Does Shortening the Release Cycle Affect Refactoring
Activities: A Case Study of the JDT Core, Platform
SWT, and UI projects

Olivier Nourry, Yutaro Kashiwa, Yasutaka Kamei, Naoyasu Ubayashi

Principles Of Software engineering and programming Languages Group (POSL),
Kyushu University, Fukuoka, Japan

Abstract

[Context] Several large-scale companies such as Google and Netflix chose
to adopt short release cycles (e.g., rapid releases) in recent years. Although
this allows these companies to provide updates and features faster for their
users, it also causes developers to have less time to dedicate to development
activities other than feature development. [Objective] In this paper, we in-
vestigate how refactoring activities were impacted by the adoption of shorter
releases. [Method] We extract all refactorings applied over a period of two
years during traditional yearly releases and almost two years during shorter
quarterly releases in three Eclipse projects. We then analyze both time pe-
riods’ refactoring activities to understand how refactoring activities can be
impacted by shortening the release cycles. [Results] We observe reduced
refactoring activities in one project and a decrease in more complex refactor-
ing operations after shortening the release cycles. We also find that weekly
efforts dedicated to refactoring activities was lower across all projects after
shortening the release cycles. [Conclusion] Shorter releases may impact
software development tasks such as refactoring in unintended ways. Not ap-
plying specific types of refactoring may also affect the software’s quality in
the long term. Using this case study and past work on shorter releases, po-
tential short release adopters can now better plan their transition to shorter
releases knowing which areas of development may be affected.

Email address: oliviern@posl.ait.kyushu-u.ac.jp, {kashiwa, kamei,
ubayashi}@ait.kyushu-u.ac.jp (Olivier Nourry, Yutaro Kashiwa, Yasutaka Kamei,
Naoyasu Ubayashi)

Preprint submitted to Information and Software Technology July 26, 2021

Keywords: Release Policy Change, Refactoring, Release Engineering

1. Introduction

Refactoring in software systems has been investigated extensively through-
out the years. Multiple aspects such as the impacts on code quality [1] and
testing activities [2] have been investigated in order to determine how im-
portant it is to refactor the code in a software development project. Past
studies [3, 4, 5] have concluded that refactoring is beneficial to a software
development project and that it is worth dedicating some development time
to refactor the code.

Modern-day software companies, however, have started changing the way
they develop software systems. Over the past few years, large companies such
as Google, Facebook, Firefox, and Netflix have all decided to adopt a short
release cycle model for various reasons such as keeping up with customer
expectations or keeping up with competitors [6].

This short release cycle model has been referred to as rapid releases (RR),
or short releases (SR), and the old yearly release model as traditional releases
(TR). Several studies have been conducted in order to better understand the
impacts of shorter releases by comparing various metrics and activities be-
fore and after shortening the release cycles. For example, a previous study [2]
showed that shorter releases’ builds contain more code commits than tradi-
tional releases’ builds. Another study [1] also found that short release cycles
had a significant impact on the number of files being affected per commit.
The code quality, number of bugs, integration, and testing in shorter releases
have also all been subject to investigation in past studies [1, 2, 7] but to the
best of our knowledge, the impacts of shortening the release cycles on refac-
toring activities have not yet been investigated. In this study, we therefore
aim to further contribute to the empirical knowledge related to the impacts
of shortening the release cycles on software development activities.

In this case study, we investigate if shortening the release cycles had
any impacts on refactoring activities in three software development projects.
Due to the possible negative impacts of not refactoring, it is important for
potential short release adopters to be aware of the possible downsides related
to refactoring activities that shorter releases can bring to a project. We
examine four aspects of refactoring activities: the amount of refactoring done,
the efforts devoted to refactoring, the type of refactoring applied in the code,
and the human resources dedicated to refactoring. These aspects allow us to

draw an overall picture of refactoring during short releases and traditional
releases in order to determine if the refactoring activities are impacted after
adopting a shorter release cycle.

Paper Organization: Section 2 introduces previous studies involving
refactoring and short releases. Section 3 describes our dataset selection, its
extraction and the filtering process, and Section 4 presents our results. In
Section 5, we summarize our findings, discuss their implications and address
some of the threats to the validity of this study. We conclude in Section 6
where we briefly summarize our findings and make our final comments on
refactoring and short releases.

