
Towards Privacy Preserving Cross Project
Defect Prediction with Federated Learning

Hiroki Yamamoto †, Dong Wang †*, Gopi Krishnan Rajbahadur ‡, Masanari Kondo †,
Yasutaka Kamei †, Naoyasu Ubayashi †

Kyushu University, Fukuoka, Japan†

Huawei Technologies Canada Co., Ltd., Canada‡

Email: h.yamamoto@posl.ait.kyushu-u.ac.jp, d.wang@ait.kyushu-u.ac.jp, gopi.krishnan.rajbahadur1@huawei.com,
kondo@ait.kyushu-u.ac.jp, kamei@ait.kyushu-u.ac.jp, ubayashi@ait.kyushu-u.ac.jp

Abstract—Defect prediction models can predict defects in
software projects, and many researchers study defect prediction
models to assist debugging efforts in software development. In
recent years, there has been growing interest in Cross Project
Defect Prediction (CPDP), which predicts defects in a project
using a defect prediction model learned from other projects’ data
when there is insufficient data to construct a defect prediction
model. Since CPDP uses other projects’ data, data privacy
preservation is one of the most significant issues. However,
prior CPDP studies still require data sharing among projects
to train models, and do not fully consider protecting project
confidentiality. To address this, we propose a CPDP model FLR
employing federated learning, a distributed machine learning
approach that does not require data sharing. We evaluate FLR,
using 25 projects, to investigate its effectiveness and feature inter-
pretation. Our key results show that first, FLR outperforms the
existing privacy-preserving methods (i.e., LACE2). Meanwhile,
the performance is relatively comparable to the conventional
methods (e.g., supervised and unsupervised learning). Second,
the results of the interpretation analysis show that scale-related
features have a common effect on the prediction performance
of the FLR. In addition, further insights demonstrate that
parameters of federated learning (e.g., learning rates and the
number of clients) also play a role in the performance. This
study is served as a first step to confirm the feasibility of the
employment of federated learning in CPDP to ensure privacy
preservation and lays the groundwork for future research on
applying other machine learning models to federated learning.

Index Terms—Defect Prediction, Cross Project, Privacy Preser-
vation, Federated Learning

I. INTRODUCTION

Defect prediction models, a technique to support debugging
work by predicting the probability of defects in a software
project, are broadly regarded as a cornerstone for quality
assurance [1, 2]. In recent years, cross-project defect prediction
(CPDP) has gained considerable attention. CPDP is a solution
to relieve the pain of collecting sufficient data in practice,
where the training data is not only from the target projects
but also from other projects [3].

However, CPDP is not the silver bullet and suffers from
several criticized problems. One of the fundamental challenges
is the lack of availability of quality transferable data [4]. For
instance, knowledge of one project cannot be directly and
completely transferred to another project due to a significant

distribution discrepancy between them [5]. Another signifi-
cant problem is selecting the most appropriate and sufficient
training data. Most of the research done in CPDP make use
of public and large open-source data (e.g., PROMISE [6]),
since proprietary projects usually own limited historical data,
especially for a new project. While, due to the differences
between the development environment of open-source projects
and proprietary projects, it becomes risky to use historical
data of open-source projects to create quality predictors for
proprietary projects from a practical point-of-view [7].

To enable the successful adoption of CPDP to proprietary
projects, it is important to have models trained on similar
data. However, two main barriers exist. Privacy concern of
data owner is a major barrier for proprietary projects to share
data, i.e., preventing the disclosure of specific sensitive metric
values of the original project data [8]. Another barrier is
concerning the need for the utility of the privatized source
project data in CPDP, such as homogenous feature sets [9].
Proprietary projects differ from user requirements and test soft-
ware modules in practice, hence, there usually exist different
metrics in the data. Several researches have been carried out
to address these barriers in proprietary projects. To name a
few, Peters and Menzies [10] introduced MORPH, a privacy
algorithm designed to reduce the attacker’s trust in the released
data. Peters et al. [11] proposed LACE2 which reduces the
amount of data shared by using multi-party data sharing and
their results showed that LACE2 yields higher privacy than
the prior approach without damaging predictive efficacy.

Although these attempts, we notice that the limitation of
privacy concerns cannot be fully relieved since sharing data
among multiple participants is inevitable in the prior work.
Recently, Federated Learning (FL) was proposed, a distributed
machine learning approach that enables training on a large cor-
pus of decentralized data residing on devices [12]. One of its
well-recognized benefits is that FL enables proprietary projects
to share data in a “closed-loop system” to build a common and
powerful model [13]. Inspired by its successful applications
in other domains (e.g., artificial intelligence [14, 15]) and
its confidential feature, we conjecture that FL would be an
appropriate candidate of CPDP for the aim of privacy preser-
vation. Hence, in this study, we propose a federated learning

based CPDP by incorporating a Logistic Regression model,
namely Federated Logistic Regression (FLR). To evaluate its
performance, we conduct an empirical study on 25 open-
source and close-source projects. Two research questions are
formulated in terms of the effectiveness and the interpretation
of FLR:

• (RQ1) How well do federated learning CPDP models
perform compared to traditional privacy preserved
CPDP methods?
Motivation: Our proposed FLR tackles the criticized
barrier of privacy concerns in CPDP, but its performance
remains unknown. Thus, as an initial attempt, we would
like to compare the performance of FLR against the
(i) privacy-preserving methods (i.e., LACE2) and (ii)
conventional CPDP methods (i.e., supervised and unsu-
pervised learning).
Results: The evaluation results on the one hand show
that our proposed FLR model outperforms the exist-
ing privacy-preserving methods (i.e., LACE2), yielding
higher precision and AUC scores. On the other hand,
compared to the conventional baseline methods, the FLR
model does not perform as well as the conventional
methods, but still shows comparable prediction potential.
In addition, the statistical tests confirm that the FLR
model is likely to be assigned to the higher rank group
in prediction performance.

• (RQ2) What features affect the CPDP model using
federated learning?
Motivation: Interpretation of defect prediction models
reveals what features have a significant impact on defect
rates, which is used to gain insight into avoiding defects
and improve software quality more effectively. Therefore,
in this RQ, we would like to determine which features
impact the predictive performance of federated learning
based CPDP models (FLR).
Results: The results of the feature interpretation analysis
demonstrate that although the most important feature
differs from the evaluated datasets, we observe that
scale-related features commonly have an effect on the
prediction performance of the FLR model in terms of the
top-3 features.

Our contributions are three-fold: (I) this study takes a first
step towards exploring the feasibility of employing federated
learning to CPDP models, in order to tackle the challenge of
data privacy preservation; (II) through the evaluation results,
the proposed FLR model outperforms the existing supervised
learning that applies LACE2 in terms of higher precision and
is comparable to the conventional models with low false alarm;
(III) our in-depth relationship and feature impact analysis
reveal insight into the characteristics of the models using
federated learning, which could guide the future research
direction in the context of federated learning usage in CPDP.

