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Abstract

Technical Debt is a metaphor used to express sub-optimal source code imple-

mentations that are introduced for short-term benefits that often need to be paid

back later, at an increased cost. In recent years, various empirical studies have

focused on investigating source code comments that indicate Technical Debt

– often referred to as Self-Admitted Technical Debt (SATD). Since the intro-

duction of SATD as a concept, an increasing number of studies have examined

various aspects pertaining to SATD. Therefore, in this paper we survey research

work on SATD, analyzing the characteristics of current approaches and tech-

niques for SATD detection, comprehension, and repayment. To motivate the

submission of novel and improved work, we compile tools, resources, and data

sets made available to replicate or extend current SATD research. To set the

stage for future work, we identify open challenges in the study of SATD, areas

that are missing investigation, and discuss potential future research avenues.

Keywords: Self Admitted Technical Debt, Software Maintenance, Literature

Survey, Source Code Comments

1. Introduction

As software undergoes its development and maintenance, developers are not

always able to contribute code as required by specification. In 1992, Ward
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Cunningham first introduced the metaphor of considering the “not-quite-right

code” as a form of debt [1]. This came to be know as the Technical Debt (TD)5

metaphor, which explains the concept of delivering a solution that is not com-

plete, temporary or sub-optimal; thus incurring in debt to obtain short-term

benefits that have to be paid over the long-term with an increased cost. De-

velopers experience different factors that can lead them to introduce technical

debt, such as deadline pressure, existing low quality code, bad software process,10

or business reality [2]. Technical Debt can be introduced both consciously or

unconsciously, and as found recently, developers tend to underestimate the con-

sequences of repaying the debt, possibly leading to ever-growing problems [3].

Because of its clear importance to the software process and quality, an abun-

dant amount of research has investigated TD [4, 5]. While in the past most15

studies focused on detecting and managing debt found in source code, the re-

search scope has gradually grown to include additional software artifacts, e.g.,

documentation or requirements [6, 7].

In 2014, Potdar and Shihab [8] took a new research direction by conducting

an exploratory study on source code comments that point to debt instances.20

The authors first referred to this phenomenon as Self-Admitted Technical Debt

(SATD). Their rational being that when developers consciously introduce debt

(i.e., code that is either incomplete, defective, temporary, or simply sub-optimal)

and acknowledge so in the form of comments they self-admit it. Brief examples

of these comments are: “TODO: - This method is too complex, lets break it up”25

from ArgoUml, and “Hack to allow entire URL to be provided in host field”

from JMeter [9, 10].

Potdar and Shihab extracted a large set of source code comments from 4 large

open source systems and manually analyzed them to point at debt instances.

As found by their investigation, this phenomenon occurs commonly in software30

systems [8]. Since then, a number of studies focusing on various aspects of

SATD have emerged, exploring and improving on approaches and techniques

to better identify, understand and manage SATD. This recent and increasing

turn out of empirical work in this branch of TD denotes the importance given
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to it by the Software Engineering community. Taking into consideration that35

this research track is fairly recent, the early efforts of current studies on SATD

remain scattered in focus and face various challenges to overcome. We believe it

is the right time to reflect on recent accomplishments in the area and examine

open problems to pave the path for future work.

Therefore, this paper presents a survey of SATD studies from recent years,40

i.e., since the original ICSME paper that proposed SATD. Through our exami-

nation of the published papers, we find that the vast majority of SATD research

work can be categorized into three categories: work focusing on the detection

of SATD, work that aims to improve the comprehension of SATD, and work

focusing on the repayment of SATD. Hence, we structure our survey to reflect45

these 3 main categories. Specifically, our paper provides an overview of past

and current works in the detection, comprehension and repayment of SATD.

Moreover, to support and promote further research in the domain, we identify

potential future avenues for SATD research and discuss its current challenges.

Throughout this survey we also point at available resources such as tools and50

datasets that can serve as foundations or baselines for new SATD studies. A

compiled table with the published artifacts and online references from the sur-

veyed work is available online1.

The remainder of this paper is organized as follows: Section 2 describes the

objectives, scope and literature selection for the survey; Section 3 analyses and55

compares the findings and contributions of current SATD studies; Section 4 goes

over the possible future research avenues in this area and its challenges. Lastly,

Section 5 presents the conclusions and limitations of the survey.

2. Preliminaries

This section details the scope and selection of studies for our survey. We60

also provide definitions for the terms we use throughout the paper. Finally, we

1http://das.encs.concordia.ca/uploads/SATD-Survey-Published-artifacts.pdf
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present a high-level overview of the SATD literature published to date.

2.1. Scope and paper selection

The focus of this paper is Self-Admitted Technical Debt as a sub-domain of

Technical Debt. We clarify that work focusing entirely on Technical Debt (and65

not SATD specifically) is not in scope and refer our readers to recent literature

that focused on that area (e.g., [4, 5]). To select the papers included in this

survey we used both the references from known SATD research, and academic

work available online through popular search engines, namely: Google Scholar,

ACM, and IEEE. To begin, we chose the Potdar and Shihab’s exploratory study70

as the cornerstone for this survey since it is the first to investigate the SATD

phenomenon and remains as the most cited work in the area [8]. Hence our

survey encloses work published since its release year (2014) until the compilation

date of this survey (July 2018). We searched for all the papers that cited Potdar

and Shihab’s in the aforementioned online search engines using the keywords75

”SATD” and ”Self-admitted Technical Debt”, limiting the results to papers

released since 2014. A complete list of the initial studies that we selected and

did not select is available online2.

Once we identified a paper related to SATD, we applied a snowball approach

to find other relevant cited work [11]. We repeated this procedure for each80

work that cited Potdar and Shihab’s, however, we did not find any other (new)

SATD related papers that were not already included in the initial list or found

by the search engines. Given that SATD is fairly new and due to the amount

of mainstream work in the area we were able to select, we do not perform a

systematic literature study; we leave that for the near future when the amount85

of SATD-related work justifies such kind of survey.

2.2. Definitions

We classified the surveyed papers into 3 main categories tied to the life

cycle stages of SATD, i.e., the sequence of phases that an instance of SATD

2http://das.encs.concordia.ca/uploads/SATD-Survey-Initial-Paper-Selection.pdf
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goes through, from its introduction, to its evolution, and lastly its removal90

from a software system. Hence, the work is aligned along three categories: the

Detection, Comprehension, and Repayment of SATD. We elaborate on what

studies fall under each category below:

• Detection studies - those that focus on proposing, studying or improving:

approaches, techniques, and tools to identify or detect instances of SATD.95

• Comprehension studies - those that investigate the phenomenon of SATD

itself and are dedicated to understand the life cycle of SATD. These stud-

ies encompass topics such as: introduction, diffusion, evolution, removal

of SATD, or its relation with different aspects of the software process.

• Repayment studies - those that propose, validate, or replicate: ap-100

proaches, techniques, and tools that seek to remove (i.e., fully repay) or

mitigate (i.e., partially repay) SATD instances.

2.3. Overview of selected papers

Given the scope and definitions above, Table 1 presents a chronologically

ordered overview of the primary SATD studies. Note that those marked with a105

star (*) are studies whose focus in not dedicated to SATD, however, a relevant

portion of them addresses SATD and presents findings related to its compre-

hension or detection, so we consider them within the primary group. Although

related work without a direct contribution or finding on SATD is not consid-

ered within the selected group of papers, we mention and reference such work110

throughout this survey since they support the papers we selected or serve as

links to potential future avenues in this area. In Table 1 we observe that 50%

of the primary SATD papers focus on comprehension, 55% on detection, while

only 10% focus on repayment. Note that 3 studies are classified as having 2

topics of focus, hence these percentages overlap. Regarding the paper’s publi-115

cation avenues, 60% of them are published in conferences, 20% in journals, and

another 20% were presented in workshops.
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Table 1: Overview of primary SATD studies.

