]) to determine the
thresholds for these metrics, and found them to be very close
to ones reported earlier. In order to use this approach, we
need a set of projects to calculate the thresholds from. In
their paper Alves et al. [3] use 100 Java and C# systems.
In our paper we use 1,000 OSS Java projects (from a pool of
more than 20K OSS Java projects) to calculate the thresholds
for the OSS projects and 200+ industrial systems to calculate
the thresholds for the industrial projects. Our results would
be similar with alternative, simpler approaches to set the
thresholds, but we prefer to use the state-of-the-art technique
to ensure that the thresholds are set in the most appropriate
manner. We evaluate software quality using two criteria - (a)
defect proneness (probability of a file having a defect), and



(b) defect density (the number of defects/LOC). For reasons
listed in Section II-A, we consider Java projects in this case
study, and thus our findings relates only to Java files.

On replicating the approach proposed by Alves et al. [3]
for determining thresholds in our case study, we make the
following key observations:

« Files identified as very high-risk by size and complexity
thresholds were associated highest fault-pronenes.

« Files identified as very high-risk by size threshold were
several times more fault-prone than files identified as very
high-risk by complexity threshold.

« Files identified as very high-risk by size threshold have a
lower (often significantly lower) defect density than the
remaining files.

« In some cases files identified as very low risk by size and
complexity threshold had a low defect density value as
well. In these cases the files with medium to high risk
size and complexity values had the highest defect density
(which is contradictory to the “Goldilocks Rule”).

These findings confirm earlier results that the size bench-
marks are associated with high defect-proneness. They also
indicate that the size is a better threshold of defect-proneness
than complexity. Defect density (in contrast to defect-
proneness) tends to be the lowest in the files benchmarked
as high-risk, yet we could not confirm earlier suggestions that
the smallest files always have the highest fault density or the
“Goldilocks rule”. In summary, we found that the thresholds
have to be used with caution, if at all.

Paper organization. Follows: Section II describes the data
that we use in our case study. Section III presents the technique
that we use to determine the thresholds for the metrics.
Section IV presents the design of our experiments. Section V
presents the results of our experiments and the discussion
about the results. In Section VI, we present the related research
on ways to determine the thresholds for metrics, and on the
veracity of metric thresholds. Section VII presents the threats
to validity, and finally Section VIII presents our conclusions.

II. DATA SOURCES

In this case study, we analyzed both OSS and industrial Java
software projects. We describe the data that we used in our
case study below. This section is further subdivided into two
subsections - one for describing the projects that were used
to calculate the thresholds, and one for describing the projects
that we used to determine the relationship between thresholds
and defects.

A. Software Projects used for Calculating Thresholds

In the case of the industrial projects we calculated the
thresholds from 205 industrial Java software projects also
from Avaya. In the case of the OSS projects we use the
dataset collected by Mockus [24]. Mockus created this dataset
from several forges such as git.kernel.org, SourceForge, Post-
greSQL, GitHub and so on. This dataset contains more than
125K software projects (in C, C++, C#, Java etc.). We ex-
tracted 22,956 Java projects from this dataset. We chose to

only extract Java projects for 2 reasons - (a) A lot of open
source and industry projects are written in Java, and (b) We
wanted to control for language context, as Java may have some
specific effects on file size. The use of a single language
excludes the possibility that our results were affected by
the thresholds potentially having opposite effects in different
languages. We only included those Java projects that had 200
or more files in our case study to exclude very small projects.
Other investigations we have done (beyond the scope of this
paper) suggest that a much higher percent of projects in the
forges with fewer than 200 files appear to be not real software
development projects. Therefore, we were left with 4,575 Java
projects in the end.

B. Software Projects with Defect Data

Although we have this large set of projects to calculate the
thresholds, we do not have defect data for them. Hence, we
collected defect data in three OSS and four industrial (from a
telecommunications company, Avaya) Java software projects.
The three OSS projects are - Eclipse, Mylyn, and Netbeans.
Eclipse and Netbeans are IDEs for writing Java code, while
Mylyn is a plugin for Eclipse used in task management. All
three projects have been used in many software engineering
studies before [7, 19, 30]. We collected this data for three
versions in each of the OSS projects. We collect three versions
of these OSS projects even though all our metrics (size and
complexity) are non-process based (product-based), and hence
static in nature. We do this in order to examine if our results
are consistent across multiple versions of the same project.