2. Background
2.1. Refactoring

Refactoring has been widely defined as changes that improve code qual-

ity but preserve the software system’s external behavior [8]. Thanks to the
improvement of refactoring detection algorithms [9, 10, 11, 12, 13] that au-
tomatically identify refactoring activities from source code histories, many
researchers have conducted empirical studies [3, 14, 15, 16, 17, 18, 19] on
software evolution and software refactoring.
Refactoring and Software Quality. In a previous study [20], Lacerda et
al. performed a systematic literature review and concluded that refactoring
has a strong relationship with code quality attributes such as understand-
ability, reusability, and maintainability. During their literature review, they
also identified that code quality is one of the relationship linking code smells
and refactoring. Code quality is therefore a good representation of how well
refactoring can remove code smells.

While leading a case study [21] on the impacts of refactoring on software
quality and productivity in an agile environment, Moser et al. also found
empirical evidence that refactoring improves code quality factors, reduces
code complexity and coupling, and improves cohesion. Their results also
showed empirical evidence that refactoring increases development productiv-
ity. In another study [22], Moser et al. also proposed a new methodology to
assess if refactoring improves quality. Using their new proposed approach,
they conducted a case study in a near industrial environment and found that
refactoring has a positive effect on reusability and promotes ad-hoc reuse of
object-oriented classes.

Kim et al. [4] found that there is an increase in the number of bug fixes

after API-level refactorings while investigating the role of refactorings in three
evolving open source projects. They also found that less time is required to
fix bugs after API-level refactorings are applied to the code.

While refactoring has many benefits, refactoring code changes carry the
same risks associated with any other codebase change such as the intro-
duction of new defects as shown in a previous study [23] that found that
refactoring can account for a significant part of API breaking changes.
Refactoring automation. To mitigate the risks of introducing new de-
fects, it has been suggested that refactoring tools should be used whenever
possible. Multiple automated tools have been developed over time to ease the
process of refactoring for developers. These tools were designed to help de-
velopers in several ways ranging from automated refactoring suggestion [24],
to automated refactoring validation that checks if a manual refactoring was
applied correctly [25] and all the way to fully automated refactoring applica-
tions [26]. Popular IDEs such as IntelliJ IDEA and Eclipse have also added
refactoring support by adding their own built-in refactoring tools to their
software. These tools generally cover a wide range of refactoring patterns
and can help developers save time when refactoring their code.

Xing and Stroulia [27] studied the proportion of code modifications for
refactoring changes and which types are the most frequent types of refac-
torings being applied in the Eclipse JDT project. They found that about
70% of structural changes may be due to refactorings code changes and that
60% of refactorings can be automatically applied by a refactoring tool if the
refactoring tool can gather the information relevant to the refactoring being
applied.

Although refactoring tools are becoming more commonly used, Silva et
al. [16] found that many developers still do not trust automated refactor-
ing for complex cases or believe that automation does not need to be used
in trivial cases. A previous study led by Brett et al. [28] also found that
refactoring tools themselves can contain multiple bugs. It is therefore very
important that refactoring is done properly in order to avoid introducing
more defects. Because each release is usually longer when using a traditional
release cycle model, the evolution of the software system is well controlled
due to developers planning ahead of time how much time is to be allocated
to each refactoring task. New release methodologies however reduce that
planning time a lot by shortening release cycles [29]. This paper differs from
previous refactoring and software evolution studies by taking into account
this new shorter releases approach to software development.

4

2.2. Short Releases

Many software development projects have been switching from a tradi-
tional release cycle to a shorter release cycle to deliver new features faster
(a few weeks to a few months to ship a major release) rather than providing
them yearly. This satisfies users and also allows developers to receive quick
feedback from users [30]. For instance, the Firefox and Eclipse projects short-
ened the release intervals for major/main releases, respectively. Specifically,
the Firefox project started releasing a product in 6 weeks rather than yearly.
From Eclipse 4.9, the Eclipse project abandoned service releases (i.e., patch
releases) and replaced all the service releases with main releases.

Many studies have examined the impacts of shortening the release cy-

cles on development activities (e.g., testing, bug-fixing, and integrating) to
find that shortening release intervals affects development activities [2, 7, 30,
31, 32, 33, 34, 35]. For bug-fixing activities, the average bug-fixing time is
reduced by adopting shorter releases [31]. As for testing activities, shorter
releases narrow the scope of the tests and increase the number of test execu-
tions [2].
Research motivation. In the field of the consumer market, Tonietto et
al. [36] reported about code behaviour changes when developers are under
time pressure. When time is limited, people tend to perform fewer tasks and
are less likely to complete time-consuming tasks because of the perception of
having less time than they actually have when compared to an unbounded
time [36]. In this way, while having limited time, developers change the
scope of their tasks and the amount of effort put on specific tasks in order
to optimize their activities.