Author(s) [Reference], Year Title Venue Venue Type Focus

Potdar & Shihab [8], 2014 An Exploratory Study on Self-Admitted Technical Debt. ICSME Conference Comprehension, detection

Maldonado & Shihab [9], 2015 Detecting and Quantifying Different Types of Self-Admitted Technical Debt. MTD Workshop Comprehension, detection

Freitas Farias et al. [12], 2015 A Contextualized Vocabulary Model for Identifying Technical Debt on Code

Comments.

MTD Workshop Detection

Wehaibi et al. [13], 2016 Examining the Impact of Self-admitted Technical Debt on Software Quality. SANER Conference Comprehension

Freitas Farias et al. [14], 2016 Investigating the Identification of Technical Debt Through Code Comment

Analysis.

ICEIS Conference Detection

Bavota & Russo [15], 2016 A Large-Scale Empirical Study on Self-Admitted Technical Debt. MSR Conference Comprehension

Vassallo et al. [16], 2016 Continuous Delivery Practices in a Large Financial Organization. ICSME Conference Comprehension*

Kamei et al. [17], 2016 Using Analytics to Quantify the Interest of Self-Admitted Technical Debt. TDA Workshop Comprehension

Mensah et al. [18], 2016 Rework Effort Estimation of Self-Admitted Technical Debt. TDA Workshop Repayment, detection

Ichinose et al. [19], 2016 ROCAT on KATARIBE: Code Visualization for Communities. ACIT Conference Detection*

Maldonado et al. [10], 2017 Using Natural Language Processing to Automatically Detect Self-Admitted

Technical Debt.

TSE Journal Detection

Palomba et al. [20], 2017 An Exploratory Study on the Relationship between Changes and Refactoring. ICPC Conference Comprehension*

Miyake et al. [21], 2017 A Replicated Study on Relationship Between Code Quality and Method Com-

ments.

ACIT Conference Comprehension*

Maldonado et al. [22], 2017 An Empirical Study on the Removal of Self-Admitted Technical Debt. ICSME Conference Comprehension

Zampetti et al. [23], 2017 Recommending when Design Technical Debt Should be Self-Admitted. ICSME Conference Detection

Mensah et al. [24], 2018 On the Value of a Prioritization Scheme for Resolving Self-Admitted Technical

Debt.

JSS Journal Repayment
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Huang et al. [25], 2018 Identifying Self-Admitted Technical Debt in Open Source Projects using Text

Mining.

EMSE Journal Detection

Liu et al. [26], 2018 SATD Detector: A Text-Mining-Based Self-Admitted Technical Debt Detec-

tion Tool.

ICSE Conference Detection

Zampetti et al. [27], 2018 Was Self-Admitted Technical Debt Removal a real Removal? An In-Depth

Perspective.

MSR Conference Comprehension

Yan et al. [28], 2018 Automating Change-level Self-admitted Technical Debt Determination. TSE Journal Detection
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3. Analysis and comparison of current work

In this section we first go over the techniques, tools, and approaches pre-120

sented by current research work in SATD. We first present work that focused

on identifying instances of debt, then we present empirical studies that have

studied the phenomenon to understand it, and finally contributions that aim to

manage and repay it. A list of the software projects studied by the surveyed

work is available online3, along with how each study validates TD.125

3.1. Detection of SATD

In the life cycle of SATD, debt instances are first introduced by developers

into the source code; thus naturally, the first step to study this phenomenon is to

identify it. In the past, several studies have focused on source code comments,

their management, and co-evolution with code; while others focused on the130

identification and management of Technical Debt [29, 30, 31, 4, 5]. However,

these studies did not investigate or relate the presence of technical debt within

the content of comments. Inspired by such previous work, Potdar and Shihab

were the first to look at source code comments to identify technical debt, and

introduced the term of Self-Admitted Technical Debt, referring to code that is135

either incomplete, defective or temporary, and that is knowingly introduced

by developers [8]. 7 different approaches to detect SATD have appeared in

literature since; 6 of them identify SATD at the file level looking at the revision

history of a repository, while 1 approach aims to detect SATD at the change

level. In this subsection, we present the 6 approaches that work at the file level140

divided in two groups: i) those approaches that are based on the identification of

textual patterns in comments, which we name “pattern-based approaches”; and

ii) those that apply more advanced and automated techniques, such as machine

learning classifiers or natural language processing, which we name “machine

learning approaches”. Lastly, we present the only approach that focuses on145

3http://das.encs.concordia.ca/uploads/SATD-Survey-Studied-Projects.pdf
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detecting SATD at the change level, and a comparison between the surveyed

approaches.

3.1.1. Pattern-based Approaches

As a first step in SATD identification at the file level, Potdar and Shihab

extracted 101,762 source code comments from 4 large open source systems using150

the srcML toolkit [32], and manually read through them to expose patterns

that indicate SATD. In total, the authors identified 62 patterns and made them

publicly available to enable further research [33]. Some examples of the identified

patterns are: hack, fixme, is problematic, this isn’t very solid, probably a bug,

hope everything will work, fix this crap. Using these patterns, their study found155

that SATD can exist in up to 31% of files; a finding that triggered further

research in this domain.

For the remaining of this survey, we will refer to the usage of these 62 patterns

as the pattern-based detection approach. This approach allows for an easier

SATD identification than simple manual inspection of comments, which is time-160

consuming and requires expertise. However, because these patterns resulted

from analyzing 4 projects only, they may not generalize well if used to detect

SATD in other software systems, compromising the accuracy of the approach.

Additionally, in case the set of patterns has to be extended, additional effort

must be spent manually inspecting source code comments from different projects165

and surfacing new patterns that can be used for detecting TD in comments.

Following up to the previous findings, Maldonado and Shihab manually in-

spected the comments of another 5 open source projects, this time however,

with a motivation to explore the different types of SATD contained in them [9].

They found 5 main types of SATD: design, defect, documentation, requirement170

and test debt (See 3.2). Instead of srcML, the tool JDeodorant was used to

parse the extracted comments [34]. Four filtering heuristics were introduced

to remove irrelevant comments, which are: a) removing license comments; b)

aggregating consecutive single-line comments; c) removing commented source

code; and d) removing Javadoc comments. To ensure these heuristics do not175
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filter out SATD instances, comments containing task-reserved words (“todo”,

“fixme”, or “xxx”) were not removed. The implementation of these heuristics

proved to reduce the amount of comments to analyze manually by 77% on av-

erage, easing detection efforts. To contribute with the identification of specific

types of SATD, the output dataset of classified comments by types was made180

publicly available to the community [35].

Motivated to facilitate the detection of SATD using the pattern-based ap-

proach, Ichinose et al. extended their proposed code visualization tool ROCAT,

which renders the source code of a project as city-like virtual reality environ-

ments to support SATD [19]. With this visualization model, buildings are con-185

structed for each source file, their dimensions are based on software product

metrics, and SATD instances are rendered based on comments that contain the

patterns surfaced by Potdar and Shihab [8]. This provides developers with a

high-level view of a system’s source code that includes visual cues of SATD

instances, removing the need of reading comments to visualize where SATD oc-190

curs in their source code. Rocat was integrated with Kataribe [36], a Git hosting

service; with this, any project registered on Kataribe can benefit from Rocat’s

visualization capabilities.

