
Empirical Study on the Relationship Between Developer’s
Working Habits and Efficiency

Ariel Rodriguez
Kyushu University
Fukuoka, Japan
roda@kyudai.jp

Fumiya Tanaka
Kyushu University
Fukuoka, Japan

tanaka@f.ait.kyushu-u.ac.jp

Yasutaka Kamei
Kyushu University
Fukuoka, Japan

kamei@ait.kyushu-u.ac.jp

ABSTRACT
Software developers can have a reputation for frequently work-
ing long and irregular hours which are widely considered to in-
hibit mental capacity and negatively affect work quality. This pa-
per analyzes the working habits of software developers and the
effects these habits have on efficiency based on a large amount
of data extracted from the actions of developers in the IDE (Inte-
grated Development Environment), Visual Studio. We use events
that recorded the times at which all developer actions were per-
formed along with the numbers of successful and failed build and
test events. Due to the high level of detail of the events provided
by KaVE project’s tool, we were able to analyze the data in a way
that previous studies have not been able to. We structure our study
along three dimensions: (1) days of the week, (2) time of the day,
and (3) continuous work. Our findings will help software develop-
ers and team leaders to appropriatly allocate working times and to
maximize work quality.

CCS CONCEPTS
• Social and professional topics → Project and people man-
agement; • Software and its engineering→Development frame-
works and environments; Software development methods;

KEYWORDS
Human Factors, DeveloperWorkingHours, Developer Activity, Ef-
ficiency, Productivity, User Studies

ACM Reference Format:
Ariel Rodriguez, Fumiya Tanaka, and Yasutaka Kamei. 2018. Empirical Study
on the Relationship BetweenDeveloper’sWorkingHabits and Efficiency. In
MSR ’18: MSR ’18: 15th International Conference on Mining Software Repos-
itories , May 28–29, 2018, Gothenburg, Sweden. ACM, New York, NY, USA,
4 pages. https://doi.org/10.1145/3196398.3196458

1 INTRODUCTION
Long hours, demanding workloads, and overtime experienced by
software developers have increased in recent years [1, 3]. Certain
types of developers have been shown to be more active in the early
morning hours, whereas other types keep more normal working

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACMmust be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MSR ’18, May 28–29, 2018, Gothenburg, Sweden
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5716-6/18/05. . . $15.00
https://doi.org/10.1145/3196398.3196458

hours [9]. This type of work behavior has been shown to adversely
affect human efficiency and productivity, particularly in the early
hours of the morning and after prolonged periods of working [2].

This study investigates the working habits of software develop-
ers based on their total time worked throughout the week, contin-
uous working time, and work during particular periods of the day.
By using the detailed events provided by the FeedBaG++ tool, we
can obtain greater granularity compared to previous studies [2, 9].
The FeedBaG++ tool includes the ActivityEvent, which records
all developer actions, and includes the Build and TestRun events
which provide information when developers build or test a pro-
gram. Based on the collected data for developer working habits,
the effects on development efficiency are considered by evaluating
the frequencies of success and failure events.

The dataset collected by the KaVE project’s FeedBaG++ tool and
used for the MSR 2018 Mining Challenge gives an ideal basis to in-
vestigate relationships between developer working times and de-
veloper efficiency. This study uses the interaction dataset, which
contains events that FeedBaG++ users have shared. These events
contain detailed information about developer interactions within
the IDE. We use 328,667 separate events from a 11,122,103-event
dataset to find when developers were actively working within the
IDE and when they were building or testing their programs.

Looking into developers actions, we reveal their working habits
over the the week and during particular times of the day. We then
evaluate the effects of these patterns on developer efficiency. The
findings of this study help developers understand their working
habits and how they affect efficiency, thereby facilitating better al-
location of work time.

2 CASE STUDY DESIGN
2.1 Research Questions (RQs)
RQ1 - Days of the week: A developer’s efficiency is expected to
vary depending on the day of the week [6, 8, 9]. For example, work-
ing times and efficiency are assumed to vary between weekends
and weekdays, possibly related to emotional factors surrounding
the weekend [4]. Under this RQ, we try to answer whether the day
of the week has an affect on development time and efficiency. This
is motivated by the idea that if a day of the week can be correlated
with development efficiency or quality, our finding can be used to
increase the overall efficiency.
RQ2 - Time of the day: Under this RQ, we try to answer whether
or not there is a relationship between development efficiency and
working times within a 24-hour period. Identifying the times as-
sociated with higher and lower development efficiency will help
developers plan their routines to produce the best results [9].

