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ABSTRACT

Nowadays, a flexible, lightweight variant of the code review
process (i.e., the practice of having other team members cri-
tique software changes) is adopted by open source and pro-
prietary software projects. While this flexibility is a blessing
(e.g., enabling code reviews to span the globe), it does not
mandate minimum review quality criteria like the formal
code inspections of the past. Recent work shows that lax
reviewing can impact the quality of open source systems.
In this paper, we investigate the impact that code review-
ing practices have on the quality of a proprietary system
that is developed by Sony Mobile. We begin by replicating
open source analyses of the relationship between software
quality (as approximated by post-release defect-proneness)
and: (1) code review coverage, i.e., the proportion of code
changes that have been reviewed and (2) code review partic-
ipation, i.e., the degree of reviewer involvement in the code
review process. We also perform a qualitative analysis, with
a survey of 93 stakeholders, semi-structured interviews with
15 stakeholders, and a follow-up survey of 25 senior engi-
neers. Our results indicate that while past measures of re-
view coverage and participation do not share a relationship
with defect-proneness at Sony Mobile, reviewing measures
that are aware of the Sony Mobile development context are
associated with defect-proneness. Our results have lead to
improvements of the Sony Mobile code review process.
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1. INTRODUCTION

Code review is recognized as an effective strategy to dis-
cover and fix software defects before a set of proposed code
changes are integrated into the codebase. In 1976, Fagan [9]
formalized the code inspection process, which mandates that
reviewers follow checklists and participate in group meetings
with the author and other stakeholders. Although code in-
spections have been shown to be effective at detecting er-
rors during requirements analysis, design, and implementa-
tion [32], its rigid nature makes it difficult to adopt in today’s
globally-distributed, rapidly releasing software projects [31].

Unlike the formal code inspections of the past, modern
code review is lightweight and flexible. Broadcast-based peer
review proceeds asynchronously and is broadly adopted by
Open Source Software (OSS) projects, e.g., Apache [26], that
welcome contributions from developers that span the globe.
Recent advances in tool support for code review (e.g., Ger-
rit’) have enabled tighter integration of code review with
version control and issue tracking systems [25].

This flexibility of modern code review is both a blessing
and a curse. On the one hand, modern code reviewing pro-
cesses can easily scale out to support globally distributed
software teams. On the other hand, modern code reviews do
not mandate review checklists or in-person meetings, which
guaranteed a base level of reviewer participation in the code
inspection process of the past. Indeed, recent work shows
that lax code review practices can impact software quality in
large OSS projects. Reviewer involvement is known to share
a relationship with software code quality [17, 18] and soft-
ware design quality [21] in four large OSS projects. More-
over, Thongtanunam et al. [30] find that reviewers tend to
be less careful in the files that will eventually have defects.

Yet, little is known about the impact that lax review-
ing practices may have on systems that are developed in a
proprietary setting. There are several differences in soft-
ware project characteristics between OSS and proprietary
projects that may affect the prior findings. For example, un-
like the global and asynchronous development of OSS teams,
proprietary software teams are often colocated. Herbleb and
Grinter [13] found that these colocated development teams
of proprietary software projects often use face-to-face (of-
fline) communication to make project decisions. Aranda and
Venolia [2] have shown that the software repositories of large
proprietary software teams often omit (or contain erroneous)
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Table 1: An overview of the Sony Mobile project in
comparison to the previously studied projects [18].

Our Project Qt v5.1 VTK 5.10
Z Commits ~ 20,000 7,106 1,431
# Authors ~ 1,000 422 55
# Components 500 ~ 1,500 1,337 170
# Reviewers ~ 1,000 348 45
Review coverage 81% 96% 39%

collaboration information because of the face-to-face nature
of colocated collaboration.

In this paper, we re-examine McIntosh et al.’s prior study [18]

in a proprietary setting at Sony Mobile. In addition to
replicating the quantitative analysis of the prior work, we
perform an extensive qualitative analysis, which includes:
(a) a survey of 93 stakeholders at Sony Mobile, (b) semi-
structured interviews with 15 of these stakeholders, and (c)
a follow-up survey of 25 senior software engineers. The cen-
tral question of our qualitative analysis is: “Why are certain
reviewing practices associated with better software quality?”
Triangulation of statistical analysis with stakeholder intu-
ition shows that the degree of reviewer involvement does
indeed have an impact on software quality.
This paper makes the following contributions:
e Identifying quality-impacting review practices in a pro-
prietary development setting.
e An empirically grounded improvement plan for the
code reviewing practices at Sony Mobile.

Paper organization. In Section 2, we introduce the code
integration process at Sony Mobile. In Sections 3 and 4,
we revisit the relationship between the degree of code re-
viewer involvement and software quality. In Section 5, we
present our survey of 93 stakeholders. Section 6 triangulates
our findings with those of related work to generate recom-
mendations about quality-impacting code review practices.
Section 7 discloses the threats to the validity of our study.
Finally, Section 8 draws conclusions.

2. CODE INTEGRATION AT SONY MOBILE

In this section, we explain the characteristics of the stud-
ied project, the Gerrit code review tools, and how code
changes are integrated into the software product.

2.1 Studied Project

Table 1 provides an overview of the studied project. The
project is an embedded system under development that is
derived from the Android codebase with built-in original
apps. The system runs on a smartphone device that is com-
mercially released. The system is developed by a network of
colocated teams in Asia, Europe, and North America.