An alternative and extension to the pattern-based detection approach was

later proposed by Freitas et al. [12], who introduced CVM-TD, a Contextu-195

alized Vocabulary Model for Identifying TD of different types in source code

comments. This model relies on identifying word classes, namely: nouns, verbs,

adverbs, and adjectives that are related to Software Engineering terms and code

tags used by developers such as “TODO” [37]. The goal of applying the CVM-

TD model, which can be automated, is to obtain a subset of comments that will200

likely contain SATD. The proposed vocabulary focuses on words that can be

systematically related to each other and then mapped to different types of TD

as defined by Alves et al. [7, 38]. To validate CVM-TD, an empirical study was

conducted on Apache Lucene and JEdit, from which comments were extracted

using eXcomment [39], a tool that uses an Abstract Syntax Tree to store use-205

ful comment-related information and filtered with heuristics similar to the ones
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proposed by Maldonado and Shihab [9]. The empirical evaluation of the model

showed a considerable difference in the comments returned by the model and

the ones validated to contain SATD. This finding suggested a low detection per-

formance and pointed at the need to enhance how the word classes are mapped210

to different types of SATD to improve the model.

Later in 2016, Freitas et al. [14] conducted an additional experiment on

CVM-TD to characterize its overall accuracy and the factors that influence

its detection. This time, the CVM-TD model was applied to ArgoUML; the

output comments were given to 3 researchers with expertise in TD to create215

an oracle of comments that actually indicate TD. The same output was also

given to 32 Software Engineers with varied experience in the field and different

English reading levels to flag those suggesting TD. The experiment found that

the English reading skills of the participants influenced their identification of

TD, but this was not affected by their experience. Based on the TD oracle, the220

CVM-TD model’s output served experienced and non-experienced developers

alike, allowing them to have an accuracy on average of 0.673 when detecting TD

comments; a better performance than previously reported [12]. The experiment

also requested participants to highlight the patterns that induced marking a

comment as TD, which surfaced common patterns and TD indicating comments225

to extend the vocabulary of CVM-TD [40, 41]. Note that in both empirical

studies by Freitas et al. (i.e., [12, 14]), the authors do not explicitly refer to

source code comments that aid in the detection of TD as SATD, nevertheless, we

consider both studies within scope as they study this same precise phenomenon.

Mensah et al. proposed the use of text mining in SATD detection [18]. Their230

approach aims to estimate the effort needed to resolve SATD (See 3.3) and is

composed of 5 phases. The first 3 phases of the approach are aimed at the

extraction, detection and classification of SATD; it is built on top of a pattern-

based approach and a dictionary from the dataset of comments classified into

different SATD types published by Maldonado and Shihab [9]. We will refer to235

this approach as Text mining. Improving from the pattern-based approach,

this one first preprocesses comments to remove special punctuation characters
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and stop words; however, this introduces a drawback. Removing punctuation

characters such as ! or ? can potentially take away semantic meaning from

comments; i.e., the removal of a simple question mark could alter the meaning240

or intention of a developer’s comment. Moreover, no filters such as the heuristics

proposed and used previously (e.g.,[9, 14]) were applied to reduce preprocessing.

3.1.2. Machine learning Approaches

Moving towards more advanced SATD detection approaches at the file level,

Maldonado et al. used NLP techniques to automatically identify design and re-245

quirement SATD from source code comments [10]. We will refer to this approach

as NLP detection. The authors extracted, filtered, and manually classified a

dataset of 62,566 source code comments from 10 open source projects into 5

different types of SATD: design, test, defect, documentation and requirement

debt. This dataset combined 29,473 comments extracted from 5 open source250

projects, and 33,093 others extracted from additional 5 projects in previous

work [9]. With it, the authors trained an NLP maximum entropy classifier

(Stanford Classifier) focusing on requirement and design SATD, as they are the

most recurrent debt types, making up more than 90% of the SATD comments

[9]. The NLP classifier generates a set of feature words that contribute posi-255

tively or negatively to the classification of a comment. A 10 fold cross-project

validation training on 9 projects and testing on the remaining showed that the

NLP detection achieved an accuracy that surpassed the previous pattern-based

detection. For design debt, the classifier scored an average F1-measure of 0.620,

0.403 for requirement debt, and 0.636 disregarding debt types. The study also260

presented a top-10 lists of textual features that can be directly used to iden-

tify SATD in approaches that do not rely on NLP techniques. These features

were found to differ among each other, indicating that developers use distinct

vocabularies to admit different kinds of SATD.

Training an NLP classifier can be expensive since it relies on a manual clas-265

sification of comments, however, Maldonado et al. showed that to achieve 90%

of the classifiers performance, approximately 23% of the SATD comments were
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needed for training, which eases the replication of this approach. To enable

further research on SATD, the full resulting dataset of manually classified com-

ments and their resulting NLP classification was made publicly available [42].270

The most recent SATD detection technique was presented in 2017 by Huang

et al. [25], who proposed an approach to automatically detect SATD using

text mining and a composite classifier. We will refer to this as the Ensem-

ble text mining approach. Its root concept is to determine if a comment

indicates SATD or not (without focusing on SATD types) based on training275

comments from different software projects. For this, the authors leveraged a

dataset of 212,413 comments classified by Maldonado et al. from 8 open source

projects [10, 9]. This approach preprocesses comments by tokenizing, removing

stop-words and stemming their descriptions to obtain textual features. Feature

selection (Information Gain) is then applied to detect the top 10% most use-280

ful features to predict the label of a comment, indicating if it contains SATD

or not. Multiple sub-classifiers are trained with a Naive Bayes Multinomial

(NBM) technique to determine the label of a comment based on the number

of contributing features they have. A composite classifier takes the vote per

comment of each sub-classifier to reach a final classification. Several aspects285

of the ensemble text mining performance were evaluated in terms of F1-score.

The approach was benchmarked against the pattern-based and NLP detection

of SATD, finding that it performed better than both, had a superior runtime

performance, and also required a small portion of comments for training.

The ensemble text mining approach was implemented very recently by Liu290

et al. as an Eclipse plugin named SATD Detector [26] to facilitate the detection

and management of debt instances directly from an IDE environment. SATD

Detector parses the source code of a project when it is loaded or edited and

applies the ensemble text mining approach to detect and report SATD instances

along with their respective locations. This completely automates the detection295

of SATD with a built-in classifier that can be used out of the box to leverage

the best-performing SATD detection technique.

From a different SATD detection perspective, Zampetti et al. proposed TE-
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DIOuS (Technical Debt Identification System), a machine learning approach

that recommends to developers when they should self-admit design TD [23]. In-300

stead of analyzing comments, the idea is to leverage source code level features.

When a developer adds new code, the approach can analyze it and recommend

if it should be flagged (i.e., to be self-admitted as debt) or not. TEDIOuS’

identification capabilities relies on readability and structural metrics extracted

with a srcML-based tool, and the warnings raised by PMD and CheckStyle, 2305

static analysis tools.

TEDIOuS was evaluated using the classified comments of 9 projects from

the dataset made available by Maldonado et al. [10]. Since these comments

were detected at the file level, a matching of comments to the method level

was required for TEDIOuS features’ scope. Different classifiers were tested with310

balanced and unbalanced training data using cross validation within a project

and across all studied projects. TEDIOuS achieved it best performance using

a Random Forest classifier, with a cross-project prediction precision of 67%,

55% recall, and an accuracy of 92%. The features related to readability and

structural metrics used by TEDIOuS were found to have a major contribution315

in recommending design SATD. When compared against DECOR [43], a smell

detector tool which leverages different code features, the SATD recommending

performance of TEDIOuS proved to be superior.