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Ariel Rodriguez, Fumiya Tanaka, and Yasutaka Kamei

Table 1: Overview of the dataset used in this study

Dataset Event Field
All Data ActivityEvent (311,245) TriggeredAt (311,245)

(11,122,103) BuildEvent Successful:True (13,195)
(13,813) Successful:False (1,786)

TestRunEvent Result:Success (2,416)
(3,609) Result:Failed (1,563)

RQ3 - Continuous working time: Under this RQ, we try to an-
swer whether continous working time has an affect on develop-
ment efficiency. Long continuous working times can lead to con-
centration loss [4], negatively affecting efficiency. This analysis
aims to investigate if efficiency declines with continuous work.

2.2 Dataset
The dataset used in this study is the MSR 2018 Mining Challenge
dataset, which was obtained through the KaVE Project’s CARET
platform [5]. The CARET platform records events along with con-
textual information when a developer performs an action within
Visual Studio; these recorded actions can be anything from click-
ing a menu or selecting a new window.

The dataset contains data shared by 81 different developers of
different skill levels and backgrounds; the data represents a total
of 15,000 hours of work by developers.

Table 1 shows the events and fields used in this study along with
the amounts of each event presented in the dataset. The events
chosen allow us to determine the amount of a developer’s time
spent actively in the IDE as well as the success and failure rates
when building or debugging a program.
Work Time RelatedMeasure: Figure 1 shows an example of the
data schema related to the ActivityEvent of user 001. The Activi-
tyEvent is triggered when any developer activity (a mouse click
or movement, typing, etc.) occurs inside the IDE. The Triggere-
dAt field in the ActivityEvent contains information about the time,
date, and time zone of the triggered ActivityEvent. The activity
time along with the time ranges during which the developer was
working were determined using the TriggeredAt field.

Activity time refers to the time when a user is performing a task
or action within the IDE and allows us to determine the amount
of time a user is actually working within the IDE. When an Ac-
tivityEvent is detected, the time that the event was triggered is
recorded. If another ActivityEvent is detected within five minutes
of the preceding event, the time between those events is considered
active time. The individual recorded time intervals are summed to
calculate the total activity time.
Efficiency Measures: Since it can be difficult to judge the effi-
ciency of a developer, we use a quantitative approach based on the
Build and TestRun events. The BuildEvent is triggered when a de-
veloper builds their program, and the TestRunEvent is triggered
when a user runs a test. These events contain a "Successful" field
in the BuildEvent and the "Result" field in the TestRunEvent; these
subfields indicate the success or failure of the Build or TestRun
event. In this study, these values are used to calculate developer
efficiency and establish correlations between efficiency and work-
ing times. The cumulative amounts of successful and failed Build
and TestRun events during different days and time periods are an-
alyzed to identify any patterns or correlations.

Collection Document

001_ActivityEvent TriggeredAt: 2017/10/20 14:14:18

TriggeredBy: click

Duration: 00:00:02.28429313

Figure 1: A part of data schema in the Challenge Data

3 CASE STUDY RESULTS
3.1 RQ1: Days Of The Week
Approach: Using theActivity, Build, and TestRun events, we com-
pare working time and efficiency by day of the week. As shown in
Figure 1, the TriggeredAt field contains the dates and times of trig-
gered events in 24-hour format. The date part of this field can be
used to determine the day of the week on which each event was
triggered. To calculate work time, all generated ActivityEvents in
a day are sequentially put in a list; the work time can then be cal-
culated using the activity time method.

We use a similar approach to collect success and failure data,
since the Build and TestRun events also contain the TriggeredAt
field in the same format. We calculate success and failure rates
using the fields shown in Table 1. The success and failure rates
show the percentages of events that include success or failure fields
within a particular event. A Build and TestRun event can contain
multiple sub-events; therefore, the number of events in the Event
column does not match the sum of numbers in the Field column.

