
Noname manuscript No.
(will be inserted by the editor)

Evaluating the impact of falsely detected performance
bug-inducing changes in JIT models

Sophia Quach · Maxime Lamothe · Bram

Adams · Yasutaka Kamei · Weiyi Shang

Received: date / Accepted: date

Abstract Performance bugs bear a heavy cost on both software developers and
end-users. Tools to reduce the occurrence, impact, and repair time of performance
bugs, can therefore provide key assistance for software developers racing to fix
these bugs. Classification models that focus on identifying defect-prone commits,
referred to as Just-In-Time (JIT) Quality Assurance are known to be useful in allow-
ing developers to review risky commits. These commits can be reviewed while they
are still fresh in developers’ minds, reducing the costs of developing high-quality
software. JIT models, however, leverage the SZZ approach to identify whether or
not a change is bug-inducing. The fixes to performance bugs may be scattered
across the source code, separated from their bug-inducing locations. The nature
of performance bugs may make SZZ a sub-optimal approach for identifying their
bug-inducing commits. Yet, prior studies that leverage or evaluate the SZZ ap-
proach do not distinguish performance bugs from other bugs, leading to potential
bias in the results.

In this paper, we conduct an empirical study on the JIT defect prediction for
performance bugs. We concentrate on SZZ’s ability to identify the bug-inducing
commits of performance bugs in two open-source projects, Cassandra, and Hadoop.
We verify whether the bug-inducing commits found by SZZ are truly bug-inducing
commits by manually examining these identified commits. Our manual examina-
tion includes cross referencing fix commits and JIRA bug reports. We evaluate

S.Quach · W.Shang
Department of Computer Science and Software Engineering, Concordia University, Montreal,
QC, Canada
E-mail: {s quach,max lam,shang}@encs.concordia.ca

Y.Kamei
Faculty of Information Science and Electrical Engineering, Kyushu University, Japan
E-mail: kamei@ait.kyushu-u.ac.jp

B.Adams
Queen’s School of Computing, Queen’s University, Canada
E-mail: bram@cs.queensu.ca

M.Lamothe
Department of Computer and Software Engineering, Polytechnique, Montreal, QC, Canada
E-mail: maxime.lamothe@polymtl.ca



model performance for JIT models by using them to identify bug-inducing code
commits for performance related bugs. Our findings show that JIT defect pre-
diction classifies non-performance bug-inducing commits better than performance
bug-inducing commits, i.e., the SZZ approach does introduce errors when iden-
tifying bug-inducing commits. However, we find that manually correcting these
errors in the training data only slightly improves the models. In the absence of a
large number of correctly labelled performance bug-inducing commits, our find-
ings show that combining all available training data (i.e., truly performance bug-
inducing commits, non-performance bug-inducing commits, and non-bug-inducing
commits) yields the best classification results.

Keywords software engineering · defect prediction bugs · just-in-time ·
performance

1 Introduction

Software bugs, and the techniques that software engineers develop to fix and pre-
vent them, are an important part of software engineering [1–3]. Bugs are costly
to fix and increase maintenance effort [4]. In a world that is ever more reliant
on software, it appears more important than ever before to have quality software
and to be able to fix bugs in a timely manner when they do appear. To this end,
researchers have developed several approaches to identify prior bug-introducing
changes and help development teams avoid future bugs by learning from their
mistakes [1–3].

Defect prediction models are a well-known technique used by practitioners to
identify defect-prone files and packages during quality assurance. Once the defect-
prone files or packages have been identified, developers still need to spend time
modifying and examining code. This creates time-consuming and impractical tasks,
especially for large software systems [3]. Just-In-Time Quality Assurance (JIT) pro-
vides an effort-reducing way to focus on the bug-inducing changes and thus reduce
the costs of developing high-quality software. However, JIT quality assurance re-
lies on the SZZ approach, and must therefore grapple with the drawbacks of SZZ.
Indeed, the Just-In-Time training data is based off of results provided by SZZ,
which may include falsely identified past bug-inducing changes. These are then
used to predict future inducing changes, giving flawed predictions.

The SZZ approach is a technique that attempts to find the source-code commit
that first introduced a software bug [5, 6]. However, the SZZ approach, similarly
to other bug localization techniques, is not perfect. Previous studies show that
the SZZ approach can mislabel some changes as bug introducing, even if they
are not [5]. Mislabels include semantically equivalent changes, directory or file
renames, and initial code importing changes [3]. Although an evaluation framework
exists to evaluate the various implementations of the SZZ approach that attempt
to remedy these issues [7], the SZZ evaluation framework and the existing SZZ
approaches concentrate on mixed bugs or functional bugs, without verifying the
validity of the approach on non-functional bugs, or more specifically performance
bugs.

Developers often spend more time fixing performance bugs than fixing non-
performance bugs [8]. Due to the unique nature of performance bugs, we suspect

2



it is possible for performance bugs to present differently in source code. Zaman et
al. find that more developers are assigned to fix performance bugs than functional
bugs [8]. Functional changes and their software fixes are mainly localized, while
non-functional bugs, such as performance bugs may be scattered and require fixes
in various parts of the software [9]. Hamill and Goseva-Popstojanova [9] found
that a significant number of software failures required fixes in multiple software
components and/or multiple software artifacts (i.e., 15% and 26%, respectively).
For example, if a code change introduces a performance issue, this performance
issue may be fixed and improved in a different part of the system, for example
by changing configuration parameters. Meanwhile, functional bugs can have a
single concrete introducing commit that can be tracked down through the SZZ
approach [6]. Due to the scattered nature of non-functional bugs, we suspect that
the SZZ approach might perform worse on performance bugs than on functional
bugs.

Prior studies indiscriminately evaluate the SZZ approach on both functional
and non-functional bugs without distinction, while seeking a clear comparison
between performance bugs and non-performance bugs. We aim to know whether
or not performance bugs are well predicted by JIT defect prediction. In this paper,
we conduct an empirical study on the results of the SZZ approach used for JIT
defect prediction, concentrating on the use of JIT defect prediction to identify the
inducing changes of performance related bugs in Cassandra and Hadoop. For the
purpose of our paper, we perform our evaluation of the SZZ approach on a MA-SZZ
implementation. We validate whether the bug-inducing changes found by MA-SZZ
are truly bug-inducing changes by manually examining these identified changes
in order to generate clean datasets. We conduct manual analysis to verify cross
referenced fix commits and JIRA issue reports and we evaluate the performance
related data for JIT models. Since manual analysis is time-consuming, we want to
determine whether verified data makes a significant difference in training a better
model to classify performance bug-inducing commits.

Additionally, if performance and non-performance bug-inducing commits have
different characteristics, a model only based on performance bugs can theoretically
label performance bug-inducing changes better. Because there is no verified ground
truth for performance bug-inducing commits, we further manually verify the com-
mits identified through the SZZ approach, through two reviewers. We then evaluate
Just-In-Time models solely on the manually verified performance commits identi-
fied by the reviewers, by using four different combinations of training data. Of the
model combinations, we include one where the training data is only comprised of
manually labelled bug-inducing commits, to see whether we need a separate model
for predicting performance bugs. We seek to determine how different training data
influences the models’ power to predict performance bug-inducing commits.

We formulate our study into three research questions:

– RQ1: How well can JIT models predict performance bug-inducing commits?

We train a model with data from the SZZ approach and then test it on manually
verified performance bug-inducing commits. Our findings show that JIT mod-
els perform better on classifying non-performance commits than performance
commits, with AUC values of 0.842 to 0.869 for non-performance commits, and
only 0.486 to 0.518 for performance commits.

3



– RQ2: How does correcting falsely identified performance bug-inducing bugs impact

JIT models?

We find that manually vetting the results of the SZZ approach to produce JIT
models generally does not impact the models’ classification power, and when
it does, the changes only have a small effect size (Cohen’s d = 0.437) on the
classification power of these models.

– RQ3: Does only using the correct performance inducing bugs as training data im-

prove the JIT models when predicting other performance inducing bugs?

Our findings show that only using correctly labelled performance bug-inducing
commits in the training data does not result in an optimal model. Indeed, using
more data appears to be the optimal solution. While ideally a large number of
correctly labelled performance bug-inducing commits would be available, in the
absence of this it is still preferable to use all commit data in the training data,
i.e., truly performance bug-inducing commits, non-performance bug-inducing
commits, and non-bug-inducing commits, in order to obtain the best classifi-
cation results.

The following are the primary contributions of this paper:

– To the best of our knowledge this is the first study to focus exclusively on
performance bug-inducing changes in the context of Just-In-Time defect pre-
diction models.

– We manually verify the validity of the SZZ approach on performance bug-
inducing changes.

– We evaluate the results of the Just-In-Time model bug prediction before and
after our modifications after manually checking whether a commit that is la-
belled as bug-inducing is truly bug-inducing.1

Paper organization. The rest of the paper is organized as follows: Section 2
introduces background concepts including the SZZ approach and Just-In-Time
defect prediction. Section 3 describes the design of our study. Section 4 presents
our case study results addressing our research questions. Section 5 presents the
threats to the validity of our work. Section 6 presents prior work related to the
work presented in this paper. Finally, Section 7 concludes the paper.

2 Background

The following section describes the concepts that are necessary to understand our
study.

2.1 SZZ

The first SZZ approach B-SZZ (the basic SZZ implementation) was defined by
Sliwerski et al. [6], to identify the changes that introduce bugs. SZZ requires a
code change that fixes a bug found in the code as a base input, also known as bug-
fixing changes. Figure 1 shows an example of the SZZ approach, with a bug fix

1 Our data files and scripts used are publicly available and can be found at:
https://github.com/senseconcordia/Perf-JIT-Models

4



Time

SZZ

Step 1. Bug Fixing change
Commit#5d748bd

Diff with prior version

Step 2. Diff
(++)	datanode,	startOffset,	length,	storageType);
(--)	datanode,	startOffset,	length,	storageType,	tracer);	

Blame

Step 3. Bug-inducing change
Commit#892ade6

Step 2. Diff
(++)	datanode,	startOffset,	length,	storageType,	tracer);	
(++)	setTracer(tracer)		

Fig. 1: Overview of the SZZ approach. The SZZ approach first looks at the changes
made in a bug-fixing change (Step 1). It then uses git diff to localize the exact fix
(Step 2). Finally, the deletions are traced back to the origin of the deleted code
(Step 3). The origin of the deleted code is a potential bug-inducing change.

and a corresponding identified bug-inducing change. Since then, due to B-SZZ’s
limitations, there have been several improvements proposed: including the AG-
SZZ implementation by Kim et al [5]. Costa et al. [7] later proposed the MA-SZZ
implementation, which is built on top of AG-SZZ. MA-SZZ improves upon AG-
SZZ by removing potential bug-introducing changes that are meta-changes. Meta-
changes are source code independent changes, such as source code management
branch changes, source code merges, and changes to file properties such as end-of-
line changes [7].