The system consists of two types of components: those
that are developed in-house (e.g., Sony Mobile apps or An-
droid extensions) and those that originate from external
codebases (e.g., Android®> and Qualcomm?®). Roughly 30%
of the components of the studied project are developed ex-
ternally. Hence, a portion of the development effort at Sony
Mobile is dedicated to the integration of changes in those ex-
ternal components while active development of Sony Mobile
components is underway.

Zhttps://source.android.com/
3http:/ /codeaurora.org/
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Figure 1: The Sony Mobile code integration process.

Furthermore, unlike typical OSS projects where contribu-
tors are globally distributed, the studied project is developed
by a network of colocated teams in Asia, Europe, and North
America. The colocated nature of much of the development
allows team members to interact with one another in-person
to a much larger extent than many OSS teams.

2.2 Code Integration Processes

At Sony Mobile, internally developed code must be cri-
tiqued by other team members using the Gerrit code review
tool. Gerrit is a web-based code review tool that is broadly
adopted by OSS and proprietary projects.*

Figure 1 provides an overview of the Gerrit-enabled code

integration process at Sony Mobile. At Sony Mobile, there
are integration processes for: (a) internal branches, (b) ex-
ternal branches, and (c¢) official releases. We describe each
of the integration processes below.
a. Internal integration process. Developers fetch the
latest code from an internal branch (a-1), modify the code,
and make necessary local commits. Local commits must be
uploaded for review using Gerrit (a-2), where other devel-
opers review the changes. To obtain submission privileges
(a-3), reviewers must provide positive review and verification
scores. If a negative score is given, the author must address
the feedback of the reviewers by creating a new commit and
requesting a re-review. After a commit has been granted
submission privileges, the Gerrit system allows the author
to submit the commit to the main project repository (a-4).
b. External integration process. Unlike internal inte-
gration, external integration is handled by system integra-
tors. The system integrators have the permission to execute
the direct push operation,® which is designed to bypass the
code review process. At Sony Mobile, this direct push oper-
ation is only available to senior team members.

To perform a direct push, a system integrator first down-
loads the latest code from an external repository to their
personal workspace (b-1). Then, the integrator pushes the
latest code to the external branch in the internal code repos-
itory (b-2). Next, system integrators upload merge commits
to the Gerrit code review process (b-3). These merge com-
mits integrate the externally developed code into the inter-
nal Sony Mobile branch. Note that while merge commits
are carefully reviewed to check for conflicts between internal
and external branches, cleanly merging external code churn

4 http://blogs.collab.net/git/why-gerrit-is-important- for-enterprise- git

5 https://gerrit-review.googlesource.com/Documentation/
access-control.html#category_push_direct



is often overlooked. Finally, merge commits can be submit-
ted after submission privileges are granted (a-4).

c. Release integration process. As development pro-
ceeds, a so-called release branch is created (see Figure 1).
In addition to the code review process that is applied to
internal code, these release branches are more strictly mon-
itored than development and only urgent fixes are granted
submission privileges on these branches.

3. REPLICATION STUDY SETUP

We quantitatively analyze the historical code changes and
code review data of a large scale commercial project. We do
so by re-examining two research questions originally posed
by McIntosh et al. [18] regarding code review practices:

RQ1 Isthere a relationship between code review cov-
erage and post-release defects?

RQ2 Is there a relationship between code review par-
ticipation and post-release defects?

Similar to the prior study [18], we address these RQs
by analyzing components of the studied system. To iden-
tify components in the Sony Mobile environment, we adopt
the modular programming concept suggested by Parnas [24]:
“..it should be possible to make drastic changes to one mod-
ule without a need to change others. ...”. We use the commit
activity of personnel who belong to a team, and the directory
structure of the Sony Mobile system to identify components.
We briefly describe each classification type below.

Role-based: Components are classified by connecting the
team personnel data that is recorded in human re-
sources databases with the commit activity data that
is recorded in the main project repository. This con-
nected data maps every Git commit to a team. Those
commits that are recorded by a team are considered
to be impacting one component.

Directory-based: Those commits that cannot be connected

to the activity of a team are split into components us-
ing the directory structure of the system. These com-
ponents are defined using the top-level directory name.
A similar method was applied in the prior work [18].

Next, we define the software metrics that we use to quan-
tify code review practices. Then, we describe our statistical
approach to construct and analyze regression models that
explain the incidence of post-release defects.

3.1 Software Metrics

In this paper, we study the relationship between several
potential quality-impacting metrics and the incidence of post-
release defects. Table 2 provides an overview of the studied
metrics. We define each metric below.

Defects. Similar to several studies [6, 18, 23], we discover
incidences of defects by scanning corresponding fixes for de-
fects. We focus on defect fixing activity that occurs (or is
merged into) the release branch. Prior defects are defects
that were fixed before the product was released, while post-
release defects are defects that were discovered in the field
and fixed as part of a software update (see Figure 1).

Baseline metrics. In the literature, several metrics have
been shown to share a relationship with software quality.
To control for those confounding factors, we include them
as baseline metrics. S1ZE and COMPLEXITY are measured

by reading the source code at the time of software release.
CHURN, RELATIVE_CHURN, and ENTROPY are measures of
the code change process. TOTAL, MAJOR, MINOR, and OWN-
ERSHIP capture the degree of module responsibility that the
authors of a change have.

Review coverage metrics. We measure the proportion
of code change in a component that underwent code review.
REVIEWED_COMMIT is calculated by treating each commit
as a discrete unit of equal value. REVIEWED_CHURN is cal-
culated by treating each changed line as a discrete unit of
equal value. As mentioned in Section 2.2, there is a sub-
stantial amount of external code in flux (See Figure 1). To
account for this external code, we introduce IN-HOUSE, i.e.,
the proportion of internally developed commits.