The remainder of this paper is organized as follows: Sec-
tion II presents the background and related work in terms
of cross-project defect prediction, privacy preservation, and

federated learning. Section III describes the experimental
design including the studied datasets, the proposed model, and
approaches to address research questions. Section IV describes
the results of proposed RQs. Section V further discusses the
performance of our proposed model. Section VI discloses
the threats to the validity of our study. Finally, we conclude
the paper and provide future directions in Section VII. Our
replication package is publicly available [16].

II. BACKGROUND AND RELATED WORK

In this section, we introduce the background and the related
literature to motivate our study.

A. Cross Project Defect Prediction (CPDP)

To relieve the limitation of insufficient defect information
(especially for software companies), cross-project defect pre-
diction (CPDP) that builds a prediction model using data from
other projects has been widely studied. There are two threads
of work: one is using supervised methods where the training
data requires the labels, and another one is using unsupervised
methods where the training data do not need to be labeled [17].
For the supervised methods, in the early time, Canfora et
al. [18] proposed a multi-objective approach based on a multi-
objective logistic regression model using a genetic algorithm.
Panichella et al. [19] introduced a combined approach, coined
as CODEP, and found that the superior prediction accuracy
was achieved by CODEP when compared to stand-alone defect
predictors. Later, Zhang et al. [20] investigated seven compos-
ite algorithms and reported that several algorithms outperform
CODEP which combines different and complementary classi-
fiers learned by different machine learning algorithms. Gong
et al. [21] studied the class-imbalance problem and proposed
a class-imbalance learning approach. For the unsupervised
methods, Nam and Kim [22] proposed two novel approaches,
CLA and CLAMI, showing the potential for defect prediction
on unlabeled datasets in an automated manner. Specifically,
the CLAMI approach evaluated on seven open-source projects
led to promising prediction performances. Zhang et al. [23]
examined the two types of unsupervised classifiers (i.e.,
distance-based classifiers and connectivity-based classifiers)
for cross-project prediction. They found that a connectivity-
based unsupervised classifier can compete with supervised
classifiers. Zhou et al. [8] studied defect prediction using
unsupervised learning Manualdown, and their results showed
that Manualdown defect prediction model had equal or better
prediction performance than several existing CPDP models.

Although the field of CPDP shows promise, its major com-
ponent (data sharing) raises the concern of privacy preservation
dramatically.

B. Privacy Preservation in CPDP

The data used for defect prediction in projects is said to
be sensitive due to privacy preservation issues, and most
companies are reluctant to share data that is confidential
information [24]. For instance, Weyuker et al. [25] doubted
that she will ever make the AT&T data public to be used

Server Model

Server

Client

Client
Data

Client
Model

Client
Data

Client
Model

Client
Data

Client
Model

Data
Model Parameters

ηserver ηclient

learning rate

Fig. 1. The overview of federated learning

for defect predictions. Hence, privacy-preserving data-sharing
becomes an important focus in CPDP. Several researches have
attempted to address the privacy-preserving data-sharing issue.
As one of the pioneering works, Peters and Menzies [10]
proposed MORPH, a privacy algorithm designed to reduce
the attacker’s trust in the released data. Their results show
the possibility to secure against attackers while preserving the
relationships required for effective defect prediction. In the
following study, Peters et al. [26] explored privatization algo-
rithms and introduced CLIFF, an instance pruner that deletes
irrelevant examples. They tested CLIFF+MORPH among 10
defect datasets in a cross-company defect prediction, and
observed that CLIFFed+MORPHed algorithms provide more
privacy than the state-of-the-art privacy algorithms and per-
form significantly better in terms of utility. Later, to mitigate
the limitation of CLIFFed+MORPHed approach where it only
considers a single-party scenario, Peters et al. [11] further
proposed LACE2, a multi-party privacy policy. The evaluation
results showed that LACE2 is comparatively less expensive
than the single-party approach and LACE2 yields higher
privacy than the prior approach without damaging predictive
efficacy. In the recent work, Fan et al. [27] conducted a
thorough empirical investigation into the utility of existing
privacy-preserving data-sharing algorithms and reported Man-
ualDown has a comparable or even better defect prediction
performance. Moreover, they suggested that researchers should
use ManualDown as a baseline model for comparison to
develop practical privacy-preserving data-sharing algorithms.

With the use of these privacy algorithms, researchers have
found that it is the potential to reduce the confidential threat
during data sharing in CPDP. However, the privacy concern
yet cannot be fully resolved since sharing data among multiple
participants is inevitable in the existing work.

C. Federated Learning

Federated learning (FL) is a machine setting first introduced
in 2016 [28], where a group of Clients collaboratively train
a model under the orchestration of a central Server. Figure 1
illustrates a scenario of federated learning, in which a model is
provided in a centralized Server and several Clients distribu-
tively use their local data to train the Server model. Client’s

individual data itself cannot be identified, because the training
results of all the Client’s data are shared as weights (a.k.a.,
differential privacy). Then, model weights are exchanged
multiple times between the Server and Client models. Such
a privacy protection mechanism effectively prevents private
information from being leaked during data sharing [29, 30].

FL has recently received significant interest and is success-
fully adopted in research and applied perspectives [31]. For
instance, FL opens up new research directions for mobile
and artificial intelligence. To name a few, Hard et al. [32]
applied the federated algorithm to detect mobile keyboard and
confirmed that the feasibility and benefit of training models
on Clients. Hao et al. [15] proposed an efficient and privacy-
enhanced federated learning (PEFL) scheme for industrial AI
and demonstrated the superiority of PEFL in terms of accuracy
and efficiency. Liu et al. [33] developed an online visual object
detection platform powered by FL, which achieves significant
efficiency improvement.

Considering the privacy protection mechanism of FL and
its successful application, we conjecture that FL would be an
appropriate candidate to be injected into CPDP which will
greatly relieve the privacy concern during data sharing.

III. EXPERIMENTAL DESIGN

In this section, we describe the design of our experiment,
including the studied datasets, the proposal of the federated
learning model, and the approach for each research question.

A. Studied Datasets

In this study, we use the datasets provided in the prior CPDP
study [8], which are based on project-specific features and
the presence or absence of defects, covering both open-source
and closed-source projects. A summary of studied datasets
is shown in Table I. Datasets are grouped according to the
language, use of the project, and features. As shown in the
table, the column Projects shows the number of projects per
group. The column All Versions represents the total number
of all versions of the project, as some of the projects have
more than one version. The column Features represents the
number of studied features in the group. In the column Project
Type, OSS represents open-source software while CSS denotes
closed-source software. In this study, a total of 25 projects (i.e.,
twenty open-source projects and five closed-source projects)
with 59 versions from four groups of datasets are selected.