Costa et al. [7] find that B-SZZ has the lowest disagreement ratio in gen-
eral (0%-9%), followed by the MA-SZZ (0%-17%) [7]. The bugs analyzed by MA-
SZZ have the shortest time-span of bug-introducing changes, while B-SZZ has the
longest time-span of bug-introducing changes [7]. Costa et al. [7] also report that
MA-SZZ returns the second highest count of future bugs. We choose the MA-SZZ
implementation proposed by Costa et. al [7], as it is similar to B-SZZ with some
improvements, such as excluding style changes and including usage of an annota-
tion graph [5], and the removal of meta-changes [7]. MA-SZZ is also used in several
studies including work on Just-In-Time defect prediction, to identify bug-inducing
changes [3,10] as a ground truth for building the prediction models. Additionally,
prior work in refactoring changes, such as RA-SZZ [11], uses MA-SZZ by incor-
porating it with RefDiff to propose a refactoring aware SZZ implementation [11].
Although newer approaches introduce refactoring awareness, we do not know how
those interact with software performance. We therefore err on the side of caution
by using MA-SZZ, a more established and more commonly used implementation
of the SZZ approach.

Because the SZZ approach does not provide perfect precision and recall of
bug-inducing commits, it is important to understand the nature of its results.
In an ideal scenario the SZZ approach can indeed identify bug-inducing changes.
In this ideal case, we consider the results to be changes identified by the SZZ
approach that are truly bug-inducing changes, or true positives. These results can

5



directly be used by developers to find the root cause of a known bug. However,
if the SZZ approach wrongly identifies changes that are not truly bug-inducing
changes as bug-inducing, we consider those to be false positives. False positives
can waste developer time by causing them to needlessly look at faultless code.
Meanwhile, false negatives are truly bug-inducing changes that were missed by
the SZZ approach and require different tools or manual investigation to find the
root cause of a bug. As discussed above, various modifications of the SZZ approach
such as MA-SZZ, attempt to improve the true positive rate and reduce the false
positive and false negative rates.

2.2 Just-In-Time defect prediction

Defect prediction models are a well-known technique for identifying defect-prone
files or packages for practitioners to allocate quality assurance efforts. One un-
derlying problem is that once the critical files or packages have been identified,
developers still need to spend considerable time examining and modifying source
code, which is time consuming and impractical for large software systems.

Kamei et al. [12] study prediction models that focus on identifying defect-prone
software at the change level, rather than file or package level, referred to as Just-In-

Time Quality Assurance, where developers can review and test these bug-inducing
changes while they are still fresh in their minds. Kamei et al. [12] use a wide range
of factors based on the characteristics of a software change, such as the number of
added lines, and developer experience. They perform a large scale study on JIT
models to see if they can predict whether or not a change will lead to a defect [12].
To know whether or not a change introduces a defect, Kamei et al. [12] use the
SZZ approach, linking each defect fix to the source code change introducing the
original defect by combining information from the version archive with the bug
tracking system. They find that using only 20 percent of the effort it would take
to inspect all changes, they can identify 35 percent of all defect-inducing changes.
Their findings indicate that JIT may provide an effort-reducing way to focus on the
most bug-inducing changes and thus reduce the costs of developing high-quality
software [12]. We build on this work by evaluating the JIT models specifically on
performance related bug-inducing changes rather than all bug-inducing changes.

JIT models identify bug-inducing code changes and are trained using tech-
niques that assume past bug inducing changes are similar to future ones. However,
this assumption may not hold, e.g., as system complexity tends to accrue, expertise
may become more important as systems age. McIntosh et al. [10] study JIT mod-
els as systems evolve. Through a longitudinal case study of open source systems,
they find that fluctuations in the properties of fix-inducing changes can impact the
performance and interpretation of JIT models. They find that the discriminatory
power (AUC) and calibration (Brier) scores of JIT models drop considerably one
year after being trained. Our work focuses on studying JIT performance related
bug-inducing changes and how they can impact the performance of JIT models.

6



- for (Range<Token> rt : merkleTrees.keySet())

- {

- if (rt.intersects(range))

- {

- byte[] bytes = merkleTrees.get(rt).hash(range);

- if (bytes != null)

- {

- baos.write(bytes);

- hashed = true

- }

- }

- }

+ for (Map.Entry<Range<Token>, MerkleTree> entry : merkleTrees.entrySet())

+ if (entry.getKey().intersects(range))

+ hashed |= entry.getValue().ifHashesRange(range, n -> baos.write(n.hash()));

+ return hashed ? baos.toByteArray() : null;

Fig. 2: Simplified example of code changes in a fix commit for a performance bug.

- return resolver.isDataPresent() ? resolver.resolve() : null;

+ return resolver.getMessageCount() > 0 ? resolver.resolve() : null;

Fig. 3: Simplified example of code changes in a fix commit for a non-performance
bug.

2.3 Performance Bugs

Jin et al [13] define a performance bug as a bug that causes a perceivable negative
performance impact. For clarification between the distinction of performance and
non-performance bugs, we provide example code snippets of a performance bug
and a non-performance bug, in Figure 2 and Figure 3, respectively.

Performance bug in Figure 2: The commit message for the changes shown
is: Make repair coordination less expensive by moving MerkleTrees off heap

Removal of for loop in hash() of MerkleTrees.java. This code snippet shows
the code changes in the bug-fixing commit 2117e2a. The for loop in the hash()

function of MerkleTrees.java class is now less expensive, by using a Javva entryset
instead of a keyset in the modified for loop. The red lines were initially added by
the bug-inducing commit 0dd50a6, and were responsible for the creation of the
MerkleTrees.java class and the hash() method.

Non-performance bug in Figure 3: The commit message for the changes
shown is: fix callback when repair request times out. This code snippet shows
the code changes in the bug-fixing commit 74c464a. The get() method callback
now uses getMessageCount() instead of isDataPresent(). The red line was initially
added in the bug-inducing commit 71ccb7d.

To identify performance bugs, Ding et al. [14] use keywords as the heuristics to
identify performance issue reports. Ding et al. [14] start by using the keywords that

7



are used in prior research [13, 15]. In order to avoid missing performance issues,
the list of keywords was expanded by using word embedding. Ding et al. [14] adopt
a word2vec model trained over textual data from Stack Overflow posts to identify
the words that are semantically related to the existing list of keywords. Examples
of the uncommon words that are related to performance issues include “sluggish”,
and “laggy”, which may not be used in previous research, but can help collect
performance issue reports. In order to ensure that there exists a performance
improvement after the issue fixes, Ding et al. [14] only focus on the issue reports
that have the type Bug and are labeled as Resolved or Fixed. In total, Ding et
al. [14] find 121 performance-related issue reports in Cassandra and 83 in Hadoop.
We use this vetted performance-related data in our paper.

3 Study Design

In this section, we present the design of our study.

3.1 Dataset

In order to conduct our study, we need a dataset of performance bugs. However,
existing datasets from prior studies on non-functional bugs [16] may not be sys-
tematically shared, e.g., the root-causes of each non-functional bug may not be
clearly indicated, while such information is crucial in our study to verify the bug-
inducing changes identified by the SZZ approach. Additionally, while there are
existing datasets that contain a source of non-functional bugs [17], only a small
number of the bugs are concerned with performance. We therefore decided to
create our own dataset using repositories highly concerned with performance.

To create our dataset, we employ the manually analyzed bugs from Cassan-
dra [18] and Hadoop [19] performance bugs found by Ding et al. [14]. Hadoop
is a free and open-source distributed system infrastructure providing processing
in a reliable and efficient manner developed by the Apache Foundation. Cassan-
dra is a free and open-source distributed NoSQL database management designed
to handle large amounts of data, also developed by the Apache Foundation [20].
Hadoop and Cassandra are chosen as our dataset because they are highly con-
cerned with performance and have been studied in prior research in mining per-
formance data [14, 20–22]. Both repositories are open-source and also have JIRA
issue tracking systems for identifying fix commits.

3.2 Bug-fixing Commit Extraction

To extract metrics for the bug-inducing commits, we start from bug reports, in
the JIRA issue tracking systems. All of the closed bug-fixing reports identify the
bug-fixing commit that closed the bug report. We therefore use these bug-fixing
commits as input data for our study. If a bug report does not have a bug-fixing
commit we ignore the bug-fix because we cannot ascertain which piece of code
fixed the bug, and therefore do not have enough information to confidently study
the bug. Figure 4 shows our approach to extract bug fix commits.

8



CASSANDRA-7245 :
Out-of-Order keys 
with stress + CQL3

Filter the commit 
history to find 
CASSANDRA-
7295 in the 
commit message

Bug-fixing 
commit(s) for 
CASSANDRA-
7295

CASSANDRA-7245

4722fe7
…

Fig. 4: An overview to extract fix commits given the JIRA issue ID: CASSANDRA-
7245.

3.3 Data preparation

Table 1: Summary of Change Measures from Kamei et al.’s work [3]

Dim. Name Definition

Diffusion

NS Number of modified subsystems
ND Number of modified directories
NF Number of modified files
Entropy Distribution of modified code across each file

Size
LA Lines of code added
LD Lines of code deleted
LT Lines of code in a file before the change

History
NDEV The number of developers that changed the modified files
AGE The average time interval between the last and the current

change
NUC The number of unique changes to the modified files

Experience
EXP Developer experience
REXP Recent developer experience
SEXP Developer experience on a subsystem

Similarly to Kamei et al. [3], we consider 13 factors grouped into four dimen-
sions to filter our data, as presented in Table 1; these factors and dimensions are
derived from the source control repository data of a project. The rationale and
related work for each measure can be found in Kamei et al.’s [3] work. The studied
change metrics in Table 1 are grouped into four dimensions: diffusion properties,
size properties, history properties, and author experience properties. We excluded
the purpose dimension because we use the manually analyzed dataset from Ding
et al. [14] to identify the commits that are bug fix commits.

We use commit metric data provided by Commit Guru [23], a language-agnostic
analytics and classification tool in line with our work. Commit Guru [23] is de-
signed to be a prediction tool to identify and predict risky software commits,
although it does not focus specifically on performance bugs. Other prior work has
also used Commit Guru for building metric-based models [24–28]. We use the tool
provided by Commit Guru [23] to analyze the Cassandra and Hadoop repositories.
Although Commit Guru [23] employs the SZZ approach, we use our own imple-

9



mentation of MA-SZZ as an initial classification to determine whether a commit
induces a bug in the future. Commit Guru [23] employs JIT models upon analyz-
ing each repository, while producing a downloadable CSV format file, where each
row represents metrics and information related to a commit.

Our SZZ approach lists the mappings of bug fixing commit and identified bug
inducing commits, along with which files contain the overlap of removed and added
lines of code, which is not provided by Commit Guru [23]. We also only consider the
identified bug-inducing commits dated prior to the bug report submission date to
filter out some false positives [7]. The metrics and information provided by Commit
Guru [23] is presented in Table 1. We add an additional column: contains bug to
label bug-inducing commits, which takes a Boolean value. For all of the models
described in this paper, we use the metrics in Table 1 as the independent variables
to classify contains bug (i.e., whether a commit induces a bug), the dependent
variable.