Review participation metrics. We study review partici-
pation along three dimensions: (1) the existence of a review
that was written by other team members, i.e., the number
of commits that were approved (SELF_APPROVAL) or veri-
fied (SELF_VERIFY) by the authors themselves; (2) the time
spent reviewing code, i.e., the REVIEW_WINDOW and the
proportion of HASTILY reviewed changes; and (3) the effort
that was invested in improving the change, i.e., the number
of comments in the review discussion (DISCUSS_LENGTH),
the proportion of reviews without discussions (No_Discuss),
and the churn of a change during its review (PATCH_SD).

3.2 Model Construction

Similar to the prior study [18], we adopt the statistical
approach of Harrell Jr. [10]. While previous work uses mul-
tiple linear regression models [18], we use logistic regression
models because the proportion of components with multi-
ple post-release defects is too low for counting models or
linear fits. For our logistic fits, we label the components
that include at least one post-release defect as defective.
Conversely, those components that are free of post-release
defects are labelled as clean.

Normality adjustment. For highly skewed metrics, we
apply a logarithmic transformation to lessen the impact of
outliers. We apply this logarithmic transformation to SIZE,
CHURN, and RELATIVE_CHURN, which have high variance
values (=~ 10°).

Variable reduction. We perform a two-step correlation
analysis to identify variables that are too highly correlated
to include in the same model. The first step is to calculate
the Spearman rank correlation between each pair of explana-
tory variables. We use hierarchical clustering to visualize the
Spearman correlation values. Similar to prior work [18, 30],
we consider a cluster of variables that has a Spearman cor-
relation value of at least 0.7 to be too highly correlated to
include together in the same model. We select one variable
from each such cluster to include in the model.

In the second step, we examine how well each variable can
be explained using a combination of the other variables. A
variable that can be well-explained using other variables is
redundant. We use the redundancy check implemented in
the redun function of the rms R package [11], which builds
models to predict the value of each explanatory variable us-
ing the others. If the fit of a model for an explanatory vari-
able has an R? value of at least 0.9 (the default threshold
of the redun function), the variable is considered redundant
and is excluded from our defect models.

Model simplification. While the surviving metrics are
not correlated or redundant, they may not contribute to the



Table 2: An overview of the studied software metrics.

METRIC Log.| Description
PRIOR_DEFECTS Number of prior defects [32].
S1ze v Lines of code.
CHURN v Total amount of changed lines of code [22].
RELATIVE_CHURN v Normalized CHURN by SIZE [22].
Base LOTAL Number of unique committers of a component [6].
MAJOR Number of unique committers whose commits represent more than 5% of all commits [6].
MINOR Number of unique committers whose commits represent less than 5% of all commits [6].
OWNERSHIP Highest commit occupation ratio of the MAJOR committers [6].
ENTROPY A measure of churn diversity among files in a component [12]. Calculated by ZZL ¢ %
where L. is the churn of a component, p; is a churn fraction of a file 4.
COMPLEXITY Summation of McCabe’s cyclomatic complexity number over files.

RQ1

REVIEWED_COMMIT

REVIEWED_CHURN
*IN-HOUSE

Ratio of reviewed commits. Calculated by dividing the number of commits in the Gerrit code
review system by that in git log [17, 18].

Ratio of reviewed churn. Calculated as same as REVIEWED_CoMMIT [17, 18].

Ratio of internal contribution in the entire history of the current branch. Calculated in the same
manner as REVIEWED_COMMIT.

RQ2

SELF_APPROVAL
*SELF_VERIFY
REVIEW_WINDOW
HaAsTILY
Discuss_LENGTH

No_Discuss
*PATCH_SD

Number of commits that are self-approved (i.e., when the engineer who authored a code change is
only the engineer who provided a positive review score that grants submission privileges) [17, 18].
Number of commits that are self-verified (i.e., when the engineer who authored a code change
is only the engineer who actually tested it and provided a positive verification score).

Time interval between the upload of a commit until it is submitted [17, 18]. The median value
across the changes to a component is used.

Number of commits which are hastily reviewed [17, 18].

Average summed length of review comments on a commit until its submission [17, 18].
Number of commits that are submitted without any review comments [17, 18].

Summation of normalized standard deviations of a patch churn until it is submitted. For exam-
ple, if a change is revised 5 times with churn of (45,45,43,49,49) respectively, then its standard

deviation is 2.9 and the mean is 46.6. In this case, PATCH_SD is 2.9/46.6=.06.

Abbreviations (Definition): Log. (Logarithmic transformation), * (Newly added metrics in this study)

explanatory power of our defect models. To evaluate the
contribution of our metrics, we examine the reduction in ex-
planatory power between a preliminary model that contains
all explanatory variables and another preliminary model that
has all but one explanatory variable under test. Explana-
tory power of each preliminary model is estimated using the
AIC (Akaike Information Criterion) [1]. If the AIC wors-
ens after removing a variable, the variable is said to have
an impact on the fit of the preliminary model and is re-
tained for our final model fit. Otherwise, if the AIC does
not worsen after removing a variable, it is excluded from
our final model fit. This process is repeated until the model
formula reaches a saturated form. We use MASS: :stepAIC
(with dir="backward" option) to evaluate the AIC.