TABLE I
A SUMMARY OF STUDIED DATASETS

Group Projects All Versions Features Project Type Language

AEEEM 5 5 31 OSS Java
METRICSREPO 12 46 24 OSS Java
RELINK 3 3 26 OSS Java
SOFTLAB 5 5 29 CSS C

Total 25 59

(Step Ⅰ) Provide an unlearned server model

Client
Data A

Client
Data B

Server Client

Model A

Model B

Provide
an Unlearned
Server ModelUnlearned

Server Model

Client

Model A

Model B

Learn
a Model

Client
Data A

Client
Data B

(Step Ⅱ) Learn a model locally

Learned
Server Model

(Step Ⅴ) Defect prediction
Server

Project

Defect
prediction

Server Client

Learned
Model B

Learned
Model A

Server Learning Rate
ηserver

Aggregate
weights

(Step Ⅲ) Aggregate model weights

Server
Model

Client Learning Rate
ηclient

(Step Ⅳ) Update Client model weights
Server Client

Update
weights

Model A

Model B

Server
Model

Fig. 2. The overview of the proposed federated learning based CPDP model (FLR) between a Server and Clients

B. Federated Learning Based Cross-Project Defect Prediction

In this study, we propose a federated learning based CPDP
model, called FLR, for the aim of privacy preservation. To
implement federated learning, we leverage Tensorflow Fed-
erated1 as our model framework. Tensorflow Federated is a
framework that allows the simulation of federated learning
for neural network models in a local environment. Logistic
regression can be reproduced by neural networks because of its
simple structure. Therefore, we reproduce Logistic Regression
(LR) in a single-node neural network model using the Sigmoid
function and incorporate it into federated learning. Figure 2
illustrates the overview of federated learning based CPDP flow.
Below, we describe how the proposed CPDP model works step
by step:

• (Step I): Provide an unlearned Server model. In the first
step, the Server provides an unlearned Server model to
all participating Clients (Clients’ models). In our work,
Server model refers to the Logistic Regression model and
a Client denotes each version of a project in the studied
datasets.

• (Step II): Learn a model locally. After obtaining the
unlearned Server model, each participating Client then
uses the own data, trains the obtained model locally, and
updates the model weights.

• (Step III): Aggregate model weights to Server. In this step,
the Client shares only the weights of the updated model
with the Server model. A parameter called Server learning
rate ηserver is used to determine the learning rate of
weights to the Server model. The learning rate is a value
that measures how much the parameters of the model are
updated. The Server performs an averaging process on
the weights that are aggregated from the Client’s model
and then updates the parameter information in the Server
model.

• (Step IV): Update Client model weights. The Server
again distributes the parameter information of the updated

1https://www.tensorflow.org/federated

Server model to the Client model and updates the weights
of the Client model. A parameter called the Client learn-
ing rate ηclient is used to determine the learning rate
of weights to the Client’s model. This ensures that each
Client’s model has the weights obtained from the Server
model and that all Clients’ models are updated to have a
common weight.

• (Step V): Defect prediction. The updating and sharing of
the parameter information of the models owned by the
Server and the Client from Step II to Step IV is considered
as one round. Afterward, a specified number of rounds are
repeated to complete the full learning of the Server model.
Finally, the Server model that has been fully learned is
used to predict defects in the project. For the parameters
of federated learning used in the experiment, the number
of rounds was set to 100 to check the transition of the
binary cross-entropy which is a loss function.

C. Performance of FLR (RQ1)

To address RQ1: How well do federated learning CPDP
models perform compared to traditional privacy preserved
CPDP methods?, we compare the performance of our proposed
federated learning based CPDP (FLR) against the (i) privacy-
preserving methods (i.e., LACE2) and (ii) conventional CPDP
methods (i.e., supervised and unsupervised learning). Below,
we describe the studied baseline methods (i.e., seven in total),
along with their selection rationales in detail:

• Supervised Learning (SL): Three conventional kinds of
supervised learning models are elected: Logistic Regres-
sion (LR), Random Forest (RF), and K-Nearest Neighbor
(KNN). For the choice of LR, since we propose a
Federated Logistic Regression (FLR), we would like to
compare the proposed method against the one without
federated learning algorithm fairly. RF is considered,
since it is regarded as one of the best performing models
in the context of supervised learning based CPDP [34].
KNN is selected, because it is the model that was applied
in the LACE2 algorithm [11].

• LACE2: In this study, we focus on LACE2, which is a
privacy algorithm for multi-party data sharing proposed
by Peters et al. [11]. We choose this algorithm, since it
performs better than the prior privacy approach, reaching
higher accuracy. To construct the baseline models, we
apply LACE2 to the three studied supervised learning
methods (i.e., LR, RF, KNN), respectively.

• Unsupervised Learning (UL): Manualdown (MD) [8] is
selected as our comparable UL model. ManualDown con-
siders a larger module as more defect-prone. Moreover,
the prior work [8] recommended that Manualdown should
be taken as the baseline model in new CPDP models.

We use the datasets (i.e., 25 projects with 59 versions) de-
scribed in Section III-A to evaluate the performance of the
federated learning based CPDP model (FLR) and the elected
baseline models. Specifically, for the choice of testing data
in these studied models, we regard the latest version of each
project as testing data, i.e., 25 versions being identified from
25 projects. Since we focus on cross-project defect prediction,
when we use a project (i.e., an identified version) as testing
data, we do not use the non-latest versions of this project
as training data. Instead, all the versions, including the latest
versions, of the remaining projects are treated as training data.
The target of the training data is whether the project contains
defects (a value of 0 or 1). For the FLR model, SL (supervised
learning) models, and LACE2 models, we conducted 100
rounds of defect prediction for one testing data by randomly
sampling the training data to reduce the data selection bias.
We select 80% of the versions of the training data as the sam-
pled training data for each round. For the UL (unsupervised
learning) models, taking into account its nature, one round
is conducted for one testing data regardless of the training
data. The optimal parameters for each model are calculated
by performing a grid search. We used GridSearchCV function
provided by the sklearn packages [35].
Evaluation Metrics. We evaluate the proposed FLR model
and the seven baseline CPDP models in terms of two view-
points: non-effort-aware performance measures (NPMs) and
effort-aware performance measures (EPMs). We use four
NPMs and one EPM, and the details are described below.

Non effort-aware performance measure (NPMs). NPMs
are commonly used in defect prediction studies [36]. They
measure how accurately defect prediction models predict de-
fective entities (e.g., files). We use the following two kinds
of NPMs: threshold-dependent measures (precision, recall,
and F1), and threshold-independent measures (Area Under
the receiver operating characteristic Curve, AUC). For the
threshold-dependent measures, similar to the prior work [37],
we set a commonly-used probability threshold of 0.5. As
suggested by Tantithamthavorn and Hassan [38], threshold-
independent measures should be considered since threshold-
dependent measures can lead to different and conflicting
conclusions.

Effort-aware performance measure (EPMs). Xia et al. [39]
reported that NPMs are difficult to provide enough information
to help practitioners to evaluate CPDP models due to limited

testing resources. Hence, we also examine EPMs [37, 40, 36,
1]. EPMs can consider to what extent resources are required
to repair identified defects. Specifically, we use an EPM: Cost-
Effort@L, which measures the number of identified defective
entities (i.e., defective files) when developers inspect L lines
of code. We include the following three L variants: 20%
(CostEffort@20%), 1,000 lines of codes (CostEffort@1000),
and 2,000 lines of codes (CostEffort@2000).