The industrial projects are from a telecommunications com-
pany and are products that are being used regularly. We only
have one version of each of these projects. Therefore, in
total we have 13 versions (3 *3 = 9 OSS and 1 x4 = 4
industrial) of software projects for which we collected the
defect and metric data. We collected the defect data for
these projects at a file level. Each commit to a file with a
commit message that contains an issue ID that exists in the
issue tracking system (note that in the industrial projects, we
only consider customer-reported defects) is considered to be
a defect that was fixed in that file. This is the same procedure
used by Kamei et al. [19]. Note that in this paper, we use
post release defects, which are found after releasing a version
of software. They are reported in the issue tracking system
(such as Bugzilla). Post release defects could be anything
from a typo to serious security/performance defects or runtime
errors/crashes. Currently in all software engineering research
all post release defects are considered to be harmful since they
affect the customer.

III. DERIVING THRESHOLDS FOR METRICS

As explained in the previous section, we collected 4,575
OSS projects and 205 industrial projects for determining the
thresholds for the 3 OSS and 4 industrial projects with defect
data. In this section we explain the method that we replicated
to determine the thresholds [3] and apply this technique to
all the 4,575 OSS projects to give an overview of the OSS
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Fig. 1. The six steps in the technique proposed by Alves et al. [3] to derive
the thresholds.

dataset being used. We chose to replicate this technique for
calculating the thresholds for a number of reasons: (a) it
adheres to the scale and distribution of the metrics themselves,
(b) the inherent variability present in the various metrics across
the various systems are brought out, and (c) the thresholds
derived have an empirical foundation and do not depend on
the experiences of an individual,

Figure 1 illustrates the technique used by Alves et al. which
consists of the following six steps [3]:

1) Metrics extraction: We extract the four metrics (lines
of code, module interface size, cyclomatic complexity, and
module interface coupling) for each file in each of the software
projects under study using the tools, Understand [2], and
Sonar [1]. For example as shown in Step 1 of Figure 1, say
Project A has files A;, Ao, ..., A,,. We extract the four metrics
for all the n files.

2) Weight ratio calculation: We calculate the weight ratio
of each file in each system as the ratio of the size of the file

to the total size of the system. For example as shown in Step
2 of Figure 1, if file A; has 300 LOC, and if the total lines of
code of project A is 10K LOC, then the weight ratio for file
Ay will be 300/10K = 3%. Thus there is one weight ratio for
each file, in each project.

3) Entity aggregation: In this step, we aggregate the weight
ratios of each file according to the metric value. For example
as shown in Step 3 of Figure 1, if files A, and A3 are the
only files in project A with a cyclomatic complexity of 5, then
we add the weight ratios corresponding to files A; and As. If
the weight ratios of A; and Ajz are 3% and 5% respectively,
then the entity aggregated value for cyclomatic complexity of
5is 8% (3 + 5). Therefore we calculate this aggregated value
for every unique value of all the four metrics.

4) System aggregation: In this step, we take the entity
aggregated value of each unique metric value for all the
four metrics from the previous step, and divide each by the
total number of projects (in our case, this is 4,575), to get
the normalized entity aggregation value. Thus the normalized
entity aggregation value in our example for cyclomatic com-
plexity value of 5 for project A is 0.1749%, as shown in
Step 4 of Figure 1. Then we aggregate these values across
all the projects. Therefore in our example we would add
the normalized aggregation value for a cyclomatic complexity
value of 5 from all 4,575 projects. We would repeat this
for every unique value of all the four metrics across all the
projects. In the end we have four vectors, one for each metric.
The length of each metric is equal to the number of unique
values that the metric can assume across the 4,575 projects.
Thus we have aggregated the metrics across the 4,575 projects.

5) Weight ratio aggregation: In this step, we take the four
vectors generated at the end of the previos step, sort them in
ascending order. Then we plot a cumulative line chart for each
of the metrics (in percentile scale). This is shown in Step 5 of
Figure 1.

6) Thresholds derivation: In the final step we arrive at the
thresholds. As noted by Alves et al. in their paper, we too
determine the value of each of the metrics at the 70%'",
80%*", and 90%*" percentiles. We use these values as the
thresholds for various risk categories of the metrics. For
example as shown in Step 5 of Figure 1, if the cyclomatic
complexity thresholds are 5, 8, and 10 (corresponding to the
70%", 80%*", and 90%*" percentile values), then we classify
all files with cyclomatic complexity, cc < 5 as Low Risk,
5 <= cc < 8 as Medium Risk, 8 <= cc < 10 as High
Risk, cc >= 10 as Very High Risk. Therefore each file will
be assigned to exactly one risk category based on the metric
value for that file. Note that a particular file could be in the
low risk category from the perspective of one metric, and in a
high risk category from the perspective of another metric. For
example, file A; which has a cyclomatic complexity of 5 and
300 LOC, will be classified as a medium risk file with respect
to cyclomatic complexity and a very high risk file with respect
to LOC. For further details on this approach for calculating
thresholds we refer the readers to the original paper by Alves et
al. [3].