3.3 Model Analysis

Similar to the prior work [18], we analyze our models from
two perspectives: (1) model performance and (2) the impact
of each explanatory variable on the model performance.
Model performance. We analyze the performance of con-
structed models using the discrimination index D,y = 2(c—
0.5) [7, 10], where c is the Area Under the receiver operat-
ing characteristic Curve (AUC). The AUC is a threshold-
independent performance metric that measures a classifier’s
ability to discriminate between defective and clean compo-
nents (i.e., do the defective components tend to have higher
predicted probabilities than clean ones?). AUC is computed
by measuring the area under the curve that plots the true
positive rate against the false positive rate, while varying the
threshold that is used to determine whether a component is
classified as defective or clean. Values of AUC range between
0 (worst performance), 0.5 (random guessing performance),
and 1 (best performance). Therefore, D, values range be-
tween —1 (worst performance), 0 (random guessing perfor-

mance), and 1 (best performance). Furthermore, Hosmer et
al. [7] state that D,, > 0.4 can be considered as acceptable
discrimination and Dy, > 0.6 as excellent discrimination.

The D, is inherently overestimated because the model is
fitted and tested using the same data. To take model sta-
bility into account, we subtract the bootstrap-derived op-
timism [8] from the D,,. The bootstrap technique draws
n samples from the original dataset of size n with replace-
ment. This procedure is repeated B times to create B new
datasets. In each of the B datasets, the same model formula
is applied but coefficients as well as confidence intervals are
re-calculated. Using the bootstrap models, D, is calculated
using both the bootstrap dataset and the original dataset.
Then, the difference AD,, between the bootstrap D,, and
the original D, is computed. Finally, the optimism is com-
puted by taking the average of the AD,, values across the
B iterations. In our study, we use B = 1,000 iterations.
The explanatory power of our metrics. While the D,
evaluates the model fits, we would like to estimate the im-
pact that each explanatory variable has on our model per-
formance. To that end, we show the coefficients, standard
error, and x? values of the explanatory variables in our fits.
In the logistic regression model, the antilog of a coefficient
is equivalent to the variable’s odds ratio. Thus, a large coef-
ficient indicates that an exploratory variable makes a large
contribution to the performance of a model.

4. REPLICATION STUDY RESULTS

In this section, we present the results of our baseline model
fits and our two research questions.

4.1 Baseline Model

Before we discuss the impact of review metrics on software
quality, we first analyze the performance of a baseline model,



Table 3: The performance of our defect models.

D, original .. Dy, corrected
(Di?ff. with Base) Optimism (Di?ff. with Base)
Base| .637 .023 614
RQ1| .695 (+ .058) .026 .669 (+ .055)
RQ2| .718 (+ .081) .045 674 (+ .060)

Table 4: The relationship between explanatory vari-
ables and defect-proneness.

by 0.058. The optimism value is also small (0.026), which in-
dicates that our model fit is robust. The optimism-corrected
Dy, is 0.669, which still provides excellent discrimination [7].

Table 4 shows the contribution of the IN-HOUSE metric.
We observe that it has a large negative impact on defect-
proneness. In Section 5.2, we study why only IN-HOUSE
contributes to our model fits.

Although our review coverage model outperforms our
baseline model, of the three studied review coverage met-
rics, only the proportion of IN-HOUSE contributions con-

Metric Coef. SE. x? Pr(> x%) tributes significantly to our model fits.
SIZE +0.32. .09 4.01 0453 Comparison with previous work. Similar to the
Base CHURN —032 .09 4.16 0413 prior work [18], we find that REVIEWED_COMMIT and
ToTAL +0.07 .02 8.61 .0033 . .
PRIOR_DEFECTS | +0.41 .12 14.02  .0002 REV'IEWED,CHURN pr'omc'le little explanatory power, sug-
RQI IN-HOUSE 144 36 1561 .0001 gesting that other reviewing factors are at play.
PATCH_SD —0.12 .04 8.77 .0031
RQ2 SELF_VERIFY +0.02 .01 6.26 .0124

which is trained using metrics that are known to share a
relationship with defect-proneness (e.g., S1zE and CHURN).
Baseline model construction. We first perform our cor-
relation analysis, where we select TOTAL instead of OWNER-
sHIP and MAJOR because TOTAL is easier to interpret. We
then perform our redundancy analysis, where we find that
MiINOR and RELATIVE_CHURN are redundant. Finally, we
perform our model simplification, where we find that EN-
TROPY and COMPLEXITY provide insignificant amounts of
explanatory power. Four metrics survive our model con-
struction steps: SizZE, CHURN, TOTAL and PRIOR_DEFECTS.
Baseline model analysis. Table 3 shows that our base-
line model achieves a Dy, of 0.637, i.e., excellent discrimi-
nation [7]. The optimism value that we derive from 1,000
samples is small (0.023), which indicates that our model fit
is robust. The optimism-corrected D, is 0.614, which still
falls within the range of excellent discrimination [7].

Table 4 shows the contribution of each explanatory met-
ric in our model fit. We observe that PRIOR_DEFECTS,
S1zE, and TOTAL have a positive impact on defect-proneness,
while surprisingly, CHURN has a negative impact. We elab-
orate on the counterintuitive nature of the relationship be-
tween defect-proneness and CHURN in Section 5.4.

Our baseline model achieves excellent discrimination,
with a Dgy of 0.637. PRIOR_DEFECTS, SIZE, and To-
TAL share strong, increasing relationship with defect-
proneness, while CHURN shares strong, decreasing rela-
tionship with defect-proneness.