To further statistically compare the evaluation measure (i.e.,
AUC) across the studied models, we use the Scott-Knott ESD
test [41] as our statistical test. The Scott-Knott ESD test ranks
the distributions based on not only statistically significant
differences but also Cohen’s d effect size. Note that the Scott-
Knott ESD test is performed on the seven models (i.e., FLR,
three SL based models, and three models employing LACE2),
since for UL based models, only one round is conducted for
one testing data.

D. Feature Interpretation (RQ2)

To address RQ2: What features affect the CPDP model
using federated learning?, we adopt a common way to interpret
defect prediction models by using feature importance, which
measures to what degree each feature contributes to the
model’s prediction. We use the AEEEM, METRICSREPO,
and RELINK datasets. Since this study uses a neural frame-
work as described in Section III-B, we interpret the model by
using permutation analysis [42], which is one of the analysis
methods that does not use the internal structure of the model.
In permutation analysis, a model is learned by reordering
completely at random certain features of the training data.
Therefore, the reordered features no longer have the ability
to explain the target. In other words, if the prediction per-
formance of a reordered feature is significantly worse than
the prediction performance of the original model, it can be
assumed that this feature affects the prediction performance.

As a pretreatment for the experiment, we first reduce
the features (explanatory variables) that share collinearity
by conducting correlation and redundancy analysis. Highly
correlated explanatory variables can interfere with each other
when examining the significance, which would potentially lead
to spurious conclusions. To do so, similar to the work of
McIntosh et al. [43], we use the Spearman rank correlation
(ρ) to assess the correlation between each pair of studied
features. We remove the pairs of features that have an absolute
Spearman correlation coefficient of above or equal to 0.7 [44].
To assure that studied features provide a unique signal, the
redun function [45] of the rms package is applied to further
remove variables with R2 above the threshold value of 0.9.
After performing the above two feature reduction methods,
permutation analysis is then performed on the remaining
features to investigate the performance difference in terms of
AUC evaluation metric.

Similar to RQ1, the Scott Knott ESD Test is adopted to
statistically examine the performance difference (i.e., AUC)
for each remaining feature, and the features are statistically
grouped into the ranks regarding performance.

IV. EXPERIMENTAL RESULTS

In this section, we present the results of our proposed two
research questions.

A. How well do federated learning CPDP models perform
compared to traditional privacy preserved CPDP methods?

Table II presents the results of the prediction performance
of FLR and the seven baseline models for each group of
studied datasets. The column Measure represents the diverse
evaluation metrics. For all chosen metrics, the larger values
are, the better the model performs. The column Loc refers to
the average lines of code for the projects in a group. Figure 3
shows the results of the Scott-Knott ESD test for the seven
studied models, excluding the unsupervised learning based
model. The rank group assignment by the Scott-Knott ESD
test explains that the higher the rank is, the better the model
is assigned to the group with the best prediction performance.
Specifically, Figure 3 shows the cumulative number of times a
model is assigned to each rank when the model is grouped by
AUC based on evaluation within each of the 25 testing data.
We now discuss the two main results below:

FLR model does not perform as well as conventional meth-
ods (SL and UL), but it is comparable with lower false alarm.
As shown in Table II, we observe that FLR model cannot
achieve the high F1 scores as the conventional CPDP methods
do. For instance, F1 scores of FLR model range from 0.175
to 0.378 for the studied four groups, however, the F1 scores
of LR model (supervised learning methods) and Manualdown
model (MD, unsupervised learning methods) vary from 0.353
to 0.368 and from 0.389 to 0.477, respectively. Furthermore,
a closer inspection of Scott-Knott ESD test shown in Figure
3, we see that the FLR model does not belong to a higher
rank group than the LR model in any of the evaluations upon
the four groups. This may be due to the fact that the LR
model can use the original data as training data, whereas the
FLR model uses a model that aggregates the parameters of the
model trained by the Client, and thus the data itself is kept
confidential.

On the other hand, we find that our proposed FLR is still
comparable to these conventional CPDP methods in terms of
other evaluation metrics. For example, FLR model results in
a better precision across the baseline models. Specifically, the
precision scores of FLR model are from 0.491 to 0.714 for
the four groups, while the precision scores of SL models (i.e.,
LR, RF, and KNN) and UL model (i.e., MD) are from 0.316
to 0.611 and from 0.250 to 0.592, separately. The precision
indicates how accurately the model identifies defective entities;
the higher the precision, the fewer false alarms. Hence, these
results suggest that FLR model yields stronger privacy but also
provides a less number of false alarms. Moreover, in terms of
CostEffort@20%, we observe that FLR model shows better
evaluation than the UL model, scores being from 0.077 to
0.154. With regards to the Scott-Knott ESD test depicted in
Figure 3, the FLR model is assigned to the first group 5 times
(20 percent) and the second group 12 times (48 percent) for the

0

5

10

15

20

25

SL(RF) SL(LR) FL(FLR) SL(KNN) LACE2(LR) LACE2(RF) LACE2(KNN)

Model

N
u
m

b
e
r

o
f
T
im

e
s

A
ll
o
c
a
te

d
 p

e
r

R
a
n
k
 G

ro
u
p

Rank

1

2

3

4

5

6

7

Fig. 3. Distribution of Scott Knott ESD Test rank groups for AUC of the
model

25 testing data, suggesting that it also has some comparable
prediction potential against the conventional CPDP methods.

FLR model relatively outperforms the existing privacy-
preserving methods. As we can see from Table II, FLR model
yields higher precision and AUC scores greatly than all the
models that apply LACE2 algorithm. For instance, the AUC
scores of FLR model range from 0.684 to 0.770, while the
AUC scores of LACE2 ones range from 0.456 to 0.679.
Meanwhile, the precision scores of FLR model vary from
0.491 to 0.714, however, the AUC scores of the models that
apply LACE2 are from 0.134 to 0.296. In addition, the Scott-
Knott ESD test results in Figure 3 show that the FLR model
belongs to a higher rank group than any of the LACE2 models
in all testing data across four groups. These findings suggest
that FLR model relatively performs better than the existing
privacy-preserving methods from the practitioner view, though
lower recall scores.

RQ1 Summary

Our evaluation results show that the FLR model
achieves higher prediction performance (i.e., preci-
sion and AUC) than the existing privacy-preserving
methods (i.e., LACE2). When compared against the
conventional methods, the FLR model does not per-
form as well as the conventional methods, but shows
comparable prediction potential (i.e., higher precision).
Moreover, the statistical tests confirmed that the FLR
model is likely to be assigned to the higher rank group
in prediction performance (68% of the testing data).