TABLE I
CORRESPONDENCE BETWEEN THE METRICS ANALYZED AND THE
METRICS IN THE TOOLS: UNDERSTAND AND SONAR
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IV. CASE STUDY DESIGN

In the previous sections we have described our data sources,
and the technique we use to derive the thresholds for the
projects, along with how we determine the number of defects
in each file of each version of the three OSS and four
industrial projects. In this section, we present the study design
of our experiments to evaluate the relationship between metric
thresholds and software quality. The details of the metrics used
in this study, and the evaluation criteria to quantify software
quality are described below.

A. Metrics that were Analyzed

In this case study we study two size based and two complex-
ity based metrics. We chose these four metrics, since Alves et
al. [3], in their original case study, used these four metrics
and derived the thresholds on 100 OSS and industrial projects.
These metrics were extracted from the OSS projects using the
tool Understand [2], and from the industrial projects using the
tool Sonar [1]. The metrics analyzed and their corresponding
functions in the tools are presented in Table I. Additional
details on these metrics and how they are calculated can be
found at the webpages for the corresponding tools [1, 2].
The two size based metrics were collected at the file level,
while the two complexity based metrics was collected at the
method level. Since Sonar, the tool that was used to extract the
metrics for the industrial project, did not collect the Module
Inward Coupling at a method level, we used the number of
accessors as a substitute which is measured at the file level.
The threat which is caused by using two different tools to
measure metrics is discussed in Section VIIL.

Table II shows the statistics of OSS and Avaya projects
with respect to four analyzed metrics. We first calculate
median values of four metrics shown in Table I for each OSS
and Avaya project. Then we calculate minimum, median and
maximum values to lift up project-level values to category-
level ones (i.e., OSS-level or Industry-level).

B. Software Quality Evaluation Criteria

We use two well known software quality measures in order
to evaluate our goal - defect proneness and defect density [27].
Typically these are defined for a specific file or class. In
our case, the granularity that we examining them in are:
risk categories. Note that these risk categories are defined by

the thresholds that we extract for the metrics. We define the
software quality evaluation criteria as follows:

1) Defect proneness - the probability of a file in a particular
risk category having a defect. More formally, it is the
ratio of the number of files in a risk category which
has at least one defect, to the number of files present
in that category. Let’s assume that there are 400 files
that have a cyclomatic complexity value less than the
value for the 70" percentile (low risk) in our threshold
derivation technique. If 100 of them have at least one
defect, then the defect proneness of the low risk category
of files from the perspective of cyclomatic complexity
is 100/400 = 0.25.

2) Defect density - the number of defects per LOC for a
particular risk category. More formally, it is the ratio
of the sum of the defects in all the files in a particular
category, to the sum of LOC of all the files in the same
category. Considering the above example, if the same
400 files have a combined size of 45,000 LOC, and 50
of the 100 files with defects have 2 defects each (which
makes it 50 x 1 + 50 % 2 = 150 defects in total), then the
defect density of files with low risk from the perspective
of cyclomatic complexity is 150/45,000 = 0.0033.

Therefore we calculate the defect proneness, and defect

density of each risk category (four in total), for all the metrics
(four in total) in all the case study projects (three OSS and four
industrial, and 13 in total). As we mentioned in Section II, in
our case study we use post release defects to calculate both of
these quality measures. In the case of OSS, these defects were
reported in the bug repository, and in the case of the industrial
projects, the defects were customer reported.

C. Choosing Representative Projects for Calculating Metrics
Thresholds

One of the assumptions made by Alves et al. is that the
thresholds are derived from a set of systems representative of
the target system to obtain robustness of the derived threshold.
Note that the case study systems that we calculate the quality
measures are not the same as the case study systems that
we use to calculate the thresholds. We calculate the quality
measures for three OSS and four industrial projects. These
projects are the target systems in our case. To make sure that
the thresholds are calculated for the target systems from a more
representative sample, we chose a subset of 1,000 projects
from the 4,575 Java projects for each of the three versions of
the three OSS projects. By “representative” we mean having
a similar distribution of file sizes. For selection of the most
similar projects we use median to characterize that distribution.
More discussion is in Section VII. The selection was done as
follows:

1) For all of the nine versions of OSS projects and 4,575
projects used to determine the thresholds, we calculated
the median LOC in a file.

2) For each of the nine versions of OSS projects, we chose
1,000 projects from the pool of 4,575 projects that had
the closest median LOC in a file.