4.2 Review Coverage (RQ1)

To address RQ1, we add our review coverage metrics to
the baseline model and check whether the fit is improved.
Model construction (RQ1). In correlation analysis, we
select REVIEWED_CHURN instead of REVIEWED_COMMIT be-
cause it is a more exact measure of the amount of code that
was reviewed. While redundancy analysis does not identify
any problematic metrics, model simplification shows that
REVIEWED_CHURN does not provide a significant amount of
explanatory power. In summary, only the IN-HOUSE review
coverage metric survives our model construction steps.
Model analysis (RQ1). Table 3 shows that our new model
achieves a Dy, of 0.695, outperforming the baseline model

4.3 Review Participation (RQ2)

To address RQ2, we add our review participation metrics
to the RQ1 model and check if the model fit is improved. We
use the RQ1 model as the baseline to control for coverage.
Model construction (RQ2). Correlation analysis does
not identify any problematic pairs of explanatory variables.
Redundancy analysis reveals that No_Discuss should be ex-
cluded. Model simplification reveals that DISCUSS_LENGTH,
HASTILY, SELF_APPROVAL, and REVIEW_WINDOW provide
insignificant amounts of explanatory power.

In short, we find that two review participation metrics sur-
vive our preliminary analyses: PATCH_SD and SELF_VERIFY.
Interestingly, we find that metrics that measure code review-
ing time do not contribute distinct or significant amounts of
explanatory power. We investigate this more in Section 5.3.
Model analysis (RQ2). Table 3 shows that our new model
achieves a Dy, of 0.718, outperforming the baseline model
by 0.081. On the other hand, the optimism value is slightly
higher at 0.045, which suggests that our new model fit is less
robust. Still, the optimism-corrected D, is 0.674, which is
regarded as excellent discrimination [7].

Table 4 shows the impact of the PATCH_SD and SELF_VERIFY

metrics. We observe that PATCH_SD has a negative impact
on defect-proneness, while SELF_VERIFY has a positive im-
pact. In Section 5.3, we qualitatively study what kinds of
code reviewing practices are driving these results.

Our review participation model also outperforms our
baseline model. Of the studied review participation met-
rics, only the measure of accumulated effort to im-
prove code changes (PATCH_SD) and the rate of author
self-verification (SELF_VERIFY) contribute significantly
to our model fits.

Comparison with previous work. Unlike the prior
work [18], code reviewing time and discussion length did
not provide exploratory power to the Sony Mobile model.

S. QUALITATIVE ANALYSIS

The purpose of qualitative analysis is to elicit expert opin-
ion about our empirical results in Section 4. This analysis
consists of three parts (see Figure 2); (1) a preliminary ques-
tionnaire (93 stakeholders), (2) follow-up interviews (6 ses-
sions, 15 participants), and (8) a second questionnaire to
validate our findings (25 senior developers).
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Figure 2: Approach for our qualitative analysis.

5.1 Methodology

We use the data collection and analysis approaches that
are proposed by Seaman [27] to derive implications. We
finally validate these implications with stakeholders. Figure
2 provides an overview of our qualitative analysis approach,
which is composed of three parts:

1. Pre-data collection. The main objective of the pre-
data collection is to identify stakeholders who have a breadth
of experience in software development and/or management.
Our aim is to triangulate our statistical results with stake-
holder experience. We do so by explaining our statistical
analysis and its results, and collecting and analyzing the
stakeholder feedback.

First, we held a result sharing meeting to explain our sta-
tistical analysis and its results (1a in Figure 2). We invited
300 members of the software development team at Sony Mo-
bile to our meeting, of which 93 invitees attended (31%).
Table 5 shows the summary of attendee profiles. The pre-
sentation took 20 minutes to elaborate on the research back-
ground, analysis methods, results, and findings.

Next, we issued a questionnaire to all of the attendees
(1b). The questionnaire covered the stakeholder’s technical
background, impressions about the results, and their will-
ingness to participate in an individual interview.

When selecting interviewees, we focused on stakeholders

who made at least one pertinent comment on review met-
rics. The first author’s background in software development
at Sony Mobile also helped to identify key stakeholders. We
selected 5 software engineers and 1 project manager as inter-
viewees (O-1). The interviewees were asked to bring one or
more colleagues from their team to provide a more objective
perspective. In total, we interviewed 15 stakeholders.
2. Interviews. We conducted semi-structured interviews
to uncover the code review practices at Sony Mobile. Semi-
structured interviews begin with a set of prepared questions,
but the structure of the interview is flexible, allowing the
interviewer to dig into unexpected answers from the inter-
viewees by developing new questions during the session [27].
Many of the questions are directly connected with our re-
search interests, such as: “Why is self-verification a common
practice in your team?”, or “Why do you think that in-house
components developed by your team tend to have fewer de-
fects than external components?”. All of the conversations
were recorded and coded by the interviewer and were later
checked by the interviewees for correctness.

Table 5: Profiles of respondent.

Software  Testing / Qual-  Project Total
Engineer ity Assurance Manager
Staff 69 7 5 81
Manager | 6 4 2 12
Total 75 11 7 93

When analyzing the six interview transcripts, we grouped

team responses according to the prepared questions. We se-
lected the recurrent responses that were provided by at least
three teams (i.e., 50% of the interviewed teams) for further
validation in our secondary questionnaire. Using these re-
curring responses, we formulated six implications (0-2).
3. Validation. We validate the implications that we de-
rive from our semi-structured interviews by performing a
follow-up questionnaire, which was filled out by 25 senior
software engineers. In analyzing the follow-up questionnaire,
we check how many of the respondents agree with the de-
rived implications (O0-3).