We check the data for metrics that are highly correlated by using the Spearman
statistic, ρ. The Spearman rank correlation estimates a rank-based measure of
association and is resilient to data that is not normally distributed, unlike other
types of correlation (e.g., Pearson) [29]. A hierarchical overview of the correlation
amongst the metrics is constructed using variable clustering analysis [10]. We
remove metrics that are highly correlated where ρ > 0.75 [3].

To remove redundant commit metrics, we fit preliminary models that explain
each dependent variable using the others, using the R2 value of these models to
measure how well each property is explained by the others. Similar to McIntosh
et al. [10], we use the redun function in the rms R package. This redun function
iteratively drops the metric that is the most well-explained by the other metrics
until either one of two conditions is satisfied:

– (1) no model achieves an R2 ≥ 0.9, or
– (2) removing a metric makes a previously dropped property no longer explain-

able, i.e., its preliminary model will no longer achieve an R2 ≥ 0.9

Similarly to Kamei et al. [3], we perform a logarithmic transformation to re-
move the effect of highly skewed change measures. A standard log transformation
has been applied to each measure listed in Table 1.

Unbalanced classification problems may cause problems to many learning algo-
rithms. We find 3,559 commits that are bug-inducing and 21,505 commits that are
non-bug inducing for Cassandra. We also find 6,632 commits that are bug-inducing
and 23,569 commits that are non-bug inducing for Hadoop. For Cassandra, there
are over six times more commits that are non-bug inducing than commits that are
bug-inducing and over three times more commits that are non-bug inducing than
bug-inducing in the case of Hadoop.

We explore various methods to fix these data imbalances. We randomly up-
sample samples with replacement (i.e., replicating) of the minority class (i.e., bug-
inducing) to make the minority class be the same size as the majority class (i.e.,
non-bug inducing) [30]. We also randomly downsample (i.e., reduce) samples of the
majority class (i.e., non-bug-inducing) to make the number of majority modules
be the same number as the minority class (i.e., bug-inducing) [30].

A prior study [31] found through a literature review that an overwhelming
majority of SE papers (85%) use SMOTE to fix data imbalance, precisely when
the data in the target class is overwhelmed by an over-abundance of information

10



about everything else, except the target. To account for the data imbalance in
commits that are bug-inducing and non bug-inducing in our models, we apply the
R SMOTE function on the training data. SMOTE is an algorithm for handling
unbalanced classification problems [32]. The general idea of this method is to ar-
tificially generate new examples of the minority class using the nearest neighbors
of existing examples. Furthermore, the majority class examples are also under-
sampled. In our case, non-bug inducing commits are under-sampled leading to a
more balanced dataset [32]. For each case in the original dataset belonging to the
minority class, new examples of that class will be generated by using the infor-
mation from the k nearest neighbours of each example of the minority class [32].
We also use SMOTE to balance the number of performance and non-performance
related commits within our BALANCED model.

3.4 Model construction

In this paper, we build random forest models as our JIT classification models. Ran-
dom forests construct each tree by using a different bootstrap sample. Assuming
that the number of instances in the training set is N, a sample of these N cases is
taken at random, with replacement. The random forest classifier uses a bootstrap
approach internally to get an unbiased evaluation of the performance of a classi-
fier. Contrary to standard decision trees, where each decision node is split using
the best split among all variables, random forests split each node using the best
subset among a randomly chosen subset of variables from each of the constructed
trees [33]. Random forests are robust against overfitting and perform very well
in terms of accuracy [33], suited for predicting performance related bug-inducing
commits. Due to the imbalance of bug-inducing and non-bug inducing commits
in our data, it is suitable to use random forest trees to not overfit the models on
non-bug inducing commits. A study that compares 31 classifiers in software defect
classification suggests that Random Forest outperforms other classifiers [34].

We also explore alternative models that may be used other than a random
forest model: logistic regression modelling, support vector machine (SVM), and
decision trees to determine how different models perform.

3.5 Manual analysis

For some performance fix commits, there are several corresponding identified bug-
inducing commits (i.e., N:1). For example, commit 4722fe7 in Cassandra linked to
the JIRA issue CASSANDRA-7245: Out-of-Order keys with stress + CQL3. There are 16
identified bug-inducing commits for the fix commit 4722fe7. Out of 218 studied bug
fix commits, we found that 126 of them have three or more identified bug-inducing
commits. It seems unlikely that so many commits can cause one specific bug in
the system. Therefore, some of these commits may be false positive bug-inducing
commits [7]. Falsely identified positive bug-inducing commits may occur because
the SZZ approach still has room for improvement [5,7]. Prior studies show that it
is unlikely that all of the modifications made in a bug-fixing change are actually
related to the bug-fix (e.g., it may contain an opportunistic refactoring) [5, 7, 35].
Furthermore, fixes to non-functional bugs, including performance bugs may be

11



scattered across the source code and might be separate from their bug-inducing
locations in the source code, making it impossible for the SZZ approach to locate
bug-inducing commits by tracing back.

Because there is no verified ground truth for performance bug-inducing com-
mits, we further verify the 899 commits identified through the SZZ approach. We
do this manually to determine the reliability of the raw results obtained through
the original dataset.

The steps performed in this paper for the manual analysis of bug-inducing
commits are as follows:

– Step 1A: The reviewers look at the description of a bug fix commit issue JIRA.
– Step 1B: The reviewers examine the code from the mentioned bug fix commit

corresponding to the JIRA issue.
– Step 1C: For each of the commits identified as bug-inducing commits by the

SZZ approach, the reviewers examine the code in the commit and determine if
it induced the bug identified in Step 1A based on their knowledge after studying
the code.

Two reviewers perform this task separately and in parallel. Following the man-
ual analysis, the Cohen’s Kappa scores of the agreement of the two reviewers is
calculated, ensuring moderate levels of agreement. The reviewers later met to-
gether to discuss disagreements until consensus was reached for all disagreements
on whether an identified commit is bug-inducing or not.

The above mentioned steps are individually completed by all reviewers for all
bugs remaining in the dataset. All reviewers must have the same classification (i.e.,
bug-inducing or not bug-inducing) for a identified commit, otherwise this is marked
as a disagreement. All agreements and disagreements are recorded and used to
calculate the Cohen’s Kappa score, a robust statistic useful for either interrater
or intrarater reliability testing [36]. Cohen’s Kappa score is a standardized score,
where 0 represents the amount of agreement that can be expected from random
chance, and 1 represents perfect agreement between raters [36]. Afterwards, the
reviewers meet and discuss any of the disagreements to reach a consensus for all
identified bug-inducing commits.

The disagreements are resolved as follows:

– Step 2A: The reviewers re-read the JIRA issue description, the bug fix, and
the bug-inducing commit in question.

– Step 2B: Each reviewer states the reason why they think the identified commit
is bug-inducing or not bug-inducing.

– Step 2C: The reviewers discuss until all two agree on a final decision.

4 Case Study Results

RQ1: How well can JIT models predict performance bug-inducing commits?

Motivation.

Because previous studies indiscriminately evaluate the SZZ approach on both
functional and non-functional bugs without distinction, we seek a clear compar-
ison between performance bugs and non-performance bugs. Zaman et al. found

12



that developers spend more time fixing performance bugs rather than fixing non-
performance bugs [8]. Because performance bugs are a type of non-functional bug,
an approach with a purpose such JIT models using the SZZ approach would be
useful in helping developers locate where to fix a bug in the source code which can
help fix future bugs that are similar to prior identified bugs. In this RQ, we evalu-
ate the JIT models on their ability to predict bug-inducing commits identified by
the SZZ approach.
Approach.

In order to evaluate the SZZ approach and the impact on JIT models with
respect to performance bugs, we must first obtain a source of known performance
bugs. Furthermore, we must have enough information for each bug to accurately
determine the root causes for the bugs. We first find the corresponding bug fixing
and bug-inducing changes for the bugs using the SZZ approach on our chosen
datasets. Figure 5 provides an overview of our approach.

Using the JIRA issue IDs, we go through all commits in each subject repository,
provided by Commit Guru [23]. We do this to find linked commits that we assume
are fix commits for those issues. We do this by creating a script where for each
commit, if the commit message contains at least one of the JIRA performance
issues from the list, we choose these commits as our bug fixing commits. In order
to find the bug-inducing commits, we input the bug fixing commits into the SZZ
approach, and we then identify the commits that the approach outputs as bug-
inducing commits.

We perform 10-fold cross validation and evaluate the data of the JIT models
for performance data and non-performance data on their recall, precision, F1, and
AUC values. Since for this RQ (RQ1) as well as RQ2 we perform 10-fold cross
validation, every single one of the commit instances are in the testing set exactly
once. We evaluate all of the non-performance and performance classifications in-
dependently as a means to compare the models’ power to predict performance and
non-performance bug-inducing commits.

We use a default threshold of 0.5 to classify whether a commit is bug-inducing
or not, where if the model-predicted probability of a bug-inducing commit is
greater than 0.5, then the commit is classified as defect inducing; otherwise, it
is classified as non-bug inducing [1, 3, 37]. Once all testing instances are evalu-
ated, we then aggregate the results of all testing instances. We do this four times,
experimenting with four sampling strategies: original (i.e., without any additional
sampling strategy), downsampling [30], upsampling [30], and SMOTE [32]. We also
explore alternative models that may be used other than a random forest model: lo-
gistic regression modelling, SVM, and decision trees in combination with SMOTE
as summarized in Table 3.

Upon performing the manual analysis described in Section 3, we found that
there are 899 identified performance bug-inducing commits: 327 from Cassandra
and 572 from Hadoop shown in Figure 5. The 899 performance bug-inducing com-
mits were identified through the SZZ approach, however, SZZ’s assumptions about
bug introduction (where removed line in a bug-fixing commit had introduced the
bug) might not always be valid for performance bugs. These bug-inducing com-
mits may or may not be truly bug-inducing commits, some of them may be false
positives.

Since prior bug-inducing changes are the data that is fed into JIT defect pre-
diction models to predict future bugs, it is important to determine whether or

13



Manual
verification

Non bug-inducing
41,504 commits

MA-SZZ
Flagged as bug-

inducing
899 commits

Non-performance
bug-inducing
6,204 commits

218 performance 
bug-fixing commits

RQ1 Training and
testing using 10-fold

RQ2 Training and
testing using 10-fold

Adjusted Non-bug-
inducing

39,151 commits

Truly performance
bug-inducing
376 commits

Adjusted Non-
performance

 bug-inducing 
5,605 commits

RQ3

PB = Truly performance bug-inducing commits
NPB = Non-performance bug-inducing commits
NB = Adjusted non-bug-inducing commits

Training Testing

Model PERF+NON-
PERF

All PB excluding one, NPB, and NB at
each time 1 PB at each time

Model NON-PERF NPB and NB All PB

Model PERF All PB excluding one and NB at each
time 1 PB at each time

Model
BALANCED

Balanced dataset of all PB excluding
one, NPB, and NB at each time 1 PB at each time

Extract
performance

bug-fix commits
based on issues

Performances Issues
204 performance issues

Training and Testing

Testing

Ding et al.