3.1.3. Change-level detection

All previous SATD detection studies aimed to identify debt instances at the320

file level. Yan et al. [28] proposed a novel approach to automate the detection

of SATD at the change level. The idea is to catch the introduction of SATD

when a software change occurs, instead of inspecting if a file that was changed

previously contains SATD. The authors built a determination model using a

Random Forest classification with data labeled from comment analysis, and325

features extracted from source control repositories. The data labeling leverages

an enhanced version of the dataset made available by Maldonado et al. [22]; it

contains 100,011 manually classified software changes of 7 open source projects,
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where each change is labeled as TD-introducing or not; where change is consid-

ered TD-introducing when the resulting file version is the first to contain SATD.330

A total of 25 change features were extracted from the source control repository

of the studied systems to characterize each change. These features were divided

into 3 dimensions in the study: 16 for the diffusion of a change (i.e., amount of

changed LOC, files, subsystems, programming languages), 3 for its history (i.e.,

information of the changed files and the developers who made the change), and335

6 for its message (i.e., information extracted from the change logs).

The proposed model was evaluated performing a stratified 10-fold cross vali-

dation repeated 10 times for each of the 7 studied projects. This evaluation

considered 2 performance measures: AUC (area under the receiver operat-

ing characteristic curve), and Cost-effectiveness, analyzed by controlling the340

amount of changed LOC inspected by the model. To contrast the model’s per-

formance, 4 other baseline models were studied: Random Guess, Naive Bayes,

Naive Bayes Multinomial, and Random Forest (the last 3 models used a clas-

sification based on change messages only). The study results showed that the

proposed model achieves a better performance in terms of AUC (0.82) and cost-345

effectiveness (0.80) when compared to baseline models, being able to detect more

TD-introducing changes across a wide range of changed LOC to inspect. When

investigating the importance of the extracted features, the results indicate that

all 3 dimensions significantly improve the performance of the compared mod-

els, and that the diffusion dimension is of most influence when determining350

TD-introducing changes. The performance achieved by this SATD detection

approach is not contrasted with others in Table 2 as the SATD detection of

these approaches occur in to different stages of development and thus they dif-

fer in nature. The reported performance of the change-level SATD detection is

also reported in terms of AUC and not as an F1-score.355

3.1.4. Comparison and limitations of current approaches

The original pattern-based approach for SATD detection has the benefit of

being simple to replicate with a fixed set of patterns to match against textual
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Table 2: Average accuracy benchmark of SATD detection approaches, as reported by Huang

et al. [25].

Detection Approach Reported F1-score

Pattern-based 0.123

NLP 0.576

Ensemble text mining 0.737

comments. However, it has the drawback of leading to up 25% of false positives,

as found by Bavota and Russo [15]. Although the text mining and CVM-TD360

approaches later built on top of the pattern-based approach with added heuris-

tics, both are still affected by an underlying accuracy problem and are more

complex to replicate. These early approaches lead to SATD datasets that sup-

ported the creation of more accurate and automated techniques, such as the

NLP, TEDIOUS, and ensemble text mining approaches, which implement ma-365

chine learning. While TEDIOUS recommends when to self-admit technical debt,

it scopes to design debt only and is not comparable with other approaches as it

looks at source code instead of comments to base its recommendations. In con-

trast, the NLP detection and ensemble text mining approaches focus of finding

SATD in comments with good accuracy. While the NLP approach is limited370

to detect design and requirement only, the ensemble text mining approach dis-

regards SATD types, and thus, is a more effective all-around approach when

looking for SATD in a software repository. Another benefit when compared to

other detection approaches, is that this last one does not require manual inspec-

tion of comments, which aside from being time consuming is prone to human375

error. Furthermore, since it was recently implemented as an IDE tool (SATD

Detector plugin), it can now be used as a practical solution to detect SATD

during or after development.

A performance comparison between SATD detection approaches is presented

in Table 2 as benchmarked by Huang et al.. This comparison uses the average380

accuracy values for detecting SATD disregarding debt types [25]. The Text

mining and CVM-TD approaches are not included in the benchmark as their

TD detection performance were not reported in [14, 18]. Note than the F1-score
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for the NLP approach in Table 2 is lower than the value reported by Maldonado

et al. (0.636) [10]; in either case, the performance of the ensemble text mining385

approach is higher.

As a recap, the studies that focused on the detection of SATD have con-

tributed with approaches that evolved from simple manual inspection of com-

ments to more complex automated approaches that identify SATD instances ac-

curately, removing manual steps. Similarly, the text mining approach, evolved390

the classification of SATD types from manual inspection to an automated pos-

sibility. In Table 3 we overview the main findings and contributions per SATD

detection study, the number of studied projects, and the technique for comment

extraction, where applicable. Note that the visualization technique presented

in the study by Ichinose et al. (i.e.,[19]) can be applied to multiple projects,395

thus no specific one is studied and no comment extraction is performed. A

similar case happens with the contribution by Liu et al. (i.e.,[26]), which is

a tool implementing the approach proposed by Huang et al. (i.e.,[25]). From

the observations made in this section, we consider the ensemble text mining

detection approach (implemented in the SATD Detector tool) to be the most400

promising approach to enable future SATD research. Due to its performance

and practicality, we believe this tool will promote the detection of SATD, and

the compilation of richer datasets to improve the validity of SATD studies.
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Table 3: Overview of main contributions per SATD detection study.

Author(s) [Reference], Year Main Contribution(s) / Finding(s) Studied Systems Comment Extraction

Potdar & Shihab [8], 2014 Pattern-based detection approach. SATD exists in 2.4% to 31% of files. 4 scrML-based

Maldonado & Shihab [9], 2015 Dataset of classified SATD comments per type. Filtering heuristics. 5 Jdeodorant

Freitas Farias et al. [12], 2015 CVM-TD detection approach. 2 eXcomment

Ichinose et al. [19], 2015 City-like code and SATD visualization in a virtual reality environment. N/A N/A

Freitas Farias et al. [14], 2016 Set of Patterns and comments for TD identification in comments. 1 eXcomment

Mensah et al. [18], 2016 Text mining detection/classification approach. 4 Not reported

Maldonado et al. [10], 2017 NLP Detection approach. Data set of classified SATD. 10 JDeodorant

Huang et al. [25], 2017 Ensemble text-mining detection approach. 8 NLP Dataset

Zampetti et al. [23], 2017 TEDIOuS approach for recommending when to self-admit TD. 9 NLP Dataset

Liu et al. [26], 2018 Eclipse plugin to automatically detect SATD. 9 NLP Dataset

Yan et al. [28], 2018 Change-level SATD detection approach. 7 Relies on [22]
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3.2. Comprehension of SATD405

Different studies have been conducted to understand the SATD phenomenon

throughout its life cycle, while others investigated its repercussion on the soft-

ware process itself. A better understanding of SATD enables researchers and

practitioners to develop approaches that can be used to manage it. One of the

first efforts towards understanding SATD were given by Potdar and Shihab; in410

their exploratory study they tried to understand the occurrence of SATD, why it

is introduced into software projects, and how much of it is removed after its in-

troduction [8]. By using a pattern-based detection in 4 software projects, SATD

was found to be common, happening in 2.4% to 31% of studied system’s files.

Regarding the introduction of SATD, Potdar and Shihab investigated how the415

experience of developers, time to release pressure, or the complexity of changes

induced the addition of debt. Contrary to what was expected, they found that

experienced developers introduced most of the SATD, while tight deadlines and

change complexity did not affect its introduction. In relation to SATD removal,

they found that the majority of SATD is removed in the immediate next release.420

3.2.1. Types of SATD

Once SATD was found to be a common phenomena, Maldonado and Shihab

[9] decided to quantify and classify the different types of SATD that exist in

software projects. In a previous study, Alves et al. [7] classified Technical Debt

into 13 different types and proposed indicators to identify each of them. Based425

on these types, Maldonado and Shihab manually analyzed 33,093 comments

and classified them, observing that 5 types of SATD existed in source code

(design, defect, documentation, requirement, and test debt) [35]. We include

brief examples of debt comments as classified by Maldonado and Shihab[9] to

help understand the detected SATD types:430

• Design debt:“/*TODO: really should be a separate class */” from ArgoUml.

• Defect debt:“Bug in the above method” from Apache JMeter.