TABLE II
STATISTICS OF OSS AND AVAYA PROJECTS WITH RESPECT TO FOUR METRICS

Lines of Module Cyclomatic Module
Code Interface Complexity Inward
Size Coupling
MIN | MED | MAX | MIN | MED | MAX | MIN | MED | MAX | MIN | MED | MAX
0SS 2.0 29.0 403 0.0 3.0 26.0 1.0 1.0 5.0 0.0 2.0 6.0
Avaya | 5.0 41.5 161.0 | 1.0 4.0 11.0 1.0 6.5 32.0 0.0 0.0 4.0
TABLE III V. RESULTS AND DISCUSSION

MEDIAN OF THE OSS PROJECT, ALONG WITH THE INTER QUARTILE
RANGE OF THE DIFFERENCE BETWEEN MEDIAN LOC/FILE OF EACH OF
THE 1,000 OSS PROJECTS CHOSEN TO DERIVE THE THRESHOLD AND THE
MEDIAN LOC/FILE IN THE CORRESPONDING OSS PROJECT.

Project Name Median || Interquartile Range
Eclipse 3.0 100 8
Eclipse 3.1 105 8
Eclipse 3.2 105 8
Mylyn 1.0 93 6
Mylyn 2.0 89 5
Mylyn 3.0 93 6
Netbeans 4.0 117 11
Netbeans 5.0 119 11
Netbeans 5.5.1 106 9

In Table III, we present the median LOC/File of each of
the nine OSS projects. These are the target projects for which
we need to calculate the threshold. As stated above, we intend
to choose 1,000 projects that are most representative of the
target systems in order to calculate the thresholds. Therefore
we calculate the Inter Quartile Range (IQR) of the absolute
difference between the median LOC/File in the 1,000 projects
chosen for deriving the thresholds and the median LOC/File of
the target project, in order to examine how representative the
sample used to calculate the threshold is to the target project.
IQR is a robust measure of spread that is more appropriate
than the variance or standard deviation for the highly skewed
distribution such as file size. For all the target systems the
IQR of the difference between their median LOC/File and the
median LOC/File in the 1,000 projects chosen to calculate the
threshold is at-most 11 LOC. From this low value we can
see that the 1,000 projects chosen from the dataset of 4,575
projects, to derive the metric thresholds, are indeed comparable
in median LOC/File value to each of the OSS projects under
study.

Using the size and complexity metrics extracted from the
1,000 projects for each target project, we calculated a unique
set of thresholds for each of the nine versions of OSS projects.
As for the four industrial projects we used the set of 205
different industrial projects from the same organization to
derive the threshold (i.e., we use same threshold to evaluate
four industrial projects). The thresholds for the nine OSS
projects and the thresholds for the industrial projects are
presented in Table IV. From the four tables, we can see that
the industrial projects have a considerably higher range for
the thresholds of all the metrics. The 70" percentile values
are much lower than the OSS projects, and the 90" percentile
values are much higher than their OSS counterparts.

In this section, we present the experiment that we carried out
along with the results for those experiments and a discussion
pertaining to it.

A. Experimental Approach

As described in the previous section, we extract the met-
rics for all the OSS and industrial projects. We derive the
thresholds individually for each OSS software version and
collectively for the industrial projects. Using the thresholds for
each metrics, we split the files in each of the three OSS and
four industrial projects (13 versions in total), for which we also
have the defect data, into the four risk categories(low, medium,
high and very high). Using this classification and the defect
data, we calculate the defect proneness, and defect density for
each risk category of each metric for the 13 versions.

B. Experimental Results

The defect proneness and defect densities are shown as
line plots in Figure 2 and 3. The plot on the left hand side
corresponds to the defect proneness, and the plot to the right
hand side corresponds to the defect density of each system.
Overall, most of the trends among all the systems are similar.
All the industrial projects bear close resemblance to each other.
Additionally there is not much variance among versions of
each OSS project either. Some observations that we can make
on more careful analysis from Figure 2 and 3 are as follows:

(B1) Defect Proneness:

1) In the industrial projects, files in the low risk cate-
gory have the same defect proneness, irrespective of
the metric that was used to assign the risk, i.e., files
that have few LOC and low complexity are equally
defect prone. However, files in the high risk category
have considerably different defect proneness values. For
example, files that have a very high value for size based
metrics are two to five times more defect prone than files
that have very high values for complexity based metrics.
When we examine the OSS projects, we consistently find
that files are twice as likely to be defect prone for both
low and high values of the size based metrics, than the
corresponding low and high values of the complexity
based metrics.