Excluding
performance
bug-inducing

commits

All commits from the
subject systems

Commit metric data

Training

Commit Guru

Fig. 5: An overview of our approach to evaluate the impact of falsely identified
performance bug inducing changes in JIT defect prediction models.

not the past changes are correctly labelled as bug-inducing or not bug-inducing.
In this RQ we evaluate the performance of JIT models when using a manually
verified dataset of performance bug-inducing commits as the training data. We

14



first evaluate the JIT models on the performance related data output by the SZZ
approach. However, because this data can contain errors we then re-evaluate the
results after a manual analysis of the test dataset. We consider true positive de-
tections in cases where our JIT models correctly identify non-performance and
performance bug-inducing commits.
Results.

We find 120 and 83 JIRA issues related to performance issues for Cassandra
and Hadoop respectively. For these issues, we find 179 and 80 commit fixes for
Cassandra and Hadoop respectively. Using the SZZ approach on those fixes, we find
that there are 327 and 572 identified bug-inducing commits for Cassandra

and Hadoop respectively, associated with the 148 out of 179 and 70 out

80 commit fixes identified by the SZZ approach shown in Figure 5. For the
remaining 41 bug fixes, there were no identified bug-inducing commits by the SZZ
approach because the bug fixes only contained either changes to non-Java files or
only additions.

Manual analysis: For some performance fix commits, there are several corre-
sponding identified bug-inducing commits. For example, the commit: 4722fe7 in
Cassandra linked to the JIRA issue CASSANDRA-7245, has 16 identified bug-inducing
commits. Upon manual analysis, only eight of the 16 identified bug-inducing com-
mits were truly bug-inducing changes. We show an example of a falsely identified
bug-inducing commit: 84c0657 in Figure 6. The commit message is: RefCount na-

tive frames from netty to avoid corruption bugs patch by tjake; reviewed by bes for

CASSANDRA-7245 and the JIRA issue is Out-of-Order keys with stress + CQL3.
The removed line in the fix commit flags commit 84c0657 as bug-inducing, as that
line was introduced in a change in the commit history. The added and removed
lines are snippets of code changes that are unrelated to the bug fix commit message
and the JIRA issue description. Since the only code overlap that the fix commit
4722fe7 has with the identified inducing commit 84c0657 is the snippet removed
shown in Figure 6 which is unrelated to the bug issue description, we rule it out
as a false positive for introducing a bug in the context of CASSANDRA-7245.

For the manual examination of the identified bug-inducing commits, there were
a total of 328 and 572 identified bug-inducing commits, and 141 and 92 disagree-
ments from Cassandra and Hadoop, respectively. To quantitatively evaluate how
often the reviewers agreed during manual evaluation, we use the Cohen’s Kappa
score [36]. The Cohen’s Kappa score was 0.48 - a moderate level of agreement for
Cassandra, and 0.43 - a moderate level of agreement for Hadoop [36]. Having a
high Cohen’s Kappa score reduces potential bias of a single reviewer by hanging
multiple reviewers, which is beneficial for producing reproducible results. The ma-
jority of the disagreements were due to either one of the reviewers misinterpreting
the code, or not being sure whether the identified commit that contained a bug
introduced the bug at the time or was a commit that retained a bug from a prior
bug-inducing commit. Because the agreement score only ranked as moderate, each
of the 233 disagreement was carefully re-examined and discussed until a consensus
was reached between all reviewers.

Upon discussion between the two reviewers, it was found that 129 out of the
327 Cassandra commits and 244 out of the 572 Hadoop bug-inducing commits were
manually verified to be truly bug-inducing commits. There are therefore 198 and
328 falsely identified bug-inducing commits from the SZZ approach for Cassandra
and Hadoop, respectively. It should be noted that some commits were identified

15



- List<AbstractWriteResponseHandler> responseHandlers = new ArrayList<AbstractWriteResponseHandler>(mutations.size());

+ List<AbstractWriteResponseHandler> responseHandlers = new ArrayList<>(mutations.size());

Fig. 6: Simplified example of code changes in a fix commit that are unrelated to
the bug description.

as bug-inducing commits for more than one bug. On the other hand, as mentioned
earlier, for some performance fix commits, there are several corresponding iden-
tified bug-inducing commits. If the manually verified bug-inducing commit was
a bug-inducing commit for more than one of the bugs (i.e., 1:N), we say it is a
bug-inducing commit because it introduced a bug at the time of the commit In
particular, 192 commits out of the 899 identified bug-inducing commits in our
dataset (21.4%) were identified to induce more than one bug.

Our results upon performing 10-fold cross validation, on the JIT models are
shown in Table 2 in the Raw data column.

The results of using raw SZZ data as JIT model input (i.e., the RQ1 Raw

data column of Table 2) shows that the JIT models have worse prediction

results when predicting non-performance bug inducing commits than the

performance ones. However, this data is unvetted and may contain errors.

Similar to RQ1, we find that the AUC scores and F1 scores for using SMOTE
outperform the other three sampling strategies (i.e., when no sampling strategy
is applied, downsampling, and upsampling) for both performance bugs and non-
performance bugs.

After establishing a manually vetted ground truth, we actually find that

the models are more accurate for non-performance commits rather than

performance commits, shown by the F1 scores and AUC values of Table 2,
column RQ1 Verified data. We correct the testing data used in RQ1, by using the
ground truth of identified bug-inducing commits through manual analysis and re-
build the models, as shown in Table 2 in the column Verified data. Note that both
the RQ1 Raw data and RQ1 Verified data columns use the same model, which we will
call Unverified Data Model. After establishing a ground truth through our manual
analysis, rather than the initial one made up of the results directly provided by the
SZZ approach, we re-evaluate our models on the correctly classified performance
commits. Once again, we generally find that the AUC scores and F1 scores for
using SMOTE outperforms the other three sampling strategies (i.e., no sampling
strategy, downsampling, and upsampling), for performance and non-performance
bugs.

The differing nature of performance bugs makes the SZZ approach a sub-
optimal approach for identifying bug-inducing changes for performance bugs. Upon
establishing a manually vetted ground truth, we find that the models are more
accurate for non-performance commits rather than performance commits. Our
training data contained raw data from the SZZ approach in terms of labelled bug-
inducing commits that included falsely labelled performance bug-inducing com-
mits. Since manual analysis is effort consuming, it will be valuable to determine
whether manually validated data makes a significant difference for training models
to classify performance bug-inducing commits, which we explore in RQ2.

16



Upon manual analysis of the identified bug-inducing commits, we find that 61.6%

of them do not contain bug-inducing changes, yet were used in the JIT models. Our

findings show that when using an established ground truth, the JIT model performs

better in classifying non-performance commits, rather than performance commits.

RQ2: How does correcting falsely identified performance bug-inducing bugs impact
JIT models?

Motivation.

Just-In-Time models are used to identify bug-inducing code changes, and are
trained using techniques that assume past bug-inducing changes are similar to
future bug-inducing changes. In RQ1, our training data contained raw data from
the SZZ approach in terms of labelled bug-inducing commits. The trained model
may be biased by the errors introduced by the SZZ approach. Since manual analysis
is time-consuming, in this RQ, we want to determine whether verified data makes
a significant difference in training a better model to classify performance bug-
inducing commits. In RQ1, we train the models on unverified data, while in this
RQ, we train the models on verified data, in terms of performance related commits.
Approach.

In this RQ, we evaluate the JIT models on the performance related data output
by the SZZ approach, correctly labelled by reviewers through a manual analysis.
Similar to RQ1, we perform 10-fold cross validation on our training dataset, which
now contains a verified ground truth mix of non-performance related data as well
as correctly identified performance related bug-inducing commit instances. We
call this the Verified Data Model. We consider a true positive detection in cases
where our JIT models correctly identify non-performance and performance bug-
inducing commits. For each repository (i.e., Cassandra and Hadoop), we create
one model and evaluate non-performance and performance classifications indepen-
dently. Upon performing 10-fold cross validation after correcting the performance
commits manually, we find the recall, precision, F1, and AUC values of perfor-
mance commits and non-performance commits.

To obtain a fair comparison, we further evaluate the differences between the
classifications made in RQ1’s Unverified Data Model and RQ2’s Verified Data
Model. We can do this because both the Unverified Data Models and Verified
Data Models use the same ground truth of correctly labelled bug-inducing commits
through the manual analysis step performed in RQ1. We compare the results shown
in Table 2 in the columns Verified Data of RQ1 and Verified Data of RQ2. We
evaluate the AUC [38] for performance commits and non-performance commits
for each project (i.e., Cassandra and Hadoop). Furthermore, we use Wilcoxon’s
signed-rank test [39] and Cohen’s d [40] to compare the differences in results using
the model produced in RQ1 and the one produced in RQ2.

Similar to RQ1, we explore alternative models that may be used other than a
random forest model: logistic regression modelling, SVM, and decision trees.
Results.

Similar to RQ1, we find that the AUC scores and F1 scores for using SMOTE
outperform the other three sampling strategies (i.e., no sampling strategy, down-
sampling, and upsampling) for both performance and non-performance bugs, shown

17



Table 2: Comparison of results of bug-inducing commit classification based on
verified and unverified SZZ input data using 10-fold cross-validation, using four
different sampling strategies in combination with random forest.