Refactoring, for instance, is not trivial work when it must be completed
in a short amount of time. In fact, past studies have found that certain
types of refactoring can be quite challenging even without time limitations.
For example, Garrido et al. [37] have previously studied the challenges of
refactoring a C program file that uses preprocessor directives. Vassallo et
al. [38] also investigated the advantages and barriers of continuous refactoring
in CI and found out that the main barrier to continuous refactoring was the
lack of time. The same study also states that this is even more true in agile
projects because there is more emphasis on new changes. We use this finding
by Vassallo et al. to motivate our study of the impacts of shorter releases on
refactoring practices.

To the best of our knowledge, our work is the first to examine the impact

I. Project 1l.Data Extraction TR, 111. Filtering
H = commit ID - instance ID
Selection v . g type ~ Commit D
- refactored lines - refactoring type
-instance ID = commit date e/ - ré‘.fzcia.red lines
> “ = ||l -commitID f—| |—»: - committer name ; 4— —_ S —1—p i - commit date
t -refactoring type - changed lines OA - committer name
) -refactored lines ~ parent commit IDs - changed lines
N—— Analyze refactoring "
R—] for each revision Refactoring data merRe’""Ve " Filter and —
—— — ge commits Separate
=
X TR
Co'ile' < commit D
repositories 1] > ||| - commit date —
P id ~ . = committer name
s e, e changed lines
N N - parent commit IDs Refactoring and
Extract T ! change data Datasets
of each revision Change data Release note

Figure 1: An overview of the data extraction procedure

of switching from traditional yearly releases to shorter releases on refactoring
activities. Since refactoring plays a crucial role in software development, this
case study provides further insight for projects planning to transition to
shorter releases. In this study, we focus on the process change and compare
the amounts, efforts, contents, and human resources of refactorings between
traditional releases and shorter releases in order to investigate if shortening
the release cycles had any impacts on refactoring activities.

3. Study Design

This section explains the design of our case study in order to address
our research questions introduced in Section 3.1. To measure the impacts
of switching to a shorter release cycle on refactoring activities, we compare
two datasets derived from traditional yearly releases and shorter quarterly
releases. Figure 1 depicts an overview of the data extraction process. We first
apply a refactoring analysis tool to each revision in code repositories. Next,
we measure the relevant metrics and merge them with the outputs of the
refactoring tool. Finally, the merged outputs are divided into two datasets
based on whether the commit date is before or after the cycle change date.

3.1. Research Questions

In this paper, we structure our study around the following four research
questions.

RQq: Do developers still refactor as much? (Amount)

RQ)s: Are refactoring efforts affected by shorter releases? (Effort)

R@Q3: Do shorter releases impact what type of refactoring is applied to the
code? (Contents)

RQ4: Does shortening the release cycles affect the human resources dedi-
cated to refactoring activities and their refactoring workload? (Human-
resource)

In previous studies [1, 2, 7] that investigate the impacts of shorter releases
on various development tasks, three main aspects have been used to measure
the impacts: the frequency of the task (RQ1), the characteristics of the task
(RQ3) and the human resources dedicated to the task (RQ4). In addition
to investigating these three main aspects, in RQ2, we diverge from the main
aspects used by previous studies in order to investigate the impacts of shorter
releases on refactoring efforts by measuring the amplitude of the refactoring
changes. In this paper, we design our research questions in a way that will
help paint a broad picture of what impacts, if any, switching to shorter
releases has on refactoring activities. We also try to align our analysis with
previous studies so that we can compare our results afterwards. We compare
the results of our empirical study with previous studies in Table 11 in the
discussion section to get an overall view of the possible impacts of shortening
the releases on development activities.

3.2. Project Selection

To address our research questions, we perform a case study analyzing
refactoring in traditional yearly releases and shorter quarterly releases. The
projects used in this study were picked because they satisfied the following
three criteria:

Criterion;: Experience in shortening release cycles. We need to
compare the amount, effort, contents and human-resource of refactoring
between traditional and shorter releases. Therefore, our studied systems
must have development experience following both a traditional release
cycle and a shorter release cycle.

Criteriony: Java System. Since we need to analyze refactoring activities,
we use a state of the art refactoring analysis tool that can detect various
refactoring types (See Section 3.3). However, this tool has the limitation
of only being able to analyze Java code. Thus, our studied systems must
be written in Java.

Criterions: Large-size repositories In order to acquire reliable results,
we need many instances of refactoring. Our studied systems must have at

least 1,000 commits during the traditional releases period and a significant
number of commits during the shorter releases period in their master
branch.