B. What features affect the CPDP model using federated
learning?

Table III presents the top-3 ranking features in the Scott-
Knott ESD test for the evaluated datasets. The column Rank
represents the ranks by the Scott-Knott ESD test; the column
Feature and the columns Description denotes the feature and

TABLE II
MEDIAN AUC OF MODELS PER DATASET GROUP

(HIGHLIGHTS: FLR MODEL HAS HIGHER AUC AND PRECISION THAN THE THREE LACE2 MODELS)

Type Measure Group Loc FL SL SL SL UL LACE2 LACE2 LACE2
FLR LR RF KNN MD LR RF KNN

NPM

AUC

AEEEM 146952 0.684 0.718 0.739 0.632 0.717 0.565 0.543 0.509
METRICSREPO 110383 0.679 0.709 0.697 0.609 0.693 0.558 0.542 0.532
RELINK 41110 0.712 0.740 0.679 0.611 0.762 0.542 0.542 0.534
SOFTLAB 2535 0.770 0.796 0.775 0.632 0.788 0.554 0.542 0.540

Precision

AEEEM 146952 0.680 0.556 0.611 0.316 0.295 0.134 0.137 0.136
METRICSREPO 110383 0.620 0.603 0.567 0.344 0.471 0.245 0.199 0.208
RELINK 41110 0.714 0.611 0.589 0.393 0.592 0.279 0.275 0.273
SOFTLAB 2535 0.491 0.603 0.611 0.400 0.250 0.270 0.225 0.296

Recall

AEEEM 146952 0.108 0.172 0.172 0.172 0.733 0.941 0.832 0.980
METRICSREPO 110383 0.257 0.172 0.193 0.299 0.650 0.300 0.622 0.616
RELINK 41110 0.290 0.182 0.218 0.332 0.745 0.330 0.616 0.633
SOFTLAB 2535 0.113 0.156 0.222 0.333 0.852 0.350 0.596 0.616

F1

AEEEM 146952 0.175 0.353 0.318 0.222 0.409 0.235 0.235 0.239
METRICSREPO 110383 0.266 0.353 0.323 0.340 0.389 0.270 0.302 0.311
RELINK 41110 0.378 0.368 0.361 0.359 0.477 0.302 0.381 0.382
SOFTLAB 2535 0.179 0.349 0.379 0.364 0.408 0.305 0.327 0.400

EPM

CostEffort@20%

AEEEM 146952 0.130 0.164 0.107 0.098 0.040 0.298 0.127 0.206
METRICSREPO 110383 0.077 0.083 0.092 0.128 0.027 0.205 0.151 0.182
RELINK 41110 0.085 0.080 0.089 0.132 0.053 0.210 0.150 0.178
SOFTLAB 2535 0.154 0.106 0.111 0.136 0.125 0.222 0.158 0.175

CostEffort@1000

AEEEM 146952 0.000 0.000 0.000 0.005 0.000 0.012 0.000 0.005
METRICSREPO 110383 0.000 0.000 0.000 0.004 0.000 0.005 0.000 0.005
RELINK 41110 0.008 0.000 0.000 0.004 0.000 0.005 0.000 0.005
SOFTLAB 2535 0.375 0.000 0.000 0.005 0.375 0.021 0.000 0.012

CostEffort@2000

AEEEM 146952 0.008 0.008 0.004 0.010 0.000 0.016 0.005 0.010
METRICSREPO 110383 0.000 0.005 0.000 0.007 0.000 0.012 0.005 0.010
RELINK 41110 0.025 0.005 0.000 0.008 0.017 0.014 0.006 0.010
SOFTLAB 2535 1.000 0.008 0.001 0.012 1.000 0.042 0.021 0.023

its description, respectively; the column Boxplot refers to the
boxplots of AUC differences between the original AUC values
in RQ1 and the ones in the permutation analysis. Below we
now discuss the important features of the three datasets.

AEEEM. Nine features survived from 31 original features
after the correlation and redundancy analysis within this group.
The surviving features are concerning the Chidamber and Ke-
merer (CK) features [48] and the object-oriented features [46].
As shown in Table III, fanOut (the number of other classes
referred by the class) has a relatively larger effect on the
FLR model. fanOut is a metric that is highly correlated with
cbo (coupling between object classes). Specifically, fanOut
achieves the first rank, and its performance difference is visibly
greater than the fanIn and the numberOfPublicMethods. This
result suggests that the coupling-related features are more
likely to affect the proposed FLR model. On the other hand,
we also notice that numberOfPublicMethods, which is related
to the scale category, also shows an effect in the model
performance (rank 3).

METRICSREPO. Twelve features remained out of 24 origi-
nal features, which belong to five categories (i.e., complexity,
coupling, cohesion, inheritance, and scale) by Yao et al. [47].
Compared to the other datasets, we observe that the number of
features in the top 3 ranks is larger, implying that the feature

importance is relatively equally distributed across each feature
within the METRICSREPO dataset. The top 1 rank, however,
only includes one feature npm (number of public methods) as
shown in Table III. The correlation analysis showed that npm
is strongly correlated with wmc (weighted methods per class).
Both features are classified into the scale category as per the
prior work. Such a result suggests that scale-related features
may greatly contribute to the fit of our FLR model.

RELINK. Four features (AvgEssential, AvgLineBlank, Rati-
oCommentToCode, SumEsssential) survived from 26 features
after the correlation and redundancy analysis. During the anal-
ysis, for instance, we found that the AvgEssential is strongly
correlated with the cyclomatic complexity features, such as
the mean value of cyclomatic complexity. While SumEssential
is highly correlated to the features regarding the code itself,
such as the number of lines of code or lines of code executed.
Table III shows that the top 1 rank is SumEssential (sum of
essential complexity of all nested functions or methods). This
observation indicates that the feature regarding the code itself
(i.e., complexity) is relatively more important than the other
features in the FLR model. Meanwhile, similar to the prior
two evaluated datasets, we find that scale-related features (i.e.,
AvgLineBlank, RatioCommentToCode) also play a role, ranked
as 2 and 3, respectively.

TABLE III
DISTRIBUTION OF SCOTT KNOTT ESD TEST RANK GROUPS FOR AUC WITH PER GROUP (TOP3)

Group Rank Feature Description Boxplot (Difference in AUC with and without permutation analysis)

AEEEM[46] 1 fanOut Number of other classes referred
by the class

-0.4 -0.2 0.0 0.2

2 fanIn Number of other classes that refer
to the class

-0.4 -0.2 0.0 0.2

3 numberOfPublicMethods Number of public methods

-0.4 -0.2 0.0 0.2

METRICSREPO[47] 1 npm (Number of Public Methods) Number of public methods

-0.1
0

-0.0
5 0.00 0.05 0.10

2 avg_cc (Average McCabe) Average McCabe’s Cyclomatic
Complexity values of methods in
the same class

-0.1
0

-0.0
5 0.00 0.05 0.10

2 ca (Afferent Couplings) How many other classes use the
specific class

-0.1
0

-0.0
5 0.00 0.05 0.10

2 ce (Efferent Couplings) How many other classes is used by
the specific class

-0.1
0

-0.0
5 0.00 0.05 0.10

2 dit (Depth of Inheritance Tree) Provides the position of the class
in the inheritance tree

-0.1
0

-0.0
5 0.00 0.05 0.10

2 ic (Inheritance Coupling) Number of parent classes to which
a given class is coupled

-0.1
0

-0.0
5 0.00 0.05 0.10

3 amc (Average Method Complexity) Average method complexity (e.g.,
using number of java byte codes)