Original RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 48.9% 62.5% 49.2% 71.9% 42.6% 71.1%
Precision 100.0% 100.0% 43.0% 45.3% 43.2% 46.0%
F1 65.7% 76.9% 45.9% 55.6% 42.9% 55.8%
AUC 0.745 0.812 0.502 0.578 0.503 0.584

Non-performance
bugs

Recall 29.7% 45.3% 29.7.0% 45.3% 23.1% 42.4%
Precision 54.5% 64.3% 54.5% 64.3% 58.2% 65.6%
F1 38.5% 53.1% 38.5% 53.1% 33.1% 51.5%
AUC 0.631 0.682 0.631 0.682 0.604 0.673

Downsampling RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 48.8% 62.5% 48.4% 71.9% 42.2% 71.1%
Precision 100.0% 100.0% 42.4% 45.3% 42.6% 46.0%
F1 65.6% 76.9% 45.2% 55.6% 42.4% 55.8%
AUC 0.744 0.812 0.496 0.578 0.498 0.854

Non-performance
bugs

Recall 29.9% 45.5% 29.9% 45.5% 22.9% 42.6%
Precision 54.7% 64.4% 54.7% 64.4% 58.1% 65.6%
F1 38.7% 53.3% 38.7% 53.3% 32.9% 51.6%
AUC 0.633 0.683 0.633 0.683 0.603 0.674

Upsampling RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 49.3% 62.8% 49.2% 72.7% 42.2% 71.1%
Precision 100.0% 100.0% 42.7% 45.6% 42.6% 46.0%
F1 66.0% 77.1% 45.7% 56.0% 42.4% 55.8%
AUC 0.746 0.814 0.469 0.582 0.498 0.584

Non-performance
bugs

Recall 30.0% 45.4% 30.0% 45.4% 22.9% 42.6%
Precision 54.7% 64.4% 54.7% 64.4% 57.8% 65.6%
F1 38.7% 53.2% 38.7% 53.2% 32.8% 51.6%
AUC 0.633 0.683 0.633 0.683 0.603 0.673

SMOTE RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 87.7% 90.9% 91.4% 89.8% 90.6% 93.4%
Precision 100.0% 100.0% 73.8% 56.9% 86.7% 82.1%
F1 93.4% 95.2% 81.7% 69.7% 88.6% 87.4%
AUC 0.939 0.955 0.518 0.486 0.647 0.787

Non-performance
bugs

Recall 87.0% 86.2% 87.0% 86.2% 88.2% 86.7%
Precision 79.6% 86.7% 79.6% 86.7% 81.2% 87.0%
F1 83.1% 86.5% 83.1% 86.5% 84.6% 86.9%
AUC 0.842 0.869 0.842 0.869 0.845 0.869

18



in Table 2. Therefore, we include SMOTE as a sampling strategy step for further
model building.

The results are summarized in Table 3 in the Verified Data Model data column.
Similarly to RQ1, our threshold to classify whether a commit is bug-inducing or
not is 0.5. We base our results off the random forest model, as it outperforms the
logistic regression modelling, SVM, and decision trees models.

Performance bug-inducing commits: By using manually verified perfor-

mance data in the training data to build the models, we find that there is

no statistical difference on the models’ classification power. We find that

there are overlapping correctly identified bug-inducing commits from both

the Unverified Data Model and Verified Data Model. We find that for perfor-
mance bug-inducing commits, the Unverified Data Model and Verified Data Model
have the correct and same classification for 212 performance related commit in-
stances in Cassandra and 110 of the same performance related commit instances in
Hadoop. As shown in Figure 7, in Cassandra, the Unverified Data Model was able
to correctly classify 11 more performance commit instances that the Verified Data
Model was not able to classify, while the Verified Data Model correctly classified
13 more performance commit instances that the Unverified Data Model was not
able to classify as summarized in Figure 7. Additionally, as shown in Figure 7, in
Hadoop, the Unverified Data Model was able to correctly classify 5 more perfor-
mance commit instances that the Verified Data Model was not able to classify,
while the Verified Data Model correctly classified 9 more performance commit in-
stances that the Unverified Data Model was not able to classify. Therefore, based
on the various non-overlapping results of both models, we believe that having cor-
rectly identified performance bug-inducing commits in the training data of JIT
models can help correctly classify other performance bug-inducing commits.

Non-performance bug-inducing commits: We find that for non-performance
bug-inducing commits, the models in Unverified Data and Verified Data have the
correct and same classification for 2,374 non-performance bug-inducing commit
instances in Cassandra and 4,782 same classification for non-performance bug-
inducing commit instances in Hadoop. For Cassandra, the Unverified Data Model
was able to correctly classify 196 more non-performance bug-inducing commit in-
stances that the Verified Data Model was not able to classify, while the Verified
Data Model correctly classified 242 more non-performance bug-inducing commit
instances that the Unverified Data Model was not able to classify. For Hadoop, the
Unverified Data Model was able to correctly classify 429 more non-performance
bug-inducing commit instances that the Verified Data Model was not able to clas-
sify, while the Verified Data Model correctly classified 453 more non-performance
bug-inducing commit instances that the Unverified Data Model was not able to
classify. The results are summarized in Figure 7.

For performance commits, the results of RQ2’s Verified Data Model are higher
than those for RQ1’s Unverified Data Model as shown by the AUC values in
Table 2. When comparing the results of both models for performance com-

mits, although the results are statistically different for Hadoop (p-value =

0.00051), the effect size is classified as small (Cohen’s d = 0.437) [40], ad-

ditionally the results are not statistically different for Cassandra (p-value

= 0.068). Similarly, as shown in Table 3, RQ2’s Verified Data Model has higher
AUC values than those for RQ1’s Unverified Data Model for the SVM and Deci-
sion Trees models. The logistic regression model presents an AUC score for RQ1’s

19



Table 3: Comparison of results of bug-inducing commit classification based on
verified and unverified SZZ input data using 10-fold cross-validation, using four
different models in combination with SMOTE.

Random Forest RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 87.7% 90.9% 91.4% 89.8% 90.6% 93.4%
Precision 100.0% 100.0% 73.8% 56.9% 86.7% 82.1%
F1 93.4% 95.2% 81.7% 69.7% 88.6% 87.4%
AUC 0.939 0.955 0.518 0.486 0.647 0.787

Non-performance
bugs

Recall 87.0% 86.2% 87.0% 86.2% 88.2% 86.7%
Precision 79.6% 86.7% 79.6% 86.7% 81.2% 87.0%
F1 83.1% 86.5% 83.1% 86.5% 84.6% 86.9%
AUC 0.842 0.869 0.842 0.869 0.845 0.869

Logistic Regression RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 86.4% 88.0% 88.1% 89.1% 88.1% 91.4%
Precision 100.0% 100.0% 77.3% 57.3% 85.5% 69.0%
F1 92.7% 93.6% 82.4% 69.7% 86.8% 78.7%
AUC 0.932 0.940 0.503 0.507 0.490 0.547

Non-performance
bugs

Recall 79.6% 77.2% 79.6% 77.2% 82.6% 77.6%
Precision 85.4% 80.3% 85.4% 80.3% 72.9% 75.4%
F1 82.4% 78.7% 82.4% 78.7% 77.4% 76.5%
AUC 0.770 0.761 0.770 0.761 0.769 0.763

SVM RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 87.6% 89.7% 88.5% 91.4% 89.3% 93.4%
Precision 100.0% 100.0% 74.5% 57.6% 83.7% 68.3%
F1 93.4% 94.6% 80.9% 70.7% 86.4% 78.9%
AUC 0.938 0.948 0.502 0.523 0.513 0.562

Non-performance
bugs

Recall 83.5% 79.3% 83.5% 79.3% 84.3% 80.9%
Precision 85.6% 80.7% 85.6% 80.7% 73.9% 76.3%
F1 84.5% 80.0% 84.5% 80.0% 78.7% 78.5%
AUC 0.777 0.772 0.777 0.772 0.781 0.780

Decision Trees RQ1 RQ2
Training data Raw data Raw data Verified data
Testing data Raw data Verified data Verified data
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 90.1% 87.8% 92.2% 90.6% 94.1% 94.5%
Precision 100.0% 100.0% 75.3% 54.2% 83.5% 62.4%
F1 94.8% 93.5% 82.9% 67.8% 88.4% 75.2%
AUC 0.950 0.939 0.521 0.516 0.541 0.533

Non-performance
bugs

Recall 86.2% 79.0% 86.2% 79.0% 88.3% 80.6%
Precision 84.2% 78.1% 84.2% 79.1% 72.6% 72.0%
F1 85.2% 78.5% 85.2% 78.5% 79.7% 76.0%
AUC 0.777 0.749 0.777 0.749 0.785 0.747

20



Table 4: Comparison of results of bug-inducing commit classification based on
verified SZZ input data using 10-fold cross-validation with Random Forest, using
three different classification thresholds: 0.4, 0.5, and 0.6.

Threshold 0.4 0.5 0.6
Project Cassandra Hadoop Cassandra Hadoop Cassandra Hadoop

Performance
bugs

Recall 93.4% 96.1% 90.6% 93.4% 86.3% 89.8%
Precision 89.1% 79.6% 86.7% 82.1% 90.5% 81.0%
F1 91.2% 87.1% 88.6% 87.4% 88.4% 85.2%
AUC 0.647 0.787 0.647 0.787 0.647 0.787

Non-performance
bugs

Recall 90.7% 92.3% 88.2% 86.7% 81.8% 79.6%
Precision 80.1% 83.3% 81.2% 87.0% 86.5% 89.9%
F1 85.1% 87.6% 84.6% 86.9% 84.1% 84.4%
AUC 0.845 0.869 0.845 0.869 0.845 0.869

11 13212

Unverified Data Model Verified Data Model

(a) Cassandra

5 9110

Unverified Data Model Verified Data Model

(b) Hadoop

196 2422,374

Unverified Data Model Verified Data Model

(c) Cassandra

429 4534782

Unverified Data Model Verified Data Model

(d) Hadoop

Fig. 7: Top: Comparison of correctly classified performance bug-inducing com-

mits, before and after manual correction. Bottom: Comparison of correctly classi-
fied non-performance bug-inducing commits, before and after manual correc-
tion.

Unverified Data Model that is statistically higher than RQ2’s Verified Data Model.
However, when comparing the results of both models for performance commits, we
find that for both Hadoop and Cassandra the results of the Logistic Regression,
SVM, and Decision Trees models are not statistically different.

For non-performance commits, the results of the Verified Data Model are
slightly higher than those for the Unverified Data Model as shown by the AUC
values in Table 2. However, when comparing the results of Verified Data Model
and Unverified Data Model for non-performance commits, the results are not sta-

tistically different for both Cassandra (p-value = 0.291) and Hadoop (p-value =
0.464). Similarly, as shown in Table 3, RQ2’s Verified Data Model has higher AUC

21



values than those for RQ1’s Unverified Data Model for the Logistic Regression and
SVM models. The AUC score for RQ1’s Unverified Data Model is higher than that
of RQ2’s Verified Data Model, when comparing the Decision Tree models. We find
that the results are significantly different for the Logistic Regression models for
Cassandra (p-value = 0.001) and the Decision Trees models for Hadoop (p-value
= 0.003). However, both effect sizes are classified as trivial: a Cohen’s d value of
0.068 for Cassandra, and a Cohen’s d value of 0.004 for Hadoop.

These results indicate that manually verifying the results of SZZ to

produce JIT models generally does not impact the models’ classification

power, and when it does (i.e., in the case of Cassandra performance and

Hadoop non-performance) the changes only have a negligible to small ef-

fect on the classification power of these models. However, the changes in the
models brought about by manual verification of performance commits do add new
information that was not present in the original, non-verified model as shown in
Figure 7 and Figure 7. This indicates that including correct performance bug-

inducing commits in Just-In-Time training data can help with identifying

other previously unidentified bug-inducing commits as well as classifying

non-bug inducing commits. Further insight into the classification power could
benefit future model building. We investigate this further in RQ3.

Upon comparing the four models, we choose to use random forest models in
combination with SMOTE for building future models, as it ranks the highest in
terms of F1 and AUC scores for performance and non-performance bugs in both
Hadoop and Cassandra, depicted by Table 3. While we do select the random forest
model due to its higher predictive power, the overall trends uncovered are mostly
model agnostic. The models present similar patterns, where the AUC scores for
non-performance bugs is always higher than those of performance bugs.