• Requirement debt:“//TODO no methods yet for getClassname” from Apache Ant.

• Documentation debt:“**FIXME** This function needs documentation” from Columba.
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• Test debt:“//TODO enable some proper tests!!” from Apache JMeter.435

The remaining 8 types of TD defined by Alves et al. [7] were not found since

they are not likely to appear in source code comments but in other artifacts. As

explained by the authors, build debt for example, would appear in build files

and not in the inspected comments extracted from Java files. The quantification

results of the study revealed that from over 33 thousand analyzed comments,440

7.42% of them (2,457) contained SATD. Regarding the quantification per type,

the majority (42% to 84%) of SATD found was design debt, followed by require-

ment debt, making up 5% to 45% of the debt instances. Defect, documentation,

and test debt accounted for less than 10% of the classified SATD cases when

combined.445

3.2.2. Large-scale studies

To broaden the understanding of the phenomenon, Bavota and Russo [15]

conducted a large-scale empirical study in 159 software systems (120 from the

Apache ecosystem and 39 from the Eclipse ecosystem) aiming to make a differ-

entiated replication of the initial findings by Potdar and Shihab [8]. Using the450

pattern-based detection they investigated the diffusion of SATD in open source

systems and its evolution across the change history of the studied subjects to see

if: i) it increases or decreases over time, ii) how long it remains in the system,

iii) how frequently it is fixed, and iv) who introduces or fixes SATD.

A closer look at a statistically significant sample of SATD cases revealed that455

in contrast with previous findings by Maldonado and Shihab [9], code debt was

the most occurring debt type making up 30% of the cases, against a lower 13%

for design debt. Furthermore, this inspection surfaced that over 25% of the com-

ments flagged by the pattern-based detection were false positives. Bavota and

Russo [15] looked at the introduced, removed and unaddressed SATD comments460

in the projects’ change history and observed that it increases over time because

of debt instances being added but not addressed. Although 57% of SATD was

found to be removed from source code, it has a long survivability, lasting for

more than 1,000 commits on average before being fixed. Inspecting the removed
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SATD showed that 63% of the time, the developer who removes a debt instance465

is the same as the developer who introduced it; while in the remaining 37%

of cases the developers who fix SATD have higher experience than those who

introduce it. The study also measured the partial correlation between quality

code metrics (Coupling, Complexity and Readability) and SATD, but found it

is not significant between any of them, an in-line observation with Potdar and470

Shihab [8].

3.2.3. Impact of SATD

Instead of looking at code quality metrics which were validated to have

no clear correlation with SATD, Wehaibi et al. [13] investigated the relation

between SATD and the quality of software by looking at defects. Their study475

used a pattern-based detection to find files that contain SATD in the repositories

of 5 open source systems; in total 10.17% to 20.14% of files were labeled as SATD

files. To find defects, the change history of every subject was mined to find

patterns that indicate defects, such as: “defect”, “bug ID”, “fixed issue #ID”.

With both datasets the study investigated: i) the amount of defects in files with480

and without SATD; ii) the percentage of SATD related changes that are defect-

inducing; and iii) if changes that involve SATD files are more difficult than the

ones that do not. The authors compared the percentage of defects in SATD vs

non-SATD files, and the amount of defects in SATD files before and after the

debt introduction, however, they found no clear relation between defects and485

SATD. To observe if SATD-related changes introduced future defects they made

use of a bug-introducing change identification algorithm proposed by Sliweski,

Zimmerman, and Zeller (SZZ) [44] as implemented in Commit Guru [45], and

found that they are less prone to introduce future defects. Lastly, using 4 change

difficulty measures from previous work, the authors found that SATD-related490

changes were more difficult than non-SATD ones.

To clarify the relation between non-SATD source code comments and soft-

ware quality, Miyake et al. [21] partially replicated the study by Wehaibi et al.

[13] on 4 open source projects. Their results agreed with the previous study,
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finding that SATD files are more prone to undergo a defect fix. However, they495

also found that the mere existence of comments at the method or file level is

related to more future code fixes, even if they do not contain SATD. Neverthe-

less, SATD comments were found to be more effective to identify fix-prone files

and methods than comments without SATD.

3.2.4. Removal of SATD500

Most of the previous comprehension studies targeted the introduction, dif-

fusion, and evolution of SATD. Early studies also looked into the final stage of

SATD, its removal [8, 15], however, their efforts were not dedicated specifically

to the removal of debt. Recently, Maldonado et al. [22] studied precisely this,

investing i) how much SATD is removed from source code; ii) who removes505

it; iii) how long does it remain in a system; and iv) what leads to removal

activities. The authors studied 5 well-commented systems written in Java as

subjects, which vary in size, domain and number of contributors. Their study

showed that 40.5% to 90.6% of SATD was removed from the study subjects.

Comparing the name and e-mail address of the developers who introduced and510

removed SATD from the repository commits showed that on average 54.5% of

SATD is self-removed, i.e., by the same developer who introduced the debt;

confirming the finding first presented by Bavota and Russo [15]. A comparison

between SATD that is self-removed and the one removed by others indicated

that the second survives for longer in a system. Concerning the median survival515

of SATD, the study found that it can remain in a system between 18 to 172

days before being removed. A survey to developers was also conducted in order

to understand what activities lead to the removal and introduction of SATD

[46]. The survey revealed that developers mostly add SATD to track potential

bugs or code that needs improvement; similar to the finding of Vassallo et al.520

[16]. On the other hand and in-line with the observation by Palomba et al.

[20], participants indicated that they mostly remove SATD when fixing bugs or

adding features, but not as a dedicated activity.

After the above observations on the removal of SATD, Zampetti et al. [27]
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conducted an in-depth quantitative and qualitative empirical study on the re-525

moval of SATD. The authors built on top of the previous work of Maldonado

et al. [22] by analyzing their same dataset, focusing on the underlying circum-

stances of SATD removal from source code. The study investigated how much

debt was removed by accident, i.e., without the intention of resolving debt, but

as a collateral of software evolution. The study found this was the case for 25%530

to 60% of SATD comments, as they were removed due to full class or method

removals. However, 33% to 63% of SATD comments were removed as part of a

change in their corresponding method. In the remaining cases, comments were

removed without any actual code change, possibly due to developers removing

an outdated SATD comment or accepting the debt’s risk. By computing the535

cosine similarity between SATD comments and commit messages, the authors

looked for documented evidence of SATD removals, finding that only about 8%

of the cases mentioned addressing the debt or justifying why it is not required to

do so anymore. The study also looked at the types of changes that happen along

SATD removals, finding that developers often apply complex changes across the540

code but also specific ones related to method (API) calls and control logic. On

removals associated with API changes, 55% belong to the addition or editing

of features; while removals linked to conditional changes are more diverse but

often involve the removal of code.

3.2.5. SATD Interest545

Several works shed light over the SATD life cycle stages, nevertheless, none

had yet proposed a concrete way to measure the interest of SATD, i.e., the

increased cost of repaying debt in the future. A recent study by Kamei et al.

[17] focused on determining a way to measure this precisely. It investigated if

the debt instances incur a positive interest (i.e., they become more difficult to550

repay), negative interest (i.e., become less difficult to repay), or no interest over

time. Sixteen different code complexity metrics were first evaluated and then

filtered down to 2, namely LOC and Fan-In. The LOC measure was used since

it is highly correlated with most of the metrics evaluated initially, excluding
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Fan-In, thus both were selected. This work performed a case study on Apache555

JMeter and used JDeodorant to extract raw comments, which were then filtered

and manually validated to contain SATD. To measure the incurred interest, the

study scoped to the method-level for the SATD instances and computed the

LOC and Fan-In metrics at the moment of their introduction and removal.