2) In the OSS projects, in some cases (like Eclipse 3.0,
Eclipse 3.1, and Netbeans 4.0), the highest risk category
of size based metrics are not related to defect proneness
as expected. The files with very high values for the sized
based metrics are marginally less defect prone than files



TABLE IV
THRESHOLDS FOR THE OSS AND INDUSTRIAL PROJECTS

(a) Lines of Code

(b) Module Interface Size

Project Name | Version | 70% | 80% 90% Project Name | Version | 70% | 80% | 90%
Eclipse 3.0 335 498 884 Eclipse 3.0 18 26 43
Eclipse 3.1 346 | 515 908 Eclipse 3.1 19 27 44
Eclipse 32 346 515 908 Eclipse 3.2 19 27 44
Mylyn 1.0 321 480 861 Mylyn 1.0 18 26 42
Mylyn 2.0 313 466 847 Mylyn 2.0 18 25 42
Mylyn 3.0 321 480 861 Mylyn 3.0 18 26 42
Netbeans 4.0 365 545 952 Netbeans 4.0 20 28 46
Netbeans 5.0 369 553 975 Netbeans 5.0 20 28 47
Netbeans 5.5.1 346 514 911 Netbeans 5.5.1 19 27 44
Industrial - 324 543 1,423 Industrial - 19 30 89
(c) Cyclomatic Complexity (d) Module Inward Coupling
Project Name | Version | 70% | 80% | 90% Project Name | Version | 70% | 80% | 90%
Eclipse 3.0 6 9 17 Eclipse 3.0 6 9 14
Eclipse 3.1 6 9 18 Eclipse 3.1 7 9 14
Eclipse 32 6 9 18 Eclipse 32 7 9 14
Mylyn 1.0 6 9 17 Mylyn 1.0 6 9 13
Mylyn 2.0 6 9 16 Mylyn 2.0 6 9 13
Mylyn 3.0 6 9 17 Mylyn 3.0 6 9 13
Netbeans 4.0 6 10 18 Netbeans 4.0 7 9 15
Netbeans 5.0 6 10 19 Netbeans 5.0 7 9 15
Netbeans 5.5.1 6 9 17 Netbeans 5.5.1 7 9 14
Industrial - 4.3 5.6 10.3 Industrial - 3 7 30

with just high values for the same metrics. However,
in the industrial projects, this phenomenon is observed
for the cyclomatic complexity instead. Thus in these
cases, we observe that there is no monotone relationship
between these metrics and defect proneness.

(B2) Defect Density:

Y

2)

3)

In all three version of Eclipse and Mylyn, we can
observe that the relationship between size based metrics
and defect density, is a monotonically decreasing one.
The higher the risk category that a file is in with
respect to size based metrics, the lower is its defect
density. However, when we look at the complexity based
metrics for these two projects, we observe that there is
a inverted-U shaped curve. This indicates that the files
with medium values for the complexity based metrics,
have a higher defect density than files with extreme
complexity values.

When looking at Netbeans, we can see that in version 5.0
and 5.5.1, the relationship between the various metrics
and defect density is all over the place. There is no
consistent trend. However, in version 4.0, we can clearly
see that except for cyclomatic complexity, the other three
metrics have a rotated-Z curve. We can see that the
defect density of the files in the very high risk category
are slightly higher than the defect density of files in the
medium risk category. However, as observed in Eclipse
and Mylyn, the defect density of the files in the very high
risk category (the highest), is much lower than the defect
densities in both the medium and high risk categories.
In the industrial systems, we see that the files with the
highest value for module interface size (accessors in this
case) are also the files with the highest defect density

(except Industrial 110). Also except in Industrial 208,
the files with the largest value for LOC seems to have
the lowest defect density.

As seen in the result of this subsection, the relationship
between defect density and metric threshold values are not
consistent. To quantify if the defect density is indeed higher for
the very high risk values of each metric, we model code defects
via a poisson model that includes two predictors (independent
variables): the amount of code in the set of files within a risk
class and an indicator function for the highest risk threshold.
The response (dependent variable) is the number of defects
observed for that set of files. The fitted coefficient at the very
high risk indicator would allow us to determine if the files in
the highest risk categories are indeed more defect prone than
other files. We present the results in Table V. In the table,
z value is estimated coefficient value divided by the value
of standard error and Pr(> |z|) shows significance of the z
value.

From the Table V we can see that in almost all the projects
and for all the metrics the z value is negative, indicating that
the files in the highest risk category for all the metrics have
indeed lower defect density. However, only in the case of LOC
and cyclomatic complexity (and only in OSS projects), are
these results statistically significant. In the rest of the cases,
there is no statistical evidence to show the inverse relationship
between the metrics and defect density.