We use chi-square tests and residual analysis for crosstabs to
test the difference in ratios for days of the week, time ranges and
continuous time ranges for each RQ respectively. The null hypoth-
esis is that there is no difference in the population rate between
days of the week in the chi-square test. By rejecting this, we show
that there is a significant difference in the ratio.
Result: Figure 2 shows the total working time and continuous
working time by day of the week. The total working time shows
a decreasing trend after Thursday, and the total working times
on the weekend are roughly half those of Monday, Tuesday, and
Wednesday. The continuous working rate (i.e., the ratio of contin-
uous working time to total working time) is the highest for Satur-
day (63%); for all other days, the rate was within 50±3%. The re-
sults of this study show that Friday is the weekday with both the
lowest total working time and continuous working time. A previ-
ous study [8] also shows Friday to be the day where the most bug
causing changes are made to code. Similarly to the results of the
previous study, in our study we can see that Friday also negatively
affects work possibly due to its proximity to theweekend. The high
rate of continuous work on Saturday might result from developers
being able to focus better on a particular task and have more time.
Despite this, continuous work is not high on Sunday. This might
reflect societal factors since people often go out with their families
or attend social events on Sunday.

Figure 3 shows the success and failure rates by day of the week.
Based on the residual analysis, the success rates are significantly
higher onWednesday and Sunday compared to on other days, whereas
the failure rates are lower. The opposite trend is observed for Mon-
day and Tuesday. These results indicate poor development effi-
ciency on Monday and Tuesday, possibly resulting from a lack of

Empirical Study on the Relationship Between Developer’s Working Habits and EfficiencyMSR ’18, May 28–29, 2018, Gothenburg, Sweden

Mon Tue Wed Thu Fri Sat Sun0

100

200

300

400

500

To
ta

l/C
on

tin
uo

us
 w

or
ki

ng
 ti

m
e

[h
ou

r]

45

50

55

60

65

70

Co
nt

in
uo

us
 w

or
k

ra
te

 [%
]

Mon Tue Wed Thu Fri Sat Sun0

100

200

300

400

500

To
ta

l/C
on

tin
uo

us
 w

or
ki

ng
 ti

m
e

[h
ou

r] Total working time
Continuous working time
Continuous work rate

Figure 2: Total and continuousworking times by day ofweek

Mon Tue Wed Thu Fri Sat Sun70

75

80

85

90

95

100

Su
cc
es
s r

at
e
[%

]

10

15

20

25

30

35

Fa
ilu

re
 ra

te
 [%

]

Mon Tue Wed Thu Fri Sat Sun70

75

80

85

90

95

100

Su
cc
es
s r

at
e
[%

]

Success rate
Failure rate

Figure 3: Success and failure rates by day of the week

motivation after the weekend or delays in getting back up to speed
with the work that was performed in the previous week.

Developers are more likely to work continuously on Sat-
urdays. Efficiency seems to be lower at the beginning of the
work week compared to later days.

3.2 RQ2: Time of the day
Approach: We use a similar approach used in the prevous sec-
tion (i.e., the same events, particularly the TriggeredAt field, are
employed). However, for RQ2, the date in the TriggeredAt field is
used to identify events generated at a particular time of the day
rather than dividing the data into groups by days. This event uses
the local time for each developer, allowing us to collect and com-
pare data across all developers.
Result: Figure 4 shows the total and continuous working times
alongwith the continuouswork rate divided into three hour blocks
in a 24 hour period. The greatest total working time occurred in
the 15-17 time range. Since the working day ends at 17:00 hrs for
most people, the increased working time in this period might re-
flect workers trying to finish their work before the end of the day.
In no time period was no work performed; however, an expected
drop off in total work was observed in the 3-8 range. These re-
sults confirm our initial assumption that developers keep irregular
working hours and often work into the early morning.