The validation questionnaire presents the respondents with
a list of our derived implications (presented in the rectan-
gular boxes of Section 5.2 to 5.4) asking whether the impli-
cation agrees with their expertise or not. We calculate the
ratio of respondents who agree with our implications out of
all respondents. We exclude blank answers when calculat-
ing the ratio because these blank answers indicate that the
respondents do not have the necessary expertise to answer
the question.

5.2 Implications on Review Coverage

We qualitatively analyze review coverage from software
quality and developer perspectives.

A) Why is In-House associated with software quality,
while REviEwWED_CoMMIT and REVIEWED_CHURN are not?

Motivation. IN-HOUSE represents the same concept as RE-
VIEWED_COMMIT and REVIEWED_CHURN about review cov-
erage. The only difference is the measurement period: IN-
HOUSE sees the entire history of the branch. Hence, we are
interested in understanding why IN-HOUSE shares a stronger
relationship with software quality than the other review cov-
erage metrics.

Discussion. One project manager warns that we need spe-
cial attention for external commits:

“Things go wrong when different systems are combined and

integrated together. No matter how external commits ever
got positive review scores in their code review system, we
have to be aware that each system has its own test environ-
ment, approach, review criteria, which are different from
ours.” - Project manager, 5 years

As mentioned in Section 2.2, an internal commit in the Ger-
rit system needs positive review scores before it is granted
submission privileges. Although the integration of external
code follows the same review process, the individual external
commits are not reviewed by Sony Mobile engineers.

IN-HOUSE measures the proportion of unreviewed com-
mits during entire history of the component, whereas RE-
VIEWED_CHURN and REVIEWED_COMMIT include the exter-
nal code changes that were merged during the current project
period. We suspect this difference allows IN-HOUSE to cap-
ture software quality more accurately than the other two
metrics in the Sony Mobile context.



IN-HOUSE captures the amount of unreviewed code in a
more appropriate way for the Sony Mobile context than
REVIEWED_COMMIT/CHURN metrics do, likely because of
the difference in their measurement periods.
Validation. 15 senior developers (75%) agreed and 5
senior developers (25%) disagreed with this implication.

B) For developers, is it more difficult to improve soft-
ware quality of components with a low In-Housk rate?

Motivation. In the previous discussion, we studied the im-
pact of IN-HOUSE on overall software quality. In this ques-
tion, we focus on developers to study whether or not they
are also affected by IN-HOUSE.

Discussion. A software engineer working on components
of an external codebase explains his experiences:

“An internal codebase is much easier to work with, since I
can discuss with the people who wrote the code. An external
codebase takes more time from me to understand the code
and to develop patches.” - Software engineer, 6 years

Code reviewing provides a mechanism for knowledge shar-
ing [3]. The more that a codebase is developed and reviewed
by internal developers, the more knowledge that they ac-
cumulate. An external codebase naturally has a smaller
amount of information for developers. We suspect that de-
velopers generally have greater difficulty when they work on
components that have originated from an external codebase.
Since understanding plays a major role in defect repair [29],
we suspect that, if left unchecked, a high dependence on
external codebases may threaten software quality.

Developers require more time and effort to understand,
extend, or repair components with low IN-HOUSE rates.
Validation. 23 senior developers (92%) agreed and 1

senior developer (4%) disagreed with this implication.

5.3 Implications on Review Participation

In addition to IN-HOUSE, two of our review participa-
tion metrics have a significant impact on post-release defect-
proneness. In the interviews, we focused on review prac-
tices of different teams to investigate why certain review
practices became common and are associated with software
quality. We formulate a question corresponding to each of
the three studied dimensions of review participation (i.e.,
involvement, time, and discussion).

C) Why are higher rates of self-verification associated
with lower software quality?

Motivation. Our models show that SELF_VERIFY is associ-
ated with software quality (see Section 4). We are interested
in checking whether this self-verification trend agrees with
expert opinion.
Discussion. While on the whole, self-verification is a bad
practice, it has some advantages in the Sony Mobile con-
text. For example, an author can verify that the intended
functionality works precisely. On the other hand, an author
is not a good candidate to verify unintended workflows of
the program. One interviewee argues for the value of self-
verification:
“Our components span across a low-level hardware layer to
user-level application. I understand the architecture, and I
am the one who can test my commit properly. Automated
testing is not an option.” - Software engineer, 4 years

Yet, 4 out of 5 teams admitted that the self-verification prac-
tice is coloured by the author’s subjective perspective, which
may bias the test result. However, even if developers want
to dedicate the testing work to other engineers, there are
still many barriers to overcome, such as a detailed descrip-
tion of the testing environment, and identifying personnel
with the appropriate expertise to carry out the test. Thus,
self-verification is an alluring shortcut for developers to take.

Self-verified commits may yield biased testing crite-
ria. However, practicalities of the complex development
environment and time pressure of releases make self-
verification an alluring shortcut for developers to take.

Validation. 20 senior developers (87%) agreed and 3
senior developers (13%) disagreed with this implication.

D) Why do the metrics related to reviewing time have
little impact on our software quality models?