(B3) Summary:

From Subsection V-B, we can see that defect proneness
of files in a category has an almost linear relationship to
the values that correspond to that risk category. Hence this
validates the bulk of the existing literature on defect pre-
diction. However, when looking at the observations made in
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TABLE V
2 AND Pr(> |z|) OF THE INTERCEPT OF THE POISSON MODEL. VALUES WITH * NEXT TO THEM INDICATE STATISTICAL SIGNIFICANCE WITH p < 0.05

Lines of Code Module Interface Size | Cyclomatic Complexity | Module Inward Coupling

z Pr(> z]) z Pr(>z]) z Pr(>Jz]) z Pr(>z])
Eclipse 3.0 -9.56 1.19e-21* | -5.16 2.50e-07* -7.14 9.05e-13* -3.70 0.02¢-02*
Eclipse 3.1 -15.31 6.10e-53* | -8.90 5.61e-19* -9.41 4.96e-21%* -7.37 1.72e-13*
Eclipse 3.2 -7.001 2.53e-12* | -0.52 0.60 -8.11 5.02e-16%* -6.63 3.40e-11*
Mylyn 1.0 -2.48 0.013* | -0.24 0.81 -4.12 3.67e-05* -2.10 0.04%*
Mylyn 2.0 -1.20 0.23 | -0.24 0.81 -2.95 0.03e-01* -0.88 0.38
Mylyn 3.0 -2.33 0.02* | -4.46 8.23e-06* -2.98 0.03e-01°* -1.13 0.26
Netbeans 4.0 -3.78 0.02e-02* | -1.56 0.12 0.34 0.73 -2.28 0.02*
Netbeans 5.0 -2.09 0.04* | -0.43 0.67 -1.88 0.06 -0.66 0.51
Netbeans 5.5.1 -4.10 4.15e-05* | -0.26 0.80 -2.90 0.04e-01* -1.18 0.24
Industrial 110 -2.19 0.03* | -2.88 0.04¢-01* -1.32 0.19 1.45 0.15
Industrial 113 -1.26 0.21 2.33 0.02%* 0.25 0.81 1.91 0.06
Industrial 140 -0.05e-02 0.99 | -0.06 0.95 0.34 0.73 | -0.05e-02 0.99
Industrial 208 1.05 0.30 1.93 0.05 | -0.09¢-02 0.99 2.85 0.04e-01%*

Subsection V-B, we can conclude that in almost all cases
the files in the highest risk category have the lowest defect
densities. Additionally in many cases, the files in the lowest
risk category also have low defect densities. This observation
is in contradiction to the “Goldilocks Conjecture”, which states
that it is ideal for files to not have metric values in either
extremes.

VI. RELATED WORK

In this paper, we derive thresholds using the technique
proposed by Alves et al. [3]. More details about this was
presented in Section III. However, in this section, we present
some of the other research related to thresholds as well as
some of the research that questions such thresholds.

A. Techniques for Deriving Thresholds

In software engineering research there have been many
attempts to define thresholds for various metrics. The rationale
for doing so is to provide guidelines for practitioners to

identify poor quality code in their software. Such thresholds
can be derived based on theory, experience, or empirical
analysis of metrics.

Researchers have argued about fault densities from a the-
oretical perspective [10, 17, 18]. Emam et al. theoretically
show that smallest files having the largest defect densities
are a mathematical artifact. Hatton argues that the software
components that “fit best into human short-term memory
cache” will produce the lowest defect densities [17, 18].
Hence, both small and large files will tend to have higher
defect densities.

Some of authors defined thresholds by their experience. Mc-
Cabe [23] defined cyclomatic complexity and recommended
the threshold for the McCabe complexity metric to be 10
based on his experience. Nejmeh [25] defined a metric called
NPATH, an objective measure of software complexity, which
counts the number of acyclic execution paths through a
function. Nejmeh defined a threshold of 200 for the NPATH
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metric based on his experience [25]. Coleman et al. [8] de-
fined the Maintainability Index (MI) metric and recommended
thresholds of 65 and 85. This implies that when software
components with MI values lower than 65, and higher than 85
are difficult to maintain, and between 65 and 85 are moderately
maintainable.

Some other authors have empirically evaluated thresholds
for the software metrics. For example, Erni ef al. [11] defined
thresholds by using statistical techniques. Their thresholds 7'
are calculated by using mean (u) and standard deviation (o)
as T'= p+o0 or T'= p— o. This technique was evaluated on
one system which had three version on metrics such as number
of methods in a class, and the lack of cohesion in a method.
Shatnawi et al. [26] derived thresholds of 12 metrics proposed
by Chidamber and Kemerer, Li, and Lorenz and Kidd, by
empirically relating the metrics to error severity categories.
These thresholds were derived using the receiver operating
characteristic (ROC) curves.