Figure 5 shows the rates of success and failure for all developers.
The maximum failure rate (23.0%) was observed in the 15-17 range,

0-2 3-5 6-8 9-11 12-14 15-17 18-20 21-230

100

200

300

400

500

To
ta
l/C
on
tin
uo
us
 w
or
ki
ng
 ti
m
e
[h
ou
r]

45

50

55

60

65

70

Co
nt
in
uo
us
 w
or
k
ra
te
 [%

]

0-2 3-5 6-8 9-11 12-14 15-17 18-20 21-230

100

200

300

400

500

To
ta
l/C
on
tin
uo
us
 w
or
ki
ng
 ti
m
e
[h
ou
r] Total working time

Continuous working time
Continuous work rate

Figure 4: Total and continuous working time by time range

0-2 3-5 6-8 9-11 12-14 15-17 18-20 21-2370

75

80

85

90

95

100

Su
cc
es

s r
at
e
[%

]

10

15

20

25

30

35

Fa
ilu

re
 ra

te
 [%

]

0-2 3-5 6-8 9-11 12-14 15-17 18-20 21-2370

75

80

85

90

95

100

Su
cc
es

s r
at
e
[%

]

Success rate
Failure rate

Figure 5: Success and failure rates by time range

whereas a high success rate (> 90.0%) is found between 18 and 23.
A comparison of Figure 4 and Figure 5 indicates that the trend in
failure rate generally follows the trend in total working time. This
suggests that time periods with high total work time also have a
low work efficiency. This could be due to a lack of concentration
or not putting the same amount of thought into work because of
lack of time or stress factors. The success rate in the 18-23 time
range is significantly higher than those of the other time ranges,
whereas the success rate is lowest from 0-5.

Time periods with high total work times show high failure
rates. Development efficiency improves in the evening (be-
fore midnight) and then declines after the day changes.

3.3 RQ3: Continuous Working Time
Approach: Under RQ3, we partition the collected events based on
duration of continuous work and the total number of successful or
failed events that fell within that period of continuous work.

To calculate continuous working time, the activity time is used
to determine the length of the session in the IDE, the activity time
records activity until the developer becomes inactive for a period
five minutes. At that point the session is considered to be over and
all successful and failed events up to that point are totaled and
added to the data for that group.
Result: Figure 6 shows the success and failure rates after different
periods of continuous work. After working continuously for two
hours, the success rate decreases by 6.7%, whereas failure increases

MSR ’18, May 28–29, 2018, Gothenburg, Sweden Ariel Rodriguez, Fumiya Tanaka, and Yasutaka Kamei

0-25m 25m-1h 1-2h 2h-75

80

85

90

95

100
Su

cc
es

s r
at
e
[%

]

15

20

25

30

35

Fa
ilu

re
 ra

te
 [%

]

0-25m 25m-1h 1-2h 2h-75

80

85

90

95

100
Su

cc
es

s r
at
e
[%

]

Success rate
Failure rate

Figure 6: Success and failure rates by continuous work time

by 5.5%. The increase in failure rate after working for 25 contin-
uous minutes is 4.3%. These results indicate that the success rate
does not change significantly during the first two hours of con-
tinuous work; however, the failure rate is lowest within the first
25 minutes of work. Based on the residual analysis, working for
more than two continuous hours significantly increases the fail-
ure rate and decreases the success rate. This reinforces previous
findings that prolonged work time can affect efficiency [2, 3, 7].
For example, Meyer et al. [3] found that developers feel particu-
larly productive when they are in a “flow” state, which is a period
of time without having switches or breaks. We show that develop-
ers working continuously up to 2 hours also have good efficiency;
however, we found that after 2 hours efficiency decreased.

Working for long periods of time results in increased fail-
ure rate. Working continuously for more than two hours in-
creases failure rate by 10% compared to shorter periods.

4 THREATS TO VALIDITY
External Validity: The main threat to the validity of this study is
generalizability; all data within the dataset is taken from workers
within the UTC+1 and UTC+2 time zones. While the effect of all
participants residing in the same time zone is difficult to determine,
results based on data collected in different regions might differ be-
cause of weather or cultural factors. Furthermore, the data used in
this study was collected from people with varying experience lev-
els fromprofessional to hobby programmers; it is not clearwhether
different results would be obtained if the data was collected from
only one type of programmer.
Internal Validity: In the calculation of activity time, a fiveminute
window of inactivity is allowed before declaring the end of an
activity session, this is done because developers may spend time
reading code and/or considering methods/options; thus, they may
be inactive within the IDE itself but still active on the project. This
could cause the activity times of developers that regularly spend
more than five minutes thinking about or reading code to be inac-
curately calculated. However, catering the calculation of activity
time to developers that routinely spend prolonged periods of time
thinking about their work would alter the results for average de-
velopers. In addition, the measure of activity time is primarily fo-
cused on active time inside the IDE; thus, we consider five minutes
to be an appropriate middle ground.