We find that there is valuable knowledge present in non-performance bug-
inducing commits that was not present in our sample of truly performance bug-
inducing commits. Unfortunately, our truly performance bug-inducing commits
sample is simply too small to contain all of the project’s knowledge. We believe
that performance bug localization would strongly benefit from large datasets of
performance bugs.

Including manually verified bug-inducing data in the training data has minimal im-

pact on the models overall classification power. Despite the low impact, we find that

Unverified and Verified Data Models contain exclusive knowledge, which they show

through exclusively correctly classified commit instances for performance related

commits as well as non-bug inducing commits.

RQ3: Does only using the correct performance inducing bugs as training data
improve the JIT models when predicting other performance inducing bugs?

Motivation.

In RQ2, we find that including verified performance bug-inducing commits in
JIT training data can properly identify other bug-inducing commits as well as clas-
sify non-bug inducing commits, indicating that including correctly performance
bug-inducing commits in Just-In-Time training data can help with identifying

22



other bug-inducing commits as well as classifying non-bug inducing commits. If
performance and non-performance bug-inducing commits have different charac-
teristics, a model only based on performance bugs can better label performance
bug-inducing changes. In this RQ, we evaluate Just-In-Time models solely on the
manually verified performance commits identified by the two reviewers in RQ1,
by using four different combinations of training data shown in Figure 5. Of the
model combinations, we include one where the training data is only comprised of
manually labelled bug-inducing commits, to see whether we need a separate model
for predicting performance bugs. With the results of this RQ, we seek to determine
how different training data influences the models’ power to predict performance
bug-inducing commits.
Approach.

We evaluate four JIT models with manually verified bug-inducing commits for
each subject system to find what combination of training data is best suited for
predicting performance related bug-inducing commits. We use ‘X’ to denote the
variable number of bug-inducing commits, shown in detail in Figure 5, for each
subject system to evaluate the models below:

– Model PERF+NON-PERF: The training data is comprised of X-1 perfor-
mance bug-inducing commits, the non-performance bug-inducing commits, and
both all non-bug-inducing commits. The testing data is solely comprised of
the one verified performance bug-inducing commit excluded from the training
data. This split is repeated X times, and once all instances are evaluated. We
then aggregate the results of all repetitions.

– Model NON-PERF: The training data is comprised of non-performance bug-
inducing commits, and all non-bug-inducing commits. The testing data is com-
prised of the X verified performance bug-inducing commits.

– Model PERF: The training data is comprised of X-1 performance bug-inducing
commits, and all non-bug-inducing commits. The testing data is solely com-
prised of the one verified performance bug-inducing commit excluded from the
training data. Similarly to Model PERF+NON-PERF the split is repeated X
times, and all evaluation data is aggregated.

– Model BALANCED: The training data is comprised of X-1 performance
bug-inducing commits, the non-performance bug-inducing commits, and all
non-bug-inducing commits. The testing data is solely comprised of the one

verified performance bug-inducing commit excluded from the training data.
This split is repeated X times, and once all instances are evaluated. We then
aggregate the results of all repetitions. Our performance bug-inducing commits
sample is simply too small to contain all of the project’s knowledge. Therefore,
we produce this model to test the effect of a more balanced dataset. Contrary
to Model PERF+NON-PERF, an extra balancing step is done to account for
the imbalance in performance and non-performance related commits. We use
the balancing approach outlined in the data preparation section of this paper
(i.e., Section 3.3).

For each of the four models described above, each of the performance bug-
inducing commits are tested on, exactly once.
Results.

Model PERF performs the worst, while Model PERF+NON-PERF

performs the best. Moreover, the difference between Model PERF+NON-PERF

23



Table 5: Evaluation results of four JIT models with manually verified performance
bug-inducing commits per subject system. The amount of true positive perfor-
mance bug-inducing commits classified by each of the models is shown.

Cassandra Hadoop
Model PERF+NON-PERF 210 110
Model NON-PERF 201 111
Model PERF 185 94
Model BALANCED 209 102
Total 244 128

and Model PERF is that Model PERF+NON-PERF also trains on the non-
performance bug inducing commits in addition to all commits except one perfor-
mance bug-inducing commits and non-bug inducing commits. The single excluded
performance bug-inducing commit is the one that the JIT model predicts on. Sim-
ilarly to RQ1 and RQ2, our threshold to classify whether a commit is bug-inducing
or not is 0.5. Including the non-performance bug-inducing commits in the train-
ing data increased the classification of truly performance bug-inducing commits by
10.2% in Cassandra and 12.5% in Hadoop, as shown in Table 5. This indicates that
it is better for JIT model classification to include all commit types, possibly due
to the small size of the performance bug data compared to non-performance bug
data. The small performance bug data sample is not providing sufficient predictive
power. This difference in internal knowledge is what allows Model PERF+NON-
PERF to use information from non-performance bug-inducing data, which seems
to have overlapping knowledge in terms of similar characteristics to performance
bugs, helping with the classification of performance bugs.

The effect of truly performance bug-inducing commits (PB in Figure 5)

Although the performance bug data alone may not be enough to accurately detect
other performance bug-inducing commits, as shown by Model PERF performing
worse than Model PERF+NON-PERF, it is still better to include them in the
training data, as it still gives new information, show in Figure 8. Excluding the
non-performance commits has a larger effect than excluding performance bug-
inducing commits as shown in Table 5. This is likely because there are many more
non-performance bug-inducing commits than performance bug-inducing commits.
However, performance bug-inducing commits do contain unique knowledge

that is not contained within non-performance bug-inducing commits as
shown in Figure 8. By the same logic, this explains why Model PERF+NON-
PERF performs the best out of the four models, since it contains both perfor-
mance bug-inducing commits and non-performance bug-inducing commits. More
data included in the training data has positive results on the models’ classification
power. As a future work, we propose enlarging the amount of training instances of
performance bug-inducing data to determine if this can further improve the JIT
models.

The results are summarized in Figure 8. The data shows that there is knowl-
edge present in non-performance bug-inducing commits that was not present in
our sample of truly performance bug-inducing commits. This is likely due to the
sheer size difference between our non-performance bug-inducing commits and truly
performance bug-inducing commits samples. Our truly performance bug-inducing
commits sample is simply too small to contain all of the project’s knowledge. In-

24



15

78

Model PERF+NON-PERF

Model NON-PERF Model PERF
3

174
18

1

(a) Cassandra

2

32

1
88

19

2

Model PERF+NON-PERF

Model NON-PERF Model PERF

(b) Hadoop

Fig. 8: Comparison of Model PERF+NON-PERF, Model NON-PERF, and Model
PERF of Cassandra (left) and Hadoop (right) of correctly classified performance
bug-inducing commits.

cluding correct performance bug-inducing data is therefore valuable to predict on
other performance bug-inducing commits.

We therefore create a model called BALANCED, as shown in Table 5 where
we use the R SMOTE function [32] as described in Section 3, to balance the non-
performance commits and the performance commits. As shown in Figure 9, we
find that for performance related commits, Model PERF+NON-PERF and Model
BALANCED have the correct and same classification for 192 performance related
commit instances in Cassandra and 94 of the same performance related commit
instances in Hadoop. As shown in Figure 9, balanced datasets (BALANCED)
and large datasets (PERF+NON-PERF) each yield good, and slightly different
results. Therefore, we suggest that JIT models aim for large and balanced training
datasets.

When limited to not having enough performance commit related data, we
find that using all commit data, i.e., truly performance bug-inducing commits,
non-performance bug-inducing commits, and non-bug-inducing commits in the
training data, still gives the best results. The rationale behind this result stems
from the limited amount of performance bug-inducing commit data in our case
study. It appears that more data, no matter the bug-type, is still superior to less
data of a specific bug type (i.e., performance). Hence, in the absence of sufficient
performance regression data, a “blind” model with all the bug-inducing commits
still performs reasonably well.

Additionally, prior work shows that cross-prediction models [41], where com-
bining the data of several other projects to produce a larger pool of training data,
works well in JIT defect prediction, which can be explored in future work for
performance-related bugs. Leveraging other projects’ labelled performance data
would be able to enlarge the amount of training instances of performance bug-
inducing data.

Our findings show that it is better for JIT model classification to include all
commit types, due to the small size of the performance bug data compared to
non-performance bug data. Moreover, our results for Model BALANCED, indicate
that larger samples of correct performance bug-inducing data are more valuable for
predicting other performance bug-inducing commits. For future work, we propose

25



18 17192

Model PERF+NON-PERF Model Balanced

(a) Cassandra

16 894

Model PERF+NON-PERF Model Balanced

(b) Hadoop

Fig. 9: Comparison of Model PERF+NON-PERF and BALANCED of Cassandra
(left) and Hadoop (right) of correctly classified performance bug-inducing commits.

enlarging the amount of training instances of performance bug-inducing data to
determine if this can further improve the JIT models.

Compared to the amount of functional bugs, it is typical that the amount of
performance bugs are relatively small in software projects [13, 14, 17, 42]. There-
fore, the lack of data to build JIT bug prediction models for performance bugs may
become a common challenge in practice. On the other hand, research has shown
that transfer learning techniques can be used to leverage data from other projects
in order to enlarge the training data for modeling and prediction [25]. Therefore,
future research may consider enlarging the amount of training instances of perfor-
mance bug-inducing data by transfer learning techniques to further improve the
JIT models.

Using correctly labelled performance bug-inducing commits in the training data

doesn’t result in an optimal model. We find that using all commit data: truly per-

formance bug-inducing commits, non-performance bug-inducing commits, and non-

bug-inducing commits in the training data results in better predicting performance

bug-inducing commits.

5 Threats to Validity

In this section we discuss the threats to the validity of our research.
External validity.

Threats to external validity are concerned with the extent to which we can
generalize our results. Although our study only focuses on 121 performance issues,
the scale of our study is comparable to prior research on performance issues [15].
We attempt to mitigate these issues by establishing our benchmark of performance
issues based on an existing, manually verified dataset used in prior research [14].
Our findings might not be generalizable to other systems, therefore, for our future
work, we propose increasing the quantity of training instances of performance
bug-inducing data.
Construct validity.

Threats to construct validity are concerned with the validity of our conclusions
within the constraints of the dataset we used. Very few of the projects have an

26



issue tracking system, and so for many, looking for bug reports for that have
keywords relating to performance in the system was inapplicable. In order for us
to mitigate the constraints of drawing conclusions, the dataset we employed from
prior work [14] contains two Java projects: Cassandra and Hadoop, which are
both highly concerned with performance and have been studied in prior research
in mining performance data [14,20–22].
Internal validity.