In this paper, we use the technique proposed by Alves et
al. since this is the only technique that takes the statistical
distribution inherently present in the data into account [3].

B. Questioning Thresholds

There has also be a few studies over the last three decades
that have questioned the veracity of certain thresholds for
metrics, as well as the veracity of the concept of thresholds
themselves. Basili et al. [4], Compton and Withrow [9], and
Hatton [17, 18], all questioned the well accepted notion that
extensive modularization will reduce defects in the software.
They found evidence to the contrary. Their finding suggested
that small files in a software had a higher defect density than
medium sized files. This new observation is often called the
“Goldilocks Conjecture” - files with atypical size are more
likely to have more defects than files of typical (medium)
size. Additionally, Bell et al. [5] found that small files (less
than 65 LOC) had high defect densities and that the expected
number of defects increased as the square root of the size
metric (instead of a linear increase). In our study, we find that
large and complex files have lower defect densities, which
is contrary to the findings in the studies above. Additonally
we also find that in some cases, files with smaller size and
complexity as well has lower defect densities. This is exactly
the opposite of the “Goldilocks Conjecture” and is contrary to



the findings in the above studies.

Fenton and Neil [12], in their study of the literature on
defect prediction approaches, also found that there is research
evidence both supporting and refuting the relationship between
risk thresholds and size and complexity metrics. However, in
their study they do not empirically evaluate the contradictory
behaviour. They rely completely on past research. Although,
it is an important first step, such a comparison has a limitation
- the study design in each the past research studies could be
very different. Even they comment on the accuracy of the
data collection process in each of the past studies. Therefore
the contradictory results could be due to the different study
designs and not due to the actual relationship between risk
thresholds and metrics. In our paper, we consistently use the
same process (described in Sections IIl and IV), to analyze
all the datasets. Hence we are able to empirically verify
if risk thresholds have a consistent relationship to size and
complexity metrics.

Emam er al. questioned if any kind of thresholds for
software size was reasonable [10]. They empirically show that
there is no statistical evidence to prove that files beyond a
certain threshold for size was indeed more defect prone. In
the following years, the same authors found move evidence
that the size of a class and defect proneness had a power law
relationship [20, 21].

Our approach differs from Emam et al. [10], and Koru et
al. [20, 21] in the following ways:

o In addition to software size based thresholds, we also

look at complexity based thresholds.

« In addition to examining the relationship to defect prone-
ness we also investigate the relationship to defect density
as well.

« Instead of asking the question: is there a threshold for size
above which files are more defect prone, we ask: are files
benchmarked as high-risk indeed the most defect prone.

« Instead of obtaining a threshold after determining the re-
lationship between quality and size for the whole dataset,
we replicate a latest threshold-setting technique.

In summary, the focus of the past studies have been to
examine the relationship between a metric like size and quality.
Whereas, in our study we focus on determining if thresholds
for metrics can reliably identify highly-defect prone and high-
defect-density files.

From the perspective of results and conclusions, Koru et
al. [20, 21] in their work found that, the defect proneness
does increase with the size of the software component, but
that the rate of this increase slows down (hence having a
sub linear power law relationship). Therefore they indirectly
come to the conclusion that large files have lower defect
density (indirectly because only defect proneness is examined
and not defect density). We arrive at a similar conclusion as
them. However, we directly relate defect density to size and
complexity metrics. Hence, this result from our case study
reinforces the conclusions of Emam et al. [10], and Koru et
al. [20, 21]. Additionally we find that in some cases, files with
small values for the four metrics also have low defect density.

It is the files with medium values for the various metrics that
have the highest defect density.

There are other types of thresholds, apart from ones we
consider here. For example, code smells [13] are particular
patterns that are considered to reflect bad design. Sjgberg et
al. [29] investigated if smell thresholds for individual files
were related to maintenance effort spent on these files and
found that there was no relatiobnship if the size of file (LOC)
was taken into account. The results we obtained (even though
we did not consider several thresholds simultaneously) appear
to be consistent with that finding: the high size risk factor was
more strongly related to fault-proneness than high complexity
risk factor. Other work by the same group [28], found that only
the overall size of the system was associated with maintenance
effort: the smallest system (among four systems implementing
equivalent functionality) was the easiest to maintain despite
having much of its code in a single “God” class (one of the
code smells evaluated in that work).

VII. THREATS TO VALIDITY

External Validity: We evaluated our goal with Java
projects. Hence, the results may not generalize to projects
in different programming languages. To make the study as
broad as possible, we examine both OSS (3 versions each of
3 projects) and industrial (four) projects. Additionally for the
thresholds we examined 4,575 OSS Java projects. Although,
the generalizability of this study can further be improved
on repeating it on many more projects, the current size of
the case study is the typical size in software defect related
literature [27].