Results showed that for both measures, 42% to 44% of SATD incurs a positive560

interest; while around 8% to 13% and 42% to 49% has negative and no interest,

respectively. The interest quantification of SATD could be used as a proxy to

estimate the effort needed to repay it. In the following subsection we go over

additional studies with this focus.

3.2.6. Other empirical findings related to SATD565

Two recent studies presented observations related to SATD while looking

at different aspects of software development. While studying the continuous

integration practices of 152 practitioners from a large financial organization

(ING Netherlands), Vassallo et al. [16] showed that 88% of the practitioners

mentioned self-admitting their bad implementations of code through comments570

(i.e., SATD). This reflects the practical importance of addressing SATD during

the development process. In an alternate scenario, while investigating the rela-

tion between 3 types of code changes and refactoring activities, Palomba et al.

[20] noticed that in feature-introducing changes, often the refactored files had

SATD on its previous version. Because of this, they applied a pattern-based575

detection to spot SATD in each refactoring activity. Their results showed that

46% of the classes had a SATD instance before being refactored, and 67% of the

commits that refactored code also removed a debt instance. This indicates that

developers mostly apply refactorings to repay existing debt before introducing

new features into their source code.580

To summarize the findings and contributions of the above comprehension

studies, we present them in Table 4, along with the number of studied software

systems. Since comprehension studies rely on a SATD detection approach, we

also include them along with the comment extraction tools used in Table 4. Note
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that most comprehension studies used a manual inspection or a pattern based585

detection, while only one study implemented a NLP approach. Certainly this

relates to the ease of replicating different detection approaches, but it compro-

mises their effectiveness of studying the phenomenon. We expect and encourage

future studies to implement the more recent and accurate SATD detection ap-

proaches.590
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Table 4: Overview of main findings per SATD comprehension study.

Author(s) [Reference], Year Contribution(s) / Finding(s)
Studied

Systems

Detection

Approach

Comment

Extraction

Potdar & Shihab [8], 2014 - More experienced developers tend to introduce more SATD. 4 Manual srcML based

- Time to release pressure and change complexity do not play a

major role in SATD introduction.

- Most of SATD is removed in the next immediate next release.

Maldonado & Shihab [9], 2015 - Identified 5 different types of SATD. 5 Manual JDeodorant

- The most common type of SATD is design or requirement debt.

Bavota & Russo[15], 2016 - There is no clear relation between code quality metrics and SATD. 159 Pattern based srcML

- The amount of SATD increases over time in a system.

- Code debt occurs more than design and requirement debt.

- SATD lasts for a long time in source code before being removed.

- About 57% of SATD is removed from source code; 63% of the

time by who introduced it, 37% by other experienced developers.

Wehaibi et al. [13], 2016 - There is no clear relation between defects and SATD. 5 Pattern based Ad-hoc. Python

- TD files defectiveness increases after the introduction of TD.

- SATD changes lead to less future defects than non-SATD changes.

- SATD changes are more difficult to perform.

- Empirical evidence that TD affects the development process by

making it more complex.

- The impact of SATD is not related to defects, rather in making
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future changes more difficult to perform.

Vassallo et al. [16], 2016 - Most practitioners self-admitting their bad implementations of

code through comments. N/A N/A N/A

Kamei et al. [17], 2016 - 42% to 44% of SATD incurs in positive interest. 8% to 13% and

42% to 49% has negative and no interest, respectively. 1 Manual JDeodorant

Miyake et al. [21], 2017 - SATD comments are more effective than non-SATD comments

when identifying fix-prone files and methods. 4 Pattern based Ad-hoc, Java

Palomba et al. [20], 2017 - Developers mostly apply refactorings to repay SATD before

introducing new features. 3 Pattern based srcML

Maldonado et al. [22], 2017 - SATD can remain in a system between 18 to 172 days. 5 NLP detection srcML based

- Developers mostly remove SATD when fixing bugs or adding features,

and use SATD to track future bugs and bad implementation areas.

- Most of SATD is removed, and most of it is also self-removed.

Zampetti et al. [27], 2018 - A large percentage of SATD removals are accidental. 5 NLP detection srcML based

- Only around 8% of SATD removals are documented in commits.

- While removing SATD, developers mostly apply complex changes

but also, specific ones to method calls and conditionals.
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3.3. Repayment of SATD

Previously, we surveyed work that contributed towards the comprehension

of SATD on its removal (section 3.2.4), and interest growth (section 3.2.5).

Although those studies explain how and who removes SATD, and propose a595

way to measure the growth or decline of SATD over time, they do not propose

approaches towards managing or repaying debt. In this section we go over

studies that tackle this problem.

As a subset of Technical Debt, the ultimate goal of studying SATD is to

propose approaches that focus on removing it from a system, i.e., repaying600

the admitted debt. In this regard, a couple of recent studies have presented

techniques to estimate the effort and prioritize the resolution of SATD. In 2016,

Mensah et al. [18] proposed an approach to estimate the rework effort needed

to resolve SATD, measured in LOC. The authors used the text mining approach

to identify debt instances in 4 open source projects and classify them by type605

with a dictionary derived from the work by Maldonado and Shihab [9]. The

measure of estimated rework effort is calculated giving term weights to debt

instances based on their frequency of SATD indicators, i.e., one of the patterns

found by Potdar and Shihab [8], and expressed the average commented LOC per

SATD-prone file (files that contain comments with debt indicators) in a system.610

The study found that on average, an effort of between 13 and 32 commented

LOC need to be addressed per SATD-prone file. This estimated effort fluctuates

based on the type of debt to be addressed, with documentation requiring the

least amount of effort, and design debt needing the most.

More recently, Mensah et al. [24] extended their rework effort estimation615

study and combined it with a 6-step SATD prioritization scheme. This new

approach aims to inspect SATD instances and classify them by how urgently

they need to be addressed and estimate the rework effort they require. Similarly

to their previous work, this estimation is computed in a multi-phased approach,

where initial steps handle the extraction of comments, identification and classifi-620

cation of debt instances into their types using the text mining approach. Before

computing the rework effort estimation, the extracted comments were manually
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categorized based on their textual indicators as: i) major if they are urgent,

or minor if they can wait; ii) complex based on their difficulty, and significant

based on their importance; iii) expected if the task is pending, and expedited if625

it denotes a rushed or poor implementation. SATD instances that should be

prioritized were marked as vital few tasks or as trending-many tasks, and as-

signed a possible cause of introduction. Along with the proposal of a repayment

approach, this work also presented interesting empirical findings, showing that

31% to 39% of SATD comments are major tasks, and 58% to 69% are minor;630

while most of the major tasks are complex to resolve for developers. Among the

possible causes for SATD introduction, the study found 4 which are the most

prominent, being: code smells (23%), complicated and complex tasks (22%),

inadequate code testing (21%), and unexpected code performance (17%). Re-

garding the effort required for the resolution of vital few tasks, i.e., those that635

should be prioritized, developers would need to address 10 to 25 commented

LOC per SATD file.

The concept of classifying the SATD comments into different classes that

indicate how difficult, important, and urgent they are can serve as a great con-

tribution to deciding which debt to resolve first. However, is important to note640

that for both of the above works on repayment output a result in commented

LOC, which might not be intuitive for developers or managers, nor the best or

only measure to estimate effort or prioritize debt resolution. In either way, both

approaches compel the most recent in SATD repayment.