Construct Validity: The success and failure rates in this study are
taken from the Build and TestRun events since they contain the ap-
propriate fields that focus on success and failure; other events are
not considered. Skill level of developers likely determine familiar-
ity with the IDE and how often they use these events. Thus, some
developers may use these events more than others.

5 DISCUSSION AND CONCLUSIONS
This paper empirically evaluated the working times of software
developers and how they affect efficiency. The results reveal inter-
esting correlations between developer working habits and work
efficiency based on the success and failure rates of build and test
events. The findings suggest that software developers work irreg-
ular hours, sometimes into the early morning; however, working
during these times does not necessarily have a significant effect on
efficiency. Poor developer efficiencymay be attributed to poor con-
centration on a task during specific days and time ranges. The re-
sults indicate that working continuously for more than two hours
without a break negatively affects developer efficiency, as evidenced
by increased failure rate and decreased success rate.

Having this information about developer efficiency allows team
leaders, managers or the developers themselves to plan their work
times to be as efficient and productive as possible. Practical im-
plementations could be scheduling non development tasks such as
meetings during times where developers are less efficient and us-
ing more efficient times for actual development work. Managers
could also use this information to efficiently plan and anticipate
issues in projects by knowing which days developers could fall be-
hind on work.

ACKNOWLEDGMENTS
Thisworkwas supported by JSPSKAKENHIGrant Numbers JP15H05306.

REFERENCES
[1] Jeff Hyman, Chris Baldry, Dora Scholarios, and Dirk Bunzel. 2003. Work-Life

Imbalance in Call Centres and Software Development. British Journal of Industrial
Relations 41, 2 (2003), 215–239.

[2] Harrington J. Malcolm. 2001. Health effects of shift work and extended hours of
work. Occupational and Environmental medicine 58, 1 (2001), 68–72.

[3] André N. Meyer, Laura E. Barton, Gail C. Murphy, Thomas Zimmermann, and
Thomas Fritz. 2017. The Work Life of Developers: Activities, Switches and Per-
ceived Productivity. IEEE Transactions on Software Engineering 43, 12 (2017),
1178–1193.

[4] Sebastian C. Müller and Thomas Fritz. 2015. Stuck and Frustrated or In Flow and
Happy: Sensing Developers’ Emotions and Progress. In Proc. of the International
Conference on Software Engineering (ICSE). 688–699.

[5] Sebastian Proksch, Sven Amann, and Sarah Nadi. 2018. Enriched Event Streams:
A General Dataset for Empirical Studies on In-IDE Activities of Software Devel-
opers. In Proc. of the Working Conference on Mining Software Repositories (MSR).

[6] Emad Shihab, Akinori Ihara, Yasutaka Kamei, Walid M. Ibrahim, Masao Ohira,
Bram Adams, Ahmed E. Hassan, and Ken-ichi Matsumoto. 2013. Studying Re-
opened Bugs in Open Source Software. (2013), 1005–1042.

[7] Pankaj Singh, Damodar Suar, and Michael P.Leiter. 2012. Antecedents, Work-
Related Consequences, and Buffers of Job Burnout Among Indian Software De-
velopers. Journal of Leadership & Organizational Studies 19 (2012), 83–104.

[8] Jacek Śliwerski, Thomas Zimmerman, and Andreas Zeller. 2005. When do
changes induce fixes?. In Proc. of the International Workshop on Mining Software
Repositories (MSR). 1–5.

[9] Masateru Tsunoda, Akito Mondenand Takeshi Kakimoto, Yasutaka Kamei, and
Ken-ichi Matsumoto. 2006. Analyzing OSS developers’ working time using mail-
ing lists archives. In Proc. of the International Workshop on Mining Software Repos-
itories (MSR). 181–182.