Also, in this study we only examine the size and complexity
metrics, and as such all our conclusions are limited to them.
Further studies on other metrics like churn and pre-release
bugs must be conducted before any claims about their relation-
ship to defects can be made. Since there are a large number of
software metrics for which the relationship to defects has been
studied [27]. Since it is not possible to study all the metrics in
this paper, we chose to start with four of them. We have tried
to provide all the details of our study in as clear and concise a
manner as possible, so that it can be replicated easily on other
projects or just other metrics too.

We used one specific approach to determine the thresholds.
Other thresholds may not yield exactly the same results,
but we found that simply picking the largest or the most
complex files yields very similar results. We, however, chose a
technique that is empirically based, and takes into account the
statistical distribution properties of the file metrics. We derive
the thresholds from 1000s of OSS and 205 industrial projects.

Internal Validity: The metrics were extracted from the
projects using Understand [2], and Sonar [1]. Any error in
these tools can greatly affect the values of the thresholds.
However both tools are standard tools and various studies have
been carried out using these tools. Furthermore, even if the
exact thresholds are slightly changed, the main findings that
the top-risk group is the most fault-prone and that it has the
lowest defect density, are unlikely to change.



In addition to errors in tools, the difference in tools is also
a threat to our results. The difference in tools may affect
the values of metrics and thresholds. The difference in tools
happened only between OSS and industrial projects (i.e., we
used Understand to OSS projects and Sonar to industrial
projects). Hence, we believe that we obtained consistent re-
sults during each analysis (OSS and industrial projects). The
larger problem here is the difference in organizational culture
between OSS and industrial projects.

The defect data collection technique is at a commit level and
therefore might have both false positives and false negatives.
Also, industrial projects consider only customer-reported de-
fects, while OSS projects also include alpha/beta testing, and
development defects as it was not practical to separate defects
reported only on stable releases for the studied OSS projects.
However, such a commit based approach has been the standard
in defect prediction literature [7, 19, 27, 30].

Construct Validity: All our results rely on the assumption
that the 70%, 80% and 90% percentiles of the overall code
are good enough for deriving metrics (which is reported by
Alves et al. [3]). However, we find that our results as far as
metrics are concerned, are not that different from what Alves
et al. [3] reported.

In Section IV-C, we chose 1,000 projects that had the
most similar Median LOC/File to the OSS projects for which
we had defect data, in order to derive the thresholds. The
choice of representative projects based on Java language and
the median of the distribution of project file sizes may have
affected our results. It may be that by picking similar projects
based on other quantiles or based on the domain, size or other
characteristics, would have changed the results. Hence the
results should be interpreted within the context: Java projects
whose risk thresholds are derived from other Java projects
of similar median file size. Further research is needed to
determine if the risk thresholds have a consistent relationship
to defect density for other languages or for a specific subset
of Java projects. We used the median LOC/File to identify
the set of projects that could be used to derive the thresholds.
Because we removed the smallest projects from our dataset
(containing fewer than 200 files), we believe that choice to be
a reasonable compromise between the sample size and project
similarity.

VIII. CONCLUSION

In summary we derived the thresholds for three OSS
and four industrial projects and assigned the files having a
particular value for a metric to a particular risk category
depending on the threshold values. Using the defect data for
these projects we examined the relationship between the file
metrics in each risk category and the defect proneness and
defect density of the files. We found that typically defect
proneness values monotonically increase with the metric val-
ues. However, defect density values typically demonstrate a
trend that in some cases appears to contradict the “Goldilocks
Conjecture”, and in some other cases just has low values only
for the files in the very high risk categories for size and

complexity metrics. However, we also found some instances
when files with small size and complexity metrics had low
defect densities. Therefore, although we found some support
for findings in recent literature [20, 21, 33] that smaller files
have higher defects density, we found further evidence that
very large or complex files have lower defect densities and in
some cases even lower defect proneness.

In summary, a) we found support for the approach to
identify defect-prone files via size thresholds. The complexity
thresholds, however, did not work as well, b) we did not find
support for approaches that would reduce the size of the largest
files by moving that code into other smaller or less complex
files. On the contrary, such approaches may increase the risk,
and therefore be counterproductive. Hence in conclusion, we
found no support for the idea that files with higher defect
densities can be identified via thresholds of basic size and
complexity metrics. Therefore, any software practitioner who
choses to use such thresholds must proceed with caution. We
believe that as a result of our study, we as software engineering
researchers, need to examine the underlying reasons behind the
relationship between existing metrics and software defects, and
need to explore other metrics that could be more consistent
with respect to defect densities in files.
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