4. Future of SATD Research645

In this section, we present promising research avenues based on gaps and op-

portunities we observe in current studies and discuss the challenges to overcome

in order to advance the state of the art. The ideas and calls to actions presented

throughout this section are new proposals deduced from our observations, which

we support with related literature.650
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4.1. Future challenges in SATD detection

4.1.1. Improving validity

SATD detection can benefit from improved validity, future work should en-

rich existing datasets and expose new ones using state of the art detection and

classification approaches. Since TD can also be self-admitted in other software655

artifacts, such as commit messages or issue comments, richer datasets should

not be limited to SATD found in source code comments only. We expand on

these ideas below:

• Richer datasets. As we see in the work surveyed in Section 3, most

of recent work relies on data from design and requirement SATD [10, 23,660

25, 27, 28]. This originates in the dataset made available by Maldon-

ado and Shihab [9], where design and requirement debt was detected far

more frequently than other debt types. This limits approaches such as

the NLP and ensemble text mining approaches to be restricted on clas-

sifying debt instances in all existing types. Using a tool such as SATD665

Detector can support the creation of larger datasets with more instances

of the rarer SATD types. Such datasets can then be complemented by

artificial balancing techniques to enable better classification approaches.

Another challenge with current datasets is that they are scarce, and lim-

ited in size and diversity of projects they contain. Huang et al. [25]670

found that cross-project training increased the performance of identifica-

tion classifiers. Thus, SATD detection approaches will benefit of having

richer datasets to train on.

• Detection in other software artifacts. The majority of work surveyed

in Section 3.1 detected SATD through source code comments. There are675

other software artifacts that contain extracts of human interaction and

communication, such as issue messages, commit messages, or even discus-

sions in git repositories. These artifacts can also hold text where technical

debt is self-admitted by developers. Dai and Kruchten [47] studied the

possibility of detecting TD with issue comments, finding that although680
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developers do not explicitly mention TD inside issues, they do so indi-

rectly. Their study surfaced over 114 useful key words that can be used

to detect different types of TD from the description and summaries of

issues. This is a similar finding to the patterns surfaced by Potdar and

Shihab [8] for SATD. Bellomo et al. [3] also investigated the existence of685

TD indicators within issues messages and found that developers are aware

of the concept of TD, and they refer to it when filing issues. This might

indicate that technical debt is also self-admitted in issue messages.

Nowadays there is a plethora of repositories that can be mined to investi-

gate the occurrence and diffusion of SATD in alternate software artifacts.690

One example is JIRA, a repository presented by Ortu et al. [48] which

contains data from the Jira Issue Tracking System. It consists of over

one thousand open source projects with 700 thousand issue reports, and 2

million issue comments. As its authors suggest, it can be mined to retrieve

information about TD, and thus potentially, SATD. The investigation of695

how much debt found within issues is also self-admitted by developers and

the usefulness of this approach remains as future work. Considering the

above software artifacts for an approach such as the SATD change-level

determination proposed by Yan et al. [28] could also yield a promising

future. Including features extracted from different software artifacts can700

complement the 3 dimensions studied by Yan et al. to extend the set

of features taken from source code and change history, potentially result-

ing in improved TD determination models. As detecting SATD at the

change level presents different benefits to software developers in contrast

to detection at the file level, there is broad potential and room for further705

investigation on the topic.

Call to action:

• Mine larger sets of software repositories from different domains to produce

richer SATD datasets.
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• Study the presence of SATD in other software artifacts, such as the mes-710

sages and descriptions of issues and commits.

4.1.2. Improving traceability and adoption

In Section 3.1, we surveyed several approaches for SATD detection with dif-

ferent characteristics and techniques that allow them to achieve performances

that surpass their predecessors. Each has an application, as well as points in715

favor and against that facilitate their replication. For instance, one could argue

that manual detection and pattern-based approaches (see Section 3.1.1) are the

easiest to replicate, however, doing is time-consuming and relies on human ex-

pertise. On the other hand, automated approaches that use machine learning

are scalable but rely on a training dataset to achieve a comprehensive perfor-720

mance (see Section 3.1.2). Future work should aim to facilitate the replication of

detection approaches to promote their adoption, and to develop tools to increase

the admittance, quality, and traceability of SATD. One materialized example

for this is SATD Detector, where the ensemble text mining was implemented as

a tool ready for use in development time. Certainly, any approach or technique725

that can be offered as a tool is the best proxy to improve the traceability and

adoption of SATD. We describe actionable ideas that can support this based on

opportunities we observe from previous related work below:

• Visualization tools. Alongside improved detection techniques, both re-

searchers and practitioners can always benefit from tools that implement730

them. An interesting avenue comes from the visualization approach pre-

sented by Ichinose et al. [19]; city-like views in a virtual reality environ-

ment combined with an automated detection and classification approach

could provide a highly intuitive interface for SATD identification and man-

agement. Visualization tools can also be extended to estimate the repay-735

ment effort of detected SATD with an approach such as the one proposed

by Mensah et al. [24]. In this scenario visual cues could point at debt

that can be repaid in the source code. The development of a tool that

can display where SATD is located and offer an estimation of the effort
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required to address it would strongly enable developers to manage and740

repay SATD in their repositories.

• Annotation of comments. While classifying grammar smells, Stijlaart

and Zaytsev [49] pointed at the “Shortage Smells” as missing pieces of

grammar. As a subset of this, “Debt” smells were defined to happen when

comments clearly denote debt but are missing an annotation that will745

facilitate its traceability, such as “TODO” or “FIXME”. In this case, an

approach or tool that adds these annotations would solve grammar smells

by self-admitting the technical debt. For this to be feasible, researches can

use one of the more recent SATD detection approaches and add special

annotations to comments that are missing them. In this way, SATD will750

be easier to trace by developers using IDEs that support the tracking of

these annotations.

• Reduction of false positives. Another important challenge is to reduce

false positives in SATD detection. One of the issues with the approaches

analyzed in Section 3 is that most of them look at comments directly,755

disregarding the source code in scope. For example, the pattern-based

approach was found to produce over 25% of false positives [15]. Although

more advanced detection approaches have been presented, they still focus

on source code comments only. Such approaches might find cases indi-

cating debt that was already repaid but its corresponding self-admitted760

annotation was never removed. On this regard, Sridhara proposed a tech-

nique to validate the up-to-date status of comments that include ToDo

annotations [50]. This is a hybrid approach that considers both, source

code and comments. Future work can improve on such technique and ex-

tend it to work on any comment that indicates SATD, and not only those765

with ToDo annotations. Moreover, as seen in section 3.1.2, TEDIOUS is

the only detection approach that inspects source code instead of comments

to recommend when design technical debt should be self-admitted. Cer-

tainly, a way to mitigate false positives in future SATD detection efforts
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can emerge from using a hybrid approach that inspects the source code in770

scope and comments of a debt instance.

Call to action:

• Develop tools that enable a categorized visualization of SATD to support

its management.

• Develop a detection approach that adds annotations to debt comments that775

are missing them.

• Develop detection approaches that inspect and analyze both, comments and

source code for improved accuracy.

4.2. Future and challenges in SATD comprehension

To deepen the understanding of SATD, research work should identify obser-780

vations on this phenomena that apply across projects and can be generalized. In

Section 3.2, we surveyed work that studied large sets of systems or specifically

tried to diversify their subjects in domain and programming language [15, 13].

Nevertheless, a clear challenge to overcome is that most findings and contribu-

tions on SATD (see Table 4) and its effects in software development came from785

studying open source systems that were mostly written in Java (see the software

projects studied by the surveyed work in Section 3). Future research should ex-

tend to investigate proprietary software or systems that are written in various

programming languages. This will aid towards the generalization of current

findings or contrast new observations in different scenarios and environments.790

Similar to previous efforts such as the empirical SATD study by Bavota and

Ruso on 159 projects [15], important findings on SATD should be investigated

in large scale to confirm they generalization.