Threats to internal validity are concerned with how our experiments were de-
signed. Our manual analysis of the candidate bug-inducing commits for known bug
fixing commits were subject to our own opinion and could therefore be biased by
the opinion of the experimenter. In order to mitigate the risk of bias, we included
two other reviewers in parallel, following with Cohen’s Kappa to measure agree-
ment between the reviewers. After reviewing separately, the reviewers later met
together to discuss disagreements. These measures taken allow for us to mitigate
and measure the internal bias of our manual study.

While the existence of non-performance bug-inducing commits in the training
data may have an effect on classifying performance bug-inducing commits, it is also
possible that performance bug-inducing commits in the training data may have
an effect on classifying non-performance bug-inducing commits. For the purpose
of the paper, we focus on the impact of having non-performance related data on
classifying performance bugs. We may focus on the effect that performance bug-
inducing commits have on classifying non-performance commits as a future work.

We use 0.5 as a threshold of probability to classify whether a commit is bug-
inducing or not. Since the choice of a threshold may bias our findings, we exper-
iment with threshold values of 0.4 and 0.6 in Table 4. We notice that from the
threshold values of 0.5 to 0.6, the precision and recall values cross each other,
except for Hadoop performance bugs. Since we value both precision and recall
equally, we choose 0.5 by default. We find that when changing the threshold, the
recall and precision values change slightly, however the conclusions still hold, indi-
cating that JIT performance bug prediction is not impacted substantially by the
threshold.

6 Related Work

6.1 Evaluation and improvement of SZZ

Kim et al. present algorithms to automatically and accurately identify bug-introducing
changes, they compare their algorithms to SZZ [5]. They reduced the incidence of
false positives and false negatives by using a combination of annotation graphs
and ignoring non-semantic code changes and outlier fixes. They also manually in-
spected the commits listed as bug fixing to determine if they were indeed changes
that fixed a bug in the code. In our paper, we evaluate our Cassandra and Hadoop
datasets with the bug inducing changes found by SZZ. Furthermore, we concen-
trate on the SZZ approach [5], as it is used in JIT defect prediction.

Williams et al. revisit SZZ by outlining several improvements to the approach [43].
They replace annotation graphs with linear number maps to track unique source
code lines as they change over software evolution. Their enhanced approach uses
weights to map the evolution of a line. They also use DiffJ, a Java syntax-aware

27



diff tool to ignore comments and ignore cosmetic changes [44]. Furthermore, they
verify how often bug-inducing changes identified by the SZZ approach are truly
bug-inducing changes. In our paper, we want to verify whether the SZZ approach
can provide true bug inducing changes on Cassandra and Hadoop performance
bugs and the impact on JIT models.

Costa et al. [7] introduced a framework to evaluate the results of SZZ imple-
mentations. They note that little effort has been made to evaluate SZZ’s results,
despite its role as the foundation of several research areas in software engineer-
ing [7]. The framework evaluates the approach with three criteria: the earliest bug
appearance, the future impact of changes, and the realism of bug introduction [7].
The framework is evaluated on five SZZ implementations using data from ten open
source projects. Their findings show that previous proposed improvements to SZZ
approaches tend to inflate the number of false positive bug-introducing changes.
A single bug-introducing change may be blamed for introducing hundreds of fu-
ture bugs and SZZ implementations report at least 46% of the bugs are caused by
bug-inducing changes that are years apart from one another [7]. Our study builds
on the work from Costa et al. by evaluating the identified bug inducing changes
from SZZ on non-functional bugs rather than on a mixed dataset containing both
functional and non-functional bugs.

6.2 Predicting performance bugs

Software quality research and practice concerns itself with a variety of different
types of bugs. Non-functional bugs, including performance and security bugs, can
be particularly costly bugs [8]. Tools can help reduce the cost overhead caused by
these bugs [13]. In this study we focus on the applicability of the SZZ approach to
determine the root cause of these non-functional bugs.

Jin et al. [13] have studied 109 real-world performance bugs from five software
systems in order to better guide software practitioners. Their findings show that
developers need tool support to automatically fix such types of performance is-
sues [13]. They also find that performance issues of newer software versions can
be inherited easily from previous versions. This study calls for further and more
detailed research on performance diagnosis, performance testing, and performance
issue detection. Our study contributes to furthering software performance research
by evaluating a tool to help developers automatically locate buggy code in the soft-
ware. In theory, the SZZ approach should be able to locate at which point in time
non-functional bugs, including performance issues, are introduced from previous
versions, given that the performance issue has been detected.

Zaman et al. [8] conduct both qualitative and quantitative studies on 400 per-
formance and non-performance issues in Mozilla Firefox and Google Chrome, two
open source web browsers. The study aims to understand the difference between
performance issues and non-performance issues. Their findings show that devel-
opers spend more time fixing performance issues rather than non-performance
issues [8]. The study shows the importance of identifying root causes for perfor-
mance issues and evaluating the impact of changes on performance issues. Our
paper analyzes the performance bugs in Cassandra and Hadoop, and the SZZ ap-
proach’s ability to determine the bug inducing changes and concentrate on the
impact of these changes on predictive models.

28



Nistor et al. [42] studied software performance since performance is critical
for how users perceive the quality of software products. Performance bugs lead to
poor user experience and low system throughput [45,46]. Their study includes how
performance bugs are discovered, fixed, and compares the results with those for
non-performance bugs from three popular code bases: Eclipse JDT, Eclipse SWT
and Mozilla Firefox [47,48]. Their results include suggestions of techniques to help
developers reason about performance and suggest that better profiling techniques
are needed for discovering performance bugs. Our study on the evaluation of a
SZZ approach on performance bugs, can help determine whether it is reliable for
developers to use references to past inducing code from past performance bugs to
locate and fix new bugs with the help of a SZZ-implemented tool.

Intrinsic bugs are bugs where a bug-introducing change can be identified using
the version control system of a software, while extrinsic bugs are caused by exter-
nal changes of a software such as errors in internal APIs, compatibility changes or
even changes in the specifications [49]. Extrinsic bug introducing-changes cannot
be ident ified by the version control system of the software. Rodriguez-Perez et
al. [49] study the impact of extrinsic bugs in JIT models, by replicating Kamei
et al.’s recent paper in which they analyze the performance of JIT models [3].
Rodriguez-Perez et al. [49] remove the extrinsic bugs from their data, as all
bugs were previously considered to be intrinsic. Findings from Rodriguez-Perez
et al. [49] show that extrinsic bugs are of a different nature than intrinsic bugs,
and that extrinsic bugs are more similar to issues that are not bugs rather than
to intrinsic bugs. Our work also focuses on studying JIT models, but we concen-
trate on performance related bug-inducing changes and how they can impact the
performance of JIT models. We investigate whether or not performance bugs in
our dataset are extrinsic bugs.

Tsakiltsidis et al. [50] use four machine learning algorithms to build classifiers
to predict performance bugs on a real time system used in the mobile advertise-
ment. Their findings show that the best model is based on logistic regression, using
lines of code changed, file age and size as explanatory variables to predict perfor-
mance bugs. They also find that reducing the number of changes delivered on a
commit can decrease the chance of performance bug injection. While Tsakiltsidis
et al. [50] have a special goal to predict performance bugs, our study focuses on
the prediction of performance bug-inducing chances within a general JIT model.

Yang et al. use 14 code-change based metrics to build simple unsupervised
and supervised models in effort-aware JIT defect prediction [51]. They find that
many simple unsupervised models perform better than the state-of-the-art su-
pervised models in effort-aware JIT defect prediction. Their study used the data
sets provided online by Kamei et al. [3], which employ the SZZ approach. Our
study investigates the predictive power of supervised models in effort-aware JIT
defect prediction [3] as well, however our labelling of defect-prone commits is done
by employing the MA-SZZ approach. We also manually correct the labelling of
defect-prone commits, found by the MA-SZZ approach, and compare the models.

Chen et al. [52] propose an approach that automatically predicts whether a
test would manifest performance regressions given a code commit, using both
traditional metrics and performance-related metrics from the commit changes that
are associated with each test. For each commit, they build random forest classifiers
that are trained from all prior commits to predict in this commit whether each
test would manifest performance regression [52]. We also use traditional metrics

29



from the commit changes to build classifiers trained from prior commits to predict
if a commit is bug-inducing or not, focusing on performance bugs.

7 Conclusions

In this paper we present a study to highlight the nature of performance bugs, and
its impact on Just-In-Time defect prediction models. Due to their nature, these
bugs may be scattered across the source code and might be separate from their bug-
inducing locations in the source code. This scattering may cause unreliable data to
be fed into Just-In-Time defect prediction models. We conduct an empirical study
on the results of the SZZ approach used for JIT defect prediction, concentrating on
the use of JIT defect prediction to identify the inducing changes of the performance
related bugs in Cassandra and Hadoop.

We find that in the data fed into the Just-In-Time models, for more than 57%
of fix commits, there are several commits identified as bug-inducing. As shown in
prior studies, it is unlikely that all bug fixing-changes are related to the bug-fix so
we suspect some of the identified bug-inducing changes are unlikely to be correct.
This is likely due to nature of performance bugs, which makes the SZZ approach a
sub-optimal approach for identifying bug-inducing changes for performance bugs.
Through manual analysis of 899 identified bug-inducing commits, we find that
372 of them are correctly identified, while the remaining 528 do not contain bug-
inducing changes accounting for 61.6%, which are fed into the JIT models.

Although the SZZ approach does give incorrect results, due to the small num-
ber of performance bugs in the population of total bugs, this has little impact on
the overall predictive power of the models. Our findings show that there is knowl-
edge present in non-performance bug-inducing commits which was not present in
our sample of truly performance bug-inducing commits. Our truly performance
bug-inducing commits sample is simply too small to contain all of the projects’
knowledge.

Our findings show that it is better for JIT model classification to include
all commit types, possibly due to the small size of the performance bug data
compared to non-performance bug data. Moreover, including performance bug-
inducing commits in the Just-In-Time models’ training data increases the per-
centages of correctly labelled performance bug-inducing commits, indicating that
correct performance bug-inducing data is valuable for predicting on other perfor-
mance bug-inducing commits. For future work, we propose enlarging the amount
of training instances of performance bug-inducing data by transfer learning tech-
niques in order to further improve the JIT models.

Acknowledgements

This research was partially supported by JSPS KAKENHI Japan (Grant Numbers:
21H04877, JP18H03222) and JSPS International Joint Research Program with
SNSF (Project “SENSOR”).

30



References

1. T. Gyimothy, R. Ferenc, and I. Siket, “Empirical validation of object-oriented metrics on
open source software for fault prediction,” IEEE Transactions on Software Engineering,
vol. 31, no. 10, pp. 897–910, Oct 2005.

2. A. E. Hassan, “Predicting faults using the complexity of code changes,” in 2009 IEEE
31st International Conference on Software Engineering, May 2009, pp. 78–88.

3. Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi,
“A large-scale empirical study of just-in-time quality assurance,” IEEE Transactions on
Software Engineering, vol. 39, no. 6, pp. 757–773, June 2013.