Motivation. The prior study [18] showed that reviewing
time shared a significant relationship with software quality
in 2 of 4 studied releases of OSS systems. In Section 4,
we find that the reviewing time metrics do not contribute
to our model fits. Hence, we are interested in investigating
why this might be the case for the Sony Mobile project.
Discussion. One potential reason for the discrepancy is
provided by a senior engineer:

“I have many reviews in my to-do’ list, but the order in
which I do them is dictated by team priorities, e.g., usually
hot-fizes are reviewed first. Any other factors, e.q., size
or complexity of commits do not matter. Does that give
rise to longer reviewing time for a small and low-priority
commits?” - Senior application software architect, 10 years

The architect points out that issue priority may influence
reviewing time. HASTILY may have had a significant impact
on the OSS systems of the prior work [18] because issue pri-
ority is often not set properly or is ignored in many OSS
projects [20]. Commercial projects tend to put more em-
phasis on issue priority [16].

Issue priority may cause reviewing time measures to lose
meaning in the Sony Mobile context.

Validation. 25 senior developers (100%) agreed with
this implication.

E) Why is increased PatrcH_Sp associated with lower
software quality?

Motivation. Our models show that PATCH_SD is signifi-
cantly associated with post-release defect-proneness (see Sec-
tion 4). Hence, we are interested in investigating why.
Discussion. An interview with a senior software architect
highlights the importance of offline code improvement:

“We have a conventional code review meeting regularly.
When code change spans across different files, it is much
easier to work with direct communication rather than with
the Gerrit tools. We can talk in our language (Japanese)
too unlike in Gerrit.” - Senior platform software architect,
10 years

At Sony Mobile, many developers rely on in-person com-
munication (see Section 2.1) and claim that this is where
code improvement activities take place. We suspect that the



volume of discussion in Gerrit, i.e., DISCUSS_LENGTH, only
captures a limited amount of the code improvement activ-
ity. Hence, our discussion length metrics do not contribute
as much value to our models as PATCH_SD does.
Self-improvement is another type of review activity that
PATCH_SD captures, yet discussion metrics do not. There is
a large proportion of commits that are revised several times
without reviewer’s feedback. Two engineers explained the
motivation for updating commits before review feedback:

“I review my code on the browser. The GUI difference with
my local text editor or IDE can make me more attentive to
catch easy mistakes.” - 2 platform software engineers with
3 and 4 years of experience

Self-motivated code improvement is a common phenomena
to improve software quality in other software projects, too [5,
30]. Self-reviewing practices also increase the chance of
detecting underlying software defects. Indeed, PATCH_SD
seems to capture the efforts of a developer to improve soft-
ware quality in a more appropriate way for the Sony Mobile
context than other review participation metrics do.

PATCH_SD captures developer effort in a way that is not
diminished by offline review discussion at Sony Mobile.
Validation. 17 senior developers (81%) agreed and 4
senior developers (19%) disagreed with this implication.

5.4 Miscellaneous Findings

Our final finding is associated with baseline metrics which
are indirectly associated with our research interest in code
review practices.

F) Why is more churn associated with higher software
quality?

Motivation. Nagappan and Ball [22] found that the more
lines of code that churned, the higher the likelihood of de-
fects. In the studied Sony Mobile system, we observe the
opposite, i.e., increases in code churn are associated with
improvement in software quality. We are interested in in-
vestigating this counterintuitive indication of our models.

Discussion. Nagappan and Ball [22] studied a Windows
release (W2k3-SP1), which mainly contains security vulner-
ability fixes and enhancements to pre-installed programs.
Our studied Sony Mobile project has several different char-
acteristics. For example, the Sony Mobile code changes also
implement new features and apps beyond defect fixes (see
Section 2.1). New features are often contributed to in in-
house components. In Section 5.2, we suggested that in-
house components tend to have more of a positive impact
on software quality and developers’ knowledge than external
components. A senior application engineer also comments:

“New feature implementations of in-house components have
much larger lines of code than defect-fixves in external com-
ponents because we can write the code quicker.” - Senior
application engineer, 10 years

We suspect that these characteristic differences are at the
heart of the counterintuitive results that we arrive at with
respect to CHURN. To investigate our suspicion, we compute
a subset of the total churn that measures only the churn
of defect fixes (PRIOR-DEFECTS_CHURN). We then used
PRIOR_DEFECTS_-CHURN instead of CHURN and refit our

models. Our new model fits show that PRIOR_DEFECTS_CHURN

has a significant positive impact on the post-release defect-
proneness, i.e., increases in PRIOR_DEFECTS_CHURN are as-
sociated with increases in post-release defect-proneness.

Characteristics of the types of changes and the target sys-
tem type may be leading to this counterintuitive relation-
ship between code churn and software quality.

Validation. 18 senior developers (68%) agreed and 6
senior developers (32%) disagreed with this implication.

6. ACTION PLANS AND RELATED WORK

Table 6 provides an overview of the findings and implica-
tions. We find that all of the implications related to code re-
view practices are supported by more than 75% of the senior
engineers who responded to our follow-up questionnaire.

In this section, we discuss how the findings of our study:
(a) have formed an action plan to improve code reviewing
practices at Sony Mobile and (b) fit with the code review
literature. We structure the discussion along the review cov-
erage and participation dimensions of our study.

6.1 Review Coverage

Prior work suggests that coverage of the review process
is important. Fagan [9] and Kemerer and Paulk [14] found
that the introduction of an inspection process that covered
all of the design and code changes lead to improvements in
software quality. Tanaka et al. [28] suggest that a software
team should meticulously review each change to the source
code. Bavota and Russo [4] find that unreviewed code is two
times more likely to introduce defects than reviewed code.