-0.1
0

-0.0
5 0.00 0.05 0.10

3 lcom (Lack of Cohesion in Meth-
ods)

Number of pairs of methods that do
not share a reference to an instance
variable

-0.1
0

-0.0
5 0.00 0.05 0.10

3 lcom3 (Lack of Cohesion in Meth-
ods, different from lcom)

If m, a are the number of methods,
attributes in a class number and
µ(a) is the number of methods ac-
cessing an attribute, then lcom3 =
((1

a

∑a
j µ(aj))−m)/(1−m)

-0.1
0

-0.0
5 0.00 0.05 0.10

3 noc (Number of Children) Measures the number of immediate
descendants of the class

-0.1
0

-0.0
5 0.00 0.05 0.10

RELINK 1 SumEssential Sum of Essential complexity of all
nested functions or methods

-0.6 -0.4 -0.2 0.0 0.2 0.4

2 AvgEssential Average Essential complexity for
all nested functions or methods

-0.6 -0.4 -0.2 0.0 0.2 0.4

2 AvgLineBlank Average number of blank for all
nested functions or methods

-0.6 -0.4 -0.2 0.0 0.2 0.4

3 RatioCommentToCode Ratio of comment lines to code
lines

-0.6 -0.4 -0.2 0.0 0.2 0.4

RQ2 Summary

The results of the feature interpretation analysis show
that on the one hand, the most important feature differs
from the evaluated datasets. On the other hand, we find
that scale-related features commonly have an effect on
the prediction performance of the FLR model in terms
of the top-3 features.

V. DISCUSSION

In this section, we further discuss the effect of the learning
rate and the client participation on the prediction performance.

A. Does the Server/Client learning rate improve prediction
performance?

Objective. In the FLR model approach, model weights are
exchanged multiple times between the Server and Client
models. Two parameters used in this process are ηserver and
ηclient as we describe in Section III-B. ηserver applies the
weights updated at the client to the global model at the server.
ηclient is used to compute weight updates for the respective
local models at the client. The two learning rates are both
expressed as a value between 0 and 1, and are calculated
as follows when updating parameters, similar to the gradient
descent method in machine learning. In the following formula,
w denotes the parameter, η is the Server or Client learning rate,
and g represents the gradient of the cost function.

w = w − η × g (1)

These two learning rates are significant parameters that lead
to how much of the model parameters are received. Thus, we
would like to examine the relationship between the learning
rates and the model performance.

Approach. To address this, we investigate the performance
change of FLR models when the parameters ηclient and ηserver
for the Client and Server models in the FLR model are
combined at values of [0.01, 0.05, 0.1, 0.5, 1.0], respectively.
Four datasets are used, and all eight different models are
trained and tested in the same manner as RQ1. AUC is used
as the evaluation metric.

Results. Figure 4 (a) presents the AUC change of the FLR
model where ηclient is fixed and ηserver is varied and Figure
4 (b) shows the AUC change of the FLR model where the value
of ηserver is fixed and ηclient is changed. The results show that
for all ηserver, there is a large difference when ηserver is set
between 0.01 and 0.05. Conversely, significant performance
improvement is not observed between 0.10 and 1.0. As shown
in Figure 4 (b), when the Server learning rate ηserver is fixed
and the Client learning rate ηclient is varied, the performance
difference between ηclient of 0.01 and 0.05 is also larger than
the other cases (i.e., between 0.10 and 1.0).

These results suggest that for both ηserver and ηclient, when
the value is up to 0.05, it has a significant impact on CPDP
performance improvement, while the values larger than 0.10
do not show significant performance improvement.

Observation I

For both ηserver and ηclient, the learning rates for the
exchange of parameters between the Server and the
Client, when the value is up to 0.05, there is a large
impact on the performance improvement of the CPDP.
However, when the value is larger than 0.10, there is
no significant performance improvement.

B. Does predictive performance improve as client participa-
tion increases?

Objective. One of the important characteristics of federated
learning approach is the presence of Clients. Knowing to what
extent the presence of Clients affects prediction performance is
one indicator for estimating the number of participants and the
required data to inject federated learning into CPDP. Hence,
we would like to further examine the relationship between the
number of Clients and the forecasting performance.

Approach. To shed light, we use the data from the METRIC-
SREPO group, which contains the largest number of projects
and versions (i.e., 12 projects with 46 versions). Therefore, this
dataset is an appropriate candidate used to see the impact of
changes in the number of Clients over a wide range. The FLR
model is then trained and tested similar to RQ1, by measuring
the change in performance when the number of Clients is
varied within the list of [1, 10, 20, 30, 40]. AUC is used
as the evaluation metric.

Results. Figure 5 shows the AUC change in the FLR model
when the number of Clients is increased for each project
under the METRICSREPO group. With the number of Clients
changing from 1 to 10, the model performance gets relatively
improved greatly for all projects. When the number of Clients
is larger than 10, on the one hand, the Ivy, PBeans, and
Synapse projects show increasing performance improvements
slightly. On the other hand, the performance of the other
projects does not visibly get improved as the number of
Clients increases, and the performance improvement tends to
be flat. This could be implied that the weights of the Server
model aggregated from the Client models become closer to the
average as the number of projects in the same group increases
with the number of Clients since data from the same group is
used for feature unification.

Observation II

Results show that increasing the number of Clients
tends to improve performance when the number of
Clients is up to 10. However, the performance does not
get great improvement when the number of Clients is
greater than 10.

VI. THREATS TO VALIDITY

In this section, we disclose the threats to validity.

0.55

0.60

0.65

0.70

0.01 0.05 0.10 0.50 1.00

η_server

AU
C

η_client
0.01
0.05
0.1
0.5
1

(a) AUC for each ηclient when ηserver is Fixed

0.55

0.60

0.65

0.70

0.0
1

0.0
5

0.1
0

0.5
0

1.0
0

η_client

AU
C

η_server
0.01
0.05
0.1
0.5
1

(b) AUC for each ηserver when ηclient is Fixed

Fig. 4. AUC variation by ηserver and ηclient

0.5

0.6

0.7

0.8

0 10 20 30 40
Number of Clients

AU
C

Ant 1.7
Camel 1.6
Ivy 2.0
JEdit 4.3
Log4j 1.2
Lucene 2.4
PBeans 2.0
Poi 3.0
Redaktor
Synapse 1.2
Velocity 1.6
Xalan 2.7

Fig. 5. AUC by Number of Clients in METRICS REPO Projects

a) External Validity: This validity is with regard to the
generalization ability of the results. In this study, we evaluate
the performance proposed FLR model against the existing
CPDP models, using 25 projects. The threat may occur due to
the number or the variety of the selected projects. However,
we are confident that these projects are representative enough
to provide insights, as they are widely studied in the prior
work [8]. Moreover, in RQ2, we excluded the SOFTLAB
dataset to investigate what features would play a role in FLR
model, due to the time limitation. The results may also not be
generalized to other projects. While our goal is to shed light on
the effect of important features. Nevertheless, future research
should be extended to take more projects into account and see
whether or not the effect commonly exists.

b) Internal Validity: It refers to the approximate truth
about inferences. The threat could occur during the reproduc-
tion of the existing models. In this study, we implement the
seven CPDP methods, including supervised learning, LACE2,
and unsupervised learning. The choice of the parameter may
affect the accurate reproduction, however, to avoid this threat,
we carefully inspected the literature and reproduced the
method step by step. In addition, to measure the performance,
we adopt commonly used evaluation metrics, e.g., precision,
AUC, and CostEffort. The evaluation conclusion may differ
from the other evaluation metrics.

c) Construct Validity: This validity is related to the
degree to which our measurements capture. To implement
the FLR model, we apply the Tensorflow Federated. Tensor-

flow Federated is a framework that enables execution in a
simulation environment, but not in an actual data-distributed
environment. Thus, the constructed threat would exist due to
the different environment. Future research should be extended
to be conducted in a data-distributed environment.