We remark that the studies covered by this survey consider a scenario where

identifying the introduction of TD is valuable for the development process, and795

where the management and repayment of TD are desired practices. More impor-

tantly, in the case of SATD, the assumed scenario is one where the use of source
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code comments is intrinsic to the development process. However, this may not

generalize to all software development, as it depends on the used methodologies

and policies in place. An example may be a case of proprietary software were800

the introduction of comments is not allowed or exceptional. Note that in our

survey, we did not find any SATD study that worked on proprietary software

systems. Investigating the relation between the introduction, management, and

repayment of SATD in different development methodologies remains as future

work. This will help to achieve a more general and thorough comprehension805

oh the phenomena. Below, we present actionable ideas for future research to

broaden the comprehension of SATD:

• Examine other kinds of impact. Previous work has investigated the

impact of SATD on software quality, but only in the scope of software de-

fects [13]. As Wehaibi et al. showed, defects do not seem to have a direct810

relationship with SATD. However, this is the only finding on the impact

of SATD among the papers that focus on the comprehension of the phe-

nomenon (see Section 3.2). Therefore, we believe that future work should

seek a deeper understanding of different aspects in which SATD can im-

pact the development process. We observe the opportunity to investigate815

on the impact of SATD in aspects such as: effort in future maintenance

and evolution (e.g., code decay), the ability of a system to adapt to new

technologies or changes in process, and even the socio-technical impact of

SATD.

• Qualitative classifications. So far, source code comments that point to820

TD have been classified following the categories defined by Alves et al. [7],

such as in the classification work on SATD by Maldonado and Shihab [9].

This is a high-level classification of the comments as they indicate what the

debt is about. Another perspective is to investigate their implication in

the development process. As an example, the comment: “//Re-initialising825

a global in a place where no-one will see it just // feels wrong. Oh well,

here goes.” from ArgoUML was classified by Maldonado and Shihab as
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design debt [9]. This classification does not inform the developers about

its implication; perhaps it implies a feature addition, a bug fix or another

software maintenance tasks. A study using such level of taxonomy was830

presented by Panichella et al. [51], who classified mobile app user reviews

into useful categories related to maintenance tasks. Replicating such tax-

onomy in the area of SATD can provide developers with better insight

on the implications of SATD. Improving the overall understanding of the

debt instances on their systems to support their management.835

Call to action:

• Investigate SATD in proprietary software systems and in various program-

ming languages (other than Java).

• Investigate the impact of SATD on various software engineering aspects,

such as maintainability and evolution.840

• Produce a qualitative taxonomy that reflects the implications of SATD in

software maintenance tasks.

4.3. Future challenges in SATD repayment

4.3.1. Quantitatively prioritizing repayment

Proposing approaches and techniques to mitigate and repay debt is of utmost845

importance in SATD research. Studies in the past few years have shed light on

the importance of this phenomena, but they have mostly focused on detecting

and understanding SATD, rather than directly pursuing its resolution. Merely

11% of the studies that we surveyed focus on repayment efforts, thus, there is

much work to be done in this area. We present the main challenges to overcome850

in SATD repayment below:

• Effort Estimation. SATD repayment contributions have scoped to pri-

oritize its resolution based on the estimated effort for addressing a debt

instance[18, 24]. However, this approach outputs an estimation value in

commented LOC, which might not be the best, and certainly not the only855
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measure to estimate effort [52]. Undoubtedly, how to measure effort re-

mains a challenge to overcome and a milestone to reach when deciding

which debt to repay first.

• Prioritization of SATD. Certainly prioritizing SATD repayment has

to be part of future research work. Given a set of instances of SATD860

in a project, developers need a approach to recommend which debt to

resolve first. Thus, approaches that measure the growth of debt instances

and their resolution cost must be combined. Akbarinasaji and Bener [53]

presented the idea of adding TD as a financial obligation that can be

recorded as type of liability in a balance sheet. To achieve this, TD needs865

to be identified, quantified, and monetized. Although an approach to

monetize SATD has not been presented, some efforts have already taken

a step forward, such as the quantification SATD interest by Kamei et al.

[17]. We argue that SATD prioritization is one of the most important

challenges that require attention in this domain, hence we plan to focus870

on extending existing research work and proposing novel ideas towards

this goal in the immediate future.

• Acceptance of SATD. Not all SATD has to be repaid, fixing a shortcut

or hack in the source code can be more expensive than beneficial. A proper

measurement of TD repayment effort can aid developers to decide whether875

to live with the debt and its risks or not. Such repayment estimation has

to consider the potential evolution of the debt as it can incur in positive

interest over time [17]. Future work should study the extent of SATD

acceptance in software systems and under which conditions.

Call to action:880

• Investigate new measures to estimate the effort required to repay SATD.

• Develop approaches to prioritize the repayment of SATD.

• Investigate to which extent SATD is or can be accepted in software systems.
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4.3.2. Integrating the repayment of SATD

The activity of repaying TD has to be integrated into the software process.885

To this matter, the development of new tools and techniques that motivate and

facilitate the repayment of SATD is required. We present two ideas that can

facilitate this below:

Gamification of SATD repayment. SATD research not only needs to give

answers on which debt instance to address first, but also to ease and promote890

the culture of resolving debt instances as part of the normal activities in the

development process. In this regard, the use of mechanisms such as Gamification

[54], i.e., the application of game-like features in non-game context could be of

benefit. Gamification has increasingly been proving its usefulness to motivate,

accelerate and ease human productivity and it has already been studied in the895

context of software development (i.e.,[55, 56]), thus, it has the potential to

support and motivate the repayment of SATD among developers.

Identify who introduced the debt. Knowing which developer self-admitted

debt in the first place and the rationale for doing so is important. Siegmund [57]

suggested supporting the task of identifying developers who are responsible for900

a component, and helping them communicate with others who have introduced

SATD. Such scenario would require an approach that identifies SATD and de-

termines the developer who introduced it. Enabling a channel of communication

between developers can shed light into the rationale behind a debt instance to

support is repayment. However, it can be problematic as a debt-introducing905

developers may no longer be available. Thus, its applicability is limited by the

phase at which SATD is managed.

Call to action:

• Study the usage of gamification techniques to motivate the repayment of

SATD.910

• Complement SATD detection approaches by identifying who introduced the

debt to enable communication between developers, facilitating repayment.
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5. Conclusions and limitations

We surveyed empirical research work in the arising topic of SATD, which

has developed rather quickly in recent years. This literature survey has been915

performed on studies related to self-admitted technical debt, as defined by the

exploratory study of Potdar and Shihab [8]. We used this study as the cor-

nerstone for our survey and applied snowballing to find related work from it.

Although we complemented the lookup for SATD-related work with results from

academic search engines, we found no studies that focus on SATD that were not920

originally found during the snowballing process. Thus, the papers encompassed

in this survey are limited to those released after 2014 and until the compilation

of this survey in July of 2018. The selected papers are also limited to those

returned by the search engines and keywords we used, and only to those that

mainly focus on studying SATD (see Section 2.1).925

From our survey subjects, we observe how researchers have evolved current

approaches from manual observations to automated techniques for detecting and

classifying debt instances, and have advanced the overall understanding of the

SATD phenomenon in the software development process. Naturally, the focus of

SATD studies was clustered in detecting the presence of debt, and understanding930

its life-cycle. Once detection approaches were accurate and replicable, the focus

switched to studying how SATD grows over time and how it is removed from

software repositories. We certainly observe a lack of studies focusing on the

repayment and management of SATD, which is of critical importance. However,

we also notice researchers stepping towards efforts to manage and repay SATD.935

To this extent, our work highlights several of the challenges to overcome in the

area, and presents various promising avenues for future studies based on the

gaps and opportunities seen in current research work. Our survey compiles the

tools and datasets that can be used as a foundation to motivate and facilitate

the submission of novel and improved approaches for managing and ultimately,940

repaying SATD.

We believe SATD will continue receiving attention in the field the upcoming
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years. As an immediate future, we plan on centralizing our efforts on how to

prioritize the resolution of SATD.
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