On the other hand, recent empirical studies suggest that
review coverage is not the most important characteristic of a
review process. For example, McIntosh et al. [17, 18] found
that review coverage only shares a significant link with the
incidence of post-release defects in two of four studied OSS
releases. Morales et al. [21] found that review coverage only
shares a significant link with software design quality in two of
four studied OSS releases. Furthermore, Meneely et al. [19]
find that the Chromium project enforces a 100% review cov-
erage policy, rendering review coverage moot.

Implications for Sony Mobile. We find that the rate of
churn in external code shares a significant link with software
quality. Moving forward, the quality assurance teams of
Sony Mobile have been made aware of this trend, and steps
are underway to improve test coverage of external code.

6.2 Review Participation

A recent line of work has highlighted the importance of
the investment that review participants make in the code
review process. Bacchelli and Bird [3] find that the mod-
ern code review process has become a mechanism to sup-
port collaborative problem solving. Mclntosh et al. [17, 18]
and Morales et al. [21] find that review participation shares
a consistent link with the incidence of post-release defects
and design anti-patterns, respectively. Kononenko et al. [15]
also find that review participation metrics are inversely as-
sociated with the commits that introduce defects.

Indeed, additional perspectives are invaluable in the code
review process. Thongtanunam et al. [30] find that software
modules that involve multiple reviewers in the code review
process tend to be less susceptible to defects than software
modules that involve few reviewers.



Table 6: Summary of findings and implications.

Dimension

Section

Findings and Implications

Review
Coverage

4.2

5.2.A

5.2.B

Although our review coverage model outperforms our baseline model, of the three studied
review coverage metrics, only the proportion of IN-HOUSE contributions contributes signifi-
cantly to our model fits.

IN-HOUSE captures the amount of unreviewed code in a more appropriate way for the Sony
Mobile context than REVIEWED_COMMIT/CHURN metrics do, likely because of the difference
in their measurement periods.

Developers require more time and effort to understand, extend, or repair components with
low IN-HOUSE rates.

Ratio

75%

92%

Review
Participation

4.3

5.3.D
5.3.E

Our review participation model also outperforms our baseline model. Of the studied re-
view participation metrics, only the measure of accumulated effort to improve code changes
(PATCH_SD) and the rate of author self-verification (SELF_VERIFY) contribute significantly to
our model fits.

Self-verified commits may yield biased testing criteria. However, practicalities of the complex
development environment and time pressure of releases make self-verification an alluring
shortcut for developers to take.

Issue priority may cause reviewing time measures to lose meaning in the Sony Mobile context.
PATCH_SD captures developer effort in a way that is not diminished by offline review discussion
at Sony Mobile.

87%

100%

Baseline

4.1

5.4.F

Our baseline model achieves excellent discrimination, with a Dy, of 0.637. PRIOR_DEFECTS,
Sz, and TOTAL share strong, increasing relationship with defect-proneness, while CHURN
shares strong, decreasing relationship with defect-proneness.

Characteristics of the types of changes and the target system type may be leading to this
counterintuitive relationship between code churn and software quality.

68%

Implications for Sony Mobile.

We find that active par-

representative of all proprietary software systems. However,

ticipation in the code review process indeed has a positive
impact on software quality, whereas improvement activities
can take various forms (e.g., offline code review meetings
and self-improvement). This result has lead the Sony Mo-
bile development team to more confidently invest effort in
the code review process. Furthermore, the Sony Mobile team
has set out to improve its code review process by encourag-
ing (a) passive developers to more actively participate in the
code review process and (b) all developers to verify the code
changes of other colleagues instead of their own.

7. THREATS TO VALIDITY

In this section, we discuss the extent to which our results
are threatened by our experimental design choices.

Construct validity. We assume prior/post-release de-
fects are defects that were fixed before/after the product was
released. At the time right before the release of commercial
systems, the defects that affect a wide range of components
are not likely to be fixed to mitigate the risk of regression.
Indeed, the number of prior/post-release defects that we
compute may not exactly match the number of prior/post-
release defects that the software system actually contains.

Internal validity. In our qualitative analysis, we selected
5 software engineers and 1 project manager as interviewees.
This selection may bias our results. To mitigate this bias,
we asked interviewees to bring colleagues from their teams
and also performed an external validation with 25 senior
engineers. Nonetheless, the implications we derived may
be biased by the interviewer’s background and the small
number of people who commented during the interviews.

External validity. Our study focuses on one proprietary
software system developed by Sony Mobile. This system
has several unique characteristics, such as the integration
of in-house and external codebases and being developed by
a network of colocated teams. This project might not be

generalizability is not the main goal of the study. Our find-
ings have been useful to help Sony Mobile to put into action
a plan to improve their code review process. Our findings
may be useful for other teams with similar characteristics.

8.  CONCLUSIONS

We quantitatively investigated the impact of code review-
ing practices, and complemented our findings with a qual-
itative analysis involving 93 stakeholders at Sony Mobile.
While prior metrics of review coverage do not share a rela-
tionship with defect-proneness in the Sony Mobile system,
the rate at which externally developed code (which is not
code reviewed by Sony Mobile engineers) is integrated with
Sony Mobile components shares a strong association with
defect-proneness. Furthermore, code review participation
also shares a significant link with software quality. For ex-
ample, author self-verification (i.e., when the engineer who
authored a code change is also the engineer responsible for
testing it) and the amount that code changes are improved
during the code review process are associated with software
quality. Our findings, which are confirmed by stakehold-
ers, have informed our process improvement plan for code
reviews at Sony Mobile.
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