VII. CONCLUSION & FUTURE WORK

We propose a CPDP model in this paper, coined as FLR,
that incorporates logistic regression to federated learning,
to address the challenge of privacy preservation. We then
perform an empirical study using 25 projects to evaluate their
effectiveness and interpret the important features. In terms of
effectiveness, our results show that the FLR model achieves
higher precision and AUC than the existing models that apply
the privacy preservation algorithm LACE2. In terms of feature
interpretation, the results demonstrate that although the most
important feature differs from the evaluated datasets, the scale-
related features are likely to have a common effect on the
prediction performance of the FLR model.

Our work confirms the promise of CPDP models that
employ federated learning. At the same time, we open up
several future research directions. For instance, the results of
the RQ2 experiments are based on open-source datasets due
to limited time, thus, closed-source datasets (e.g., SOFTLAB)
should be taken into account to increase the generality of the
results. Meanwhile, a further control study is supposed to be
conducted to compare against those CPDP models without
federated learning to confirm the effect of federated learning
on the feature values. Regarding the model selection used in
federated learning, our study only confirms the performance
of the Logistic Regression model, but other models used in
CPDP are also suggested to be incorporated into federated
learning and investigated.

ACKNOWLEDGEMENT

This research was partially supported by JSPS KAK-
ENHI Japan (Grant Numbers: JP18H04097, JP20H04167,
JP21H04877, JP22K17874, JP22K18630) and JSPS Interna-
tional Joint Research Program with SNSF (Project “SEN-
SOR”: JPJSJRP20191502).

REFERENCES

[1] Y. Kamei, E. Shihab, B. Adams, A. E. Hassan,
A. Mockus, A. Sinha, and N. Ubayashi, “A large-scale
empirical study of just-in-time quality assurance,” IEEE
Transactions on Software Engineering, vol. 39, no. 6, pp.
757–773, 2013.

[2] Z. Wan, X. Xia, A. E. Hassan, D. Lo, J. Yin, and X. Yang,
“Perceptions, expectations, and challenges in defect pre-
diction,” IEEE Transactions on Software Engineering,
vol. 46, no. 11, pp. 1241–1266, 2018.

[3] T. Zimmermann, N. Nagappan, H. Gall, E. Giger, and
B. Murphy, “Cross-project defect prediction: A large
scale experiment on data vs. domain vs. process,” in Pro-
ceedings of the 7th Joint Meeting of the European Soft-
ware Engineering Conference and the ACM SIGSOFT
Symposium on The Foundations of Software Engineering,
2009, p. 91–100.

[4] S. Hosseini, B. Turhan, and D. Gunarathna, “A system-
atic literature review and meta-analysis on cross project
defect prediction,” IEEE Transactions on Software Engi-
neering, vol. 45, no. 2, pp. 111–147, 2017.

[5] Q. Zou, L. Lu, Z. Yang, X. Gu, and S. Qiu, “Joint fea-
ture representation learning and progressive distribution
matching for cross-project defect prediction,” Informa-
tion and Software Technology, vol. 137, p. 106588, 2021.

[6] G. Boetticher, “The promise repository of empiri-
cal software engineering data,” http://promisedata.org/
repository, 2007.

[7] Z. He, F. Peters, T. Menzies, and Y. Yang, “Learning
from open-source projects: An empirical study on defect
prediction,” in Proceedings of the 7th IEEE International
Symposium on Empirical Software Engineering and Mea-
surement, 2013, pp. 45–54.

[8] Y. Zhou, Y. Yang, H. Lu, L. Chen, Y. Li, Y. Zhao, J. Qian,
and B. Xu, “How far we have progressed in the journey?
an examination of cross-project defect prediction,” ACM
Transactions on Software Engineering and Methodology,
vol. 27, no. 1, pp. 1–51, 2018.

[9] X. Jing, F. Wu, X. Dong, F. Qi, and B. Xu, “Het-
erogeneous cross-company defect prediction by unified
metric representation and cca-based transfer learning,”
in Proceedings of the 10th joint meeting on foundations
of software engineering, 2015, pp. 496–507.

[10] F. Peters and T. Menzies, “Privacy and utility for defect
prediction: Experiments with morph,” in Proceedings of
the 34th International Conference on Software Engineer-
ing, 2012, p. 189–199.

[11] F. Peters, T. Menzies, and L. Layman, “Lace2: Better
privacy-preserving data sharing for cross project defect
prediction,” in Proceedings of the 37th IEEE Interna-
tional Conference on Software Engineering, vol. 1, 2015,
pp. 801–811.

[12] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated ma-
chine learning: Concept and applications,” ACM Trans-
actions on Intelligent Systems and Technology, vol. 10,

no. 2, pp. 1–19, 2019.
[13] Y. Lu, X. Huang, Y. Dai, S. Maharjan, and Y. Zhang,

“Blockchain and federated learning for privacy-preserved
data sharing in industrial iot,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 6, pp. 4177–4186,
2019.

[14] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig,
R. Zhang, and Y. Zhou, “A hybrid approach to privacy-
preserving federated learning,” in Proceedings of the 12th
ACM workshop on artificial intelligence and security,
2019, pp. 1–11.

[15] M. Hao, H. Li, X. Luo, G. Xu, H. Yang, and S. Liu,
“Efficient and privacy-enhanced federated learning for
industrial artificial intelligence,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 10, pp. 6532–6542,
2019.

[16] Replication package. [Online]. Available: https://github.
com/posl/SANER2023_CPDPwithFL

[17] N. Li, M. Shepperd, and Y. Guo, “A systematic review
of unsupervised learning techniques for software defect
prediction,” Information and Software Technology, vol.
122, p. 106287, 2020.

[18] G. Canfora, A. De Lucia, M. Di Penta, R. Oliveto,
A. Panichella, and S. Panichella, “Multi-objective cross-
project defect prediction,” in Proceedings of the 6th In-
ternational Conference on Software Testing, Verification
and Validation, 2013, pp. 252–261.

[19] A. Panichella, R. Oliveto, and A. De Lucia, “Cross-
project defect prediction models: L’union fait la force,” in
Proceedings of the 2014 Software Evolution Week-IEEE
Conference on Software Maintenance, Reengineering,
and Reverse Engineering, 2014, pp. 164–173.