4. T. D. LaToza, G. Venolia, and R. DeLine, “Maintaining mental models: A study of de-
veloper work habits,” in Proceedings of the 28th International Conference on Software
Engineering, ser. ICSE ’06. New York, NY, USA: ACM, 2006, pp. 492–501.

5. S. Kim, T. Zimmermann, K. Pan, and E. J. Jr. Whitehead, “Automatic identification of
bug-introducing changes,” in 21st IEEE/ACM International Conference on Automated
Software Engineering (ASE’06), Sep. 2006, pp. 81–90.

6. J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce fixes?” SIGSOFT
Softw. Eng. Notes, vol. 30, no. 4, pp. 1–5, May 2005.

7. D. A. da Costa, S. McIntosh, W. Shang, U. Kulesza, R. Coelho, and A. E. Hassan, “A
framework for evaluating the results of the szz approach for identifying bug-introducing
changes,” IEEE Transactions on Software Engineering, vol. 43, no. 7, pp. 641–657, July
2017.

8. S. Zaman, B. Adams, and A. E. Hassan, “Security versus performance bugs: A case study
on firefox,” in Proceedings of the 8th Working Conference on Mining Software Reposito-
ries, ser. MSR ’11. New York, NY, USA: ACM, 2011, pp. 93–102.

9. M. Hamill and K. Goseva-Popstojanova, “Exploring the missing link: An empirical study
of software fixes,” Softw. Test. Verif. Reliab., vol. 24, no. 8, p. 684–705, Sep. 2014.
[Online]. Available: https://doi.org/10.1002/stvr.1518

10. S. McIntosh and Y. Kamei, “Are fix-inducing changes a moving target? a longitudinal
case study of just-in-time defect prediction,” IEEE Transactions on Software Engineering,
vol. 44, no. 5, pp. 412–428, May 2018.

11. E. Neto, D. Costa, and U. Kulesza, “The impact of refactoring changes on the szz algo-
rithm: An empirical study,” 03 2018.

12. Y. Kamei, E. Shihab, B. Adams, A. E. Hassan, A. Mockus, A. Sinha, and N. Ubayashi, “A
large-scale empirical study of just-in-time quality assurance,” IEEE Trans. Softw. Eng.,
vol. 39, no. 6, pp. 757–773, june 2013.

13. G. Jin, L. Song, X. Shi, J. Scherpelz, and S. Lu, “Understanding and detecting real-world
performance bugs,” SIGPLAN Not., vol. 47, no. 6, pp. 77–88, Jun. 2012.

14. Z. Ding, J. Chen, and W. Shang, “Towards the use of the readily available tests from the
release pipeline as performance tests. are we there yet?” in 42nd International Conference
on Software Engineering, Seoul, South Korea, 2020.

15. S. Zaman, B. Adams, and A. E. Hassan, “A qualitative study on performance bugs,” 2012
9th IEEE Working Conference on Mining Software Repositories (MSR), pp. 199–208,
2012.

16. M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y. Maeda, N. Limsettho, K. Fujino,
H. Hata, A. Ihara, and K. Matsumoto, “A dataset of high impact bugs: Manually-classified
issue reports,” in Proceedings of the 12th Working Conference on Mining Software Repos-
itories, ser. MSR ’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 518–521.

17. A. Radu and S. Nadi, “A dataset of non-functional bugs,” in Proceedings of the 16th
International Conference on Mining Software Repositories, ser. MSR ’19. Piscataway,
NJ, USA: IEEE Press, 2019, pp. 399–403.

18. Apache, “apache/cassandra,” Dec 2019. [Online]. Available: https://github.com/apache/
cassandra

19. “Apache hadoop.” [Online]. Available: https://hadoop.apache.org/
20. M. D. Syer, W. Shang, Z. M. Jiang, and A. E. Hassan, “Continuous validation of

performance test workloads,” Automated Software Engg., vol. 24, no. 1, p. 189–231, Mar.
2017. [Online]. Available: https://doi.org/10.1007/s10515-016-0196-8

21. J. Chen and W. Shang, “An exploratory study of performance regression introducing code
changes,” in 2017 IEEE International Conference on Software Maintenance and Evolution
(ICSME), 2017, pp. 341–352.

31



22. T.-H. Chen, W. Shang, Z. M. Jiang, A. E. Hassan, M. Nasser, and P. Flora, “Detecting
performance anti-patterns for applications developed using object-relational mapping,”
in Proceedings of the 36th International Conference on Software Engineering, ser. ICSE
2014. New York, NY, USA: Association for Computing Machinery, 2014, p. 1001–1012.
[Online]. Available: https://doi.org/10.1145/2568225.2568259

23. C. Rosen, B. Grawi, and E. Shihab, “Commit guru: Analytics and risk prediction of
software commits,” in Proceedings of the 2015 10th Joint Meeting on Foundations of
Software Engineering, ser. ESEC/FSE 2015. New York, NY, USA: ACM, 2015, pp.
966–969. [Online]. Available: http://doi.acm.org/10.1145/2786805.2803183

24. G. Catolino, “Just-in-time bug prediction in mobile applications: The domain matters!”
05 2017.

25. G. Catolino, D. Di Nucci, and F. Ferrucci, “Cross-project just-in-time bug prediction for
mobile apps: An empirical assessment,” in 2019 IEEE/ACM 6th International Conference
on Mobile Software Engineering and Systems (MOBILESoft), 2019, pp. 99–110.

26. S. Tabassum, “An investigation of cross-project learning in online just-in-time software
defect prediction,” 06 2020.

27. M. Kondo, D. German, O. Mizuno, and E. Choi, “The impact of context metrics on just-
in-time defect prediction,” Empirical Software Engineering, vol. 25, 01 2020.

28. M. Nayrolles and A. Hamou-Lhadj, “Clever: Combining code metrics with clone detection
for just-in-time fault prevention and resolution in large industrial projects,” 03 2018.

29. “Correlation (pearson, kendall, spearman).” [Online]. Available: https://www.
statisticssolutions.com/correlation-pearson-kendall-spearman/

30. C. Tantithamthavorn, A. E. Hassan, and K. Matsumoto, “The impact of class rebalancing
techniques on the performance and interpretation of defect prediction models,” IEEE
Transactions on Software Engineering, vol. 46, no. 11, pp. 1200–1219, 2020.

31. A. Agrawal and T. Menzies, “Is ”better data” better than ”better data miners”?
on the benefits of tuning smote for defect prediction,” in Proceedings of the 40th
International Conference on Software Engineering, ser. ICSE ’18. New York, NY,
USA: Association for Computing Machinery, 2018, p. 1050–1061. [Online]. Available:
https://doi.org/10.1145/3180155.3180197

32. “Dmwr.” [Online]. Available: https://www.rdocumentation.org/packages/DMwR/
versions/0.4.1/topics/SMOTE

33. H. Li, W. Shang, Y. Zou, and A. E. Hassan, “Towards just-in-time suggestions for log
changes (journal-first abstract),” in 2018 IEEE 25th International Conference on Software
Analysis, Evolution and Reengineering (SANER), 2018, pp. 467–467.

34. B. Ghotra, S. McIntosh, and A. E. Hassan, “Revisiting the impact of classification tech-
niques on the performance of defect prediction models,” in Proceedings of the 37th Inter-
national Conference on Software Engineering - Volume 1, ser. ICSE ’15. IEEE Press,
2015, p. 789–800.

35. S. Davies, M. Roper, and M. Wood, “Comparing text-based and dependence-based ap-
proaches for determining the origins of bugs,” Journal of Software: Evolution and Process,
vol. 26, 01 2014.

36. M. McHugh, “Interrater reliability: The kappa statistic,” Biochemia medica : časopis
Hrvatskoga društva medicinskih biokemičara / HDMB, vol. 22, pp. 276–82, 10 2012.

37. P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy, Characterizing and Predicting
Which Bugs Get Fixed: An Empirical Study of Microsoft Windows. New York, NY,
USA: Association for Computing Machinery, 2010, p. 495–504. [Online]. Available:
https://doi.org/10.1145/1806799.1806871

38. T. Fawcett, “An introduction to roc analysis,” Pattern Recognition Letters, vol. 27, no. 8,
pp. 861–874, 2006.

39. J. H. McDonald, Handbook of biological statistics. sparky house publishing Baltimore,
MD, 2014, vol. 3, pp. 186–189.

40. S. S. Sawilowsky, “New effect size rules of thumb,” Journal of Modern Applied Statistical
Methods, vol. 8, no. 2, p. 26, 2009.

41. T. Fukushima, Y. Kamei, S. McIntosh, K. Yamashita, and N. Ubayashi, “Studying just-
in-time defect prediction using cross-project models,” Empirical Software Engineering,
vol. 21, 05 2014.

42. A. Nistor, T. Jiang, and L. Tan, “Discovering, reporting, and fixing performance bugs,” in
2013 10th Working Conference on Mining Software Repositories (MSR), May 2013, pp.
237–246.

32



43. C. Williams and J. Spacco, “Szz revisited: Verifying when changes induce fixes,” in Pro-
ceedings of the 2008 Workshop on Defects in Large Software Systems, ser. DEFECTS ’08.
New York, NY, USA: ACM, 2008, pp. 32–36.

44. Jpace, “jpace/diffj.” [Online]. Available: https://github.com/jpace/diffj
45. I. Molyneaux, The Art of Application Performance Testing: Help for Programmers and

Quality Assurance, 1st ed. O’Reilly Media, Inc., 2009.
46. R. E. Bryant and D. R. O’Hallaron, Computer Systems: A Programmer’s Perspective,

3rd ed. Pearson, 2015.
47. J. team, “Eclipse java development tools (jdt).” [Online]. Available: https://www.eclipse.

org/jdt/
48. C. Guindon, “Swt: The standard widget toolkit.” [Online]. Available: https:

//www.eclipse.org/swt/
49. G. Rodrıguez-Perez, M. Nagappan, and G. Robles, “Watch out for extrinsic bugs! a case

study of their impact in just-in-time bug prediction models on the openstack project,”
IEEE Transactions on Software Engineering, May 2020.

50. S. Tsakiltsidis, A. Miranskyy, and E. Mazzawi, “On automatic detection of performance
bugs,” in 2016 IEEE International Symposium on Software Reliability Engineering Work-
shops (ISSREW), 2016, pp. 132–139.

51. Y. Yang, Y. Zhou, J. Liu, Y. Zhao, H. Lu, L. Xu, B. Xu, and H. Leung, “Effort-aware
just-in-time defect prediction: Simple unsupervised models could be better than
supervised models,” in Proceedings of the 2016 24th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE 2016. New York, NY,
USA: Association for Computing Machinery, 2016, p. 157–168. [Online]. Available:
https://doi.org/10.1145/2950290.2950353

52. J. Chen, W. Shang, and E. Shihab, “Perfjit: Test-level just-in-time prediction for perfor-
mance regression introducing commits,” IEEE Transactions on Software Engineering, pp.
1–1, 2020.

33