[20] Y. Zhang, D. Lo, X. Xia, and J. Sun, “An empirical
study of classifier combination for cross-project defect
prediction,” in Proceedings of the 39th Annual computer
software and applications conference, vol. 2, 2015, pp.
264–269.

[21] L. Gong, S. Jiang, L. Bo, L. Jiang, and J. Qian, “A
novel class-imbalance learning approach for both within-
project and cross-project defect prediction,” IEEE Trans-
actions on Reliability, vol. 69, no. 1, pp. 40–54, 2020.

[22] J. Nam and S. Kim, “Clami: Defect prediction on unla-
beled datasets (t),” in Proceedings of the 30th IEEE/ACM
International Conference on Automated Software Engi-
neering, 2015, pp. 452–463.

[23] F. Zhang, Q. Zheng, Y. Zou, and A. E. Hassan, “Cross-
project defect prediction using a connectivity-based un-
supervised classifier,” in Proceedings of the 38th Inter-
national Conference on Software Engineering, 2016, pp.
309–320.

[24] Z. Li, X.-Y. Jing, and X. Zhu, “Progress on approaches to
software defect prediction,” IET Software, vol. 12, no. 3,
pp. 161–175, 2018.

[25] E. J. Weyuker, T. J. Ostrand, and R. M. Bell, “Do too
many cooks spoil the broth? using the number of devel-
opers to enhance defect prediction models,” Empirical

Software Engineering, vol. 13, no. 5, pp. 539–559, 2008.
[26] F. Peters, T. Menzies, L. Gong, and H. Zhang, “Balancing

privacy and utility in cross-company defect prediction,”
IEEE Transactions on Software Engineering, vol. 39, pp.
1054–1068, 2013.

[27] Y. Fan, C. Lv, X. Zhang, G. Zhou, and Y. Zhou, “The
utility challenge of privacy-preserving data-sharing in
cross-company defect prediction: An empirical study of
the cliff&morph algorithm,” in Proceedings of the 33rd
International Conference on Software Maintenance and
Evolution, 2017, pp. 80–90.

[28] B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of
deep networks from decentralized data,” in Artificial
intelligence and statistics, 2017, pp. 1273–1282.

[29] K. Wei, J. Li, M. Ding, C. Ma, H. H. Yang, F. Farokhi,
S. Jin, T. Q. Quek, and H. V. Poor, “Federated learning
with differential privacy: Algorithms and performance
analysis,” IEEE Transactions on Information Forensics
and Security, vol. 15, pp. 3454–3469, 2020.

[30] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Ben-
nis, A. N. Bhagoji, K. Bonawitz, Z. Charles, G. Cormode,
R. Cummings et al., “Advances and open problems in
federated learning,” Foundations and Trends® in Ma-
chine Learning, vol. 14, no. 1–2, pp. 1–210, 2021.

[31] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated
learning: Challenges, methods, and future directions,”
IEEE Signal Processing Magazine, vol. 37, no. 3, pp.
50–60, 2020.

[32] A. Hard, K. Rao, R. Mathews, S. Ramaswamy, F. Beau-
fays, S. Augenstein, H. Eichner, C. Kiddon, and D. Ram-
age, “Federated learning for mobile keyboard prediction,”
arXiv preprint arXiv:1811.03604, 2018.

[33] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen,
L. Feng, T. Chen, H. Yu, and Q. Yang, “Fedvision: An
online visual object detection platform powered by feder-
ated learning,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 34, no. 08, 2020, pp. 13 172–
13 179.

[34] L. Goel, M. Sharma, S. K. Khatri, and D. Damodaran,
“Prediction of cross project defects using ensemble based
multinomial classifier,” EAI Endorsed Transactions on
Scalable Information Systems, vol. 7, pp. 1–14, 2020.

[35] Gridsearchcv. [Online]. Available: https:
//scikit-learn.org/stable/modules/generated/sklearn.
model_selection.GridSearchCV.html

[36] C. Ni, X. Xia, D. Lo, X. Chen, and Q. Gu, “Revisiting
supervised and unsupervised methods for effort-aware
cross-project defect prediction,” IEEE Transactions on
Software Engineering, vol. 48, no. 3, pp. 786–802, 2022.

[37] M. Kondo, Y. Kashiwa, Y. Kamei, and O. Mizuno, “An
empirical study of issue-link algorithms: which issue-
link algorithms should we use?” Empirical Software
Engineering, vol. 27, pp. 1–50, 2022.

[38] C. Tantithamthavorn and A. E. Hassan, “An experience
report on defect modelling in practice: Pitfalls and chal-

lenges,” in Proceedings of the 40th International Confer-
ence on Software Engineering: Software Engineering in
Practice, 2018, p. 286–295.

[39] X. Xia, D. Lo, S. J. Pan, N. Nagappan, and X. Wang,
“Hydra: Massively compositional model for cross-project
defect prediction,” IEEE Transactions on Software Engi-
neering, vol. 42, no. 10, pp. 977–998, 2016.

[40] Q. Huang, X. Xia, and D. Lo, “Supervised vs unsu-
pervised models: A holistic look at effort-aware just-
in-time defect prediction,” in Proceedings of the 33rd
International Conference on Software Maintenance and
Evolution, 2017, pp. 159–170.

[41] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and
K. Matsumoto, “An empirical comparison of model val-
idation techniques for defect prediction models,” IEEE
Transactions on Software Engineering, vol. 43, no. 1,
pp. 1–18, 2016.

[42] G. K. Rajbahadur, S. Wang, G. Ansaldi, Y. Kamei,
and A. E. Hassan, “The impact of feature importance
methods on the interpretation of defect classifiers,” IEEE
Transactions on Software Engineering, vol. 48, no. 7, pp.
2245–2261, 2021.

[43] S. McIntosh, Y. Kamei, B. Adams, and A. E. Hassan,
“An empirical study of the impact of modern code
review practices on software quality,” Empirical Software
Engineering, vol. 21, p. 2146–2189, 2015.

[44] H. C. Kraemer, G. A. Morgan, N. L. Leech, J. A. Gliner,
J. J. Vaske, and R. J. Harmon, “Measures of clinical
significance,” Journal of the American Academy of Child
& Adolescent Psychiatry, vol. 42, no. 12, pp. 1524–1529,
2003.

[45] redun. [Online]. Available: https://www.rdocumentation.
org/packages/Hmisc/versions/4.7-0/topics/redun

[46] M. D’Ambros, M. Lanza, and R. Robbes, “Evaluating
defect prediction approaches: A benchmark and an ex-
tensive comparison,” Empirical Software Engineering,
vol. 17, pp. 1–47, 2012.

[47] Z. Yao, J. Song, Y. Liu, T. Zhang, and J. Wang, “Research
on cross-version software defect prediction based on evo-
lutionary information,” IOP Conference Series: Materials
Science and Engineering, vol. 563, p. 052092, 2019.

[48] S. Chidamber and C. Kemerer, “A metrics suite for
object oriented design,” IEEE Transactions on Software
Engineering, vol. 20, no. 6, pp. 476–493, 1994.