Because short release cycles are not a widely used approach yet in open-
source software development, the number of open source projects that have
developed for a significant period of time following both yearly traditional
releases and shorter releases is limited. Considering this limiting factor and
our three selection criteria, we decided to pick three Java projects from the
Eclipse Foundation which are known to be participating in the simultane-
ous release initiative. These projects are the JDT.CORE, PLATFORM.UI, and
PLATFORM.SWT projects, which are mature (over 10 years of development)
and still active.

The Eclipse Foundation, which owns these projects, follows a simultane-
ous release scheme to deliver products in sync with all the projects in Eclipse.
Figure 2 depicts the transition of Eclipse’s release cycle. So far, the release
cycle has undergone changes twice before the adoption of their current release
model. Until Eclipse version 4.5, Eclipse delivered yearly new features and
bug-fix in the main release in June and then provided patch releases twice in
September and February in order to fix bugs found in the main release. In
Eclipse 4.6, they added a new patch release (named service release) in De-
cember and moved the February patch release to March making all releases
released quarterly. Furthermore, from Eclipse 4.8, a shorter release cycle was
adopted which abolished patch releases and made every quarterly release into
a main release.

3.3. Data Extraction

In order to mine the refactoring patterns, we used the state-of-the-art
refactoring analysis tool developed by Tsantalis et al. called Refactoring-
Miner [10]. RefactoringMiner can detect up to 40 different types of refac-
toring patterns (as of February 1, 2020)*. We used this tool due to its state
of the art performance (high precision and high recall [10]) as well as the
large diversity of patterns that the tool can detect. The tool can detect sim-
ple patterns such as renaming and moving pieces of code or pushing down
and pulling up methods. It is also able to detect more time consuming or

"'We used build “8ccec9050ad6dccdd575cced713£5283d5988c5d” since RefactoringMiner
is still being developed.

@ main release added one adopted quarterly

O service release service release main releases
v V¥ our dataset
4.4 4.5 4.6 4.7 48 410 412
' 49 411 441

Figure 2: Range of our dataset

complex patterns such as extracting a superclass or merge and split types
of refactorings such as split parameter or merge attribute. After cloning the
repositories of the studied projects, we ran the RefactoringMiner tool on ev-
ery commit. The output of each commit contains the information of multiple
refactoring instances, including the refactoring types and the refactored lines
in the source code.

Additionally, we extracted the basic information of each commit such as
commit date, parent commit ids, changed lines, and committer name. We
used the commit date and the parent commit ids for our filtering process
and to create our datasets. Then, we utilized the changed lines and the
committer name for RQ2 and RQ4, respectively. Finally, we merged the
basic information with the output of the RefactoringMiner, based on the
commit id.

3.4. Filtering

Merge commits. Before making datasets, we need to remove commits
with duplicated refactoring instances. Code repositories contain merge com-
mits, which will cause refactoring instances to be redundantly detected even
though the same snippet has previously been marked as refactored in the par-
ent commits. Therefore, we eliminate commits with multiple parent commits
from our dataset.

Commits during early development periods. Since the goal of this
study is to find the impacts of shortening the release cycle, in order to have
a fair comparison between the traditional releases data and short releases
data, we selected a subset of the traditional releases data that was as close
as possible to the switch to shorter releases. Using this subset, we can ensure
that we are not comparing early development commits and contributions that
are aimed at developing the core of the application with recent contributions

Table 1: Summary of the dataset

Project Release | Commits Refactoring Refacto?ing % RefactQIing
Instances Commits Commits
jdt.core TR 1,306 3,435 354 27.10%
‘ SR 618 816 146 23.60%
platform swt TR 1,877 3,466 168 9.00%
) SR 1,243 1,409 115 9.30%
platform.ui TR 1,475 1,914 270 18.30%
SR 1,340 3,182 224 16.70%

aimed at software maintenance and update [1]. Thus, we do not use the data
prior to Eclipse 4.6 (June 22nd, 2016). We would like to note that the yearly
release cycle (main release) was broken on Eclipse 4.8 (June 27th, 2018) where
quarterly releases were adopted (See Figure 2). All commits authored prior to
June 27th, 2018 (Eclipse 4.8) were categorized as traditional release commits
and all commits done on June 27th, 2018, and after were categorized as short
release commits. Although the release periods have a different length, our
data is normalized so that our results are not affected by it. In RQ1 and
RQ2, we compare weekly median data to normalize between the two release
periods, in RQ3 we normalize using a ranking-based approach, and finally in
RQ4 we use percentages and medians to normalize our data.

The main idea behind this choice is that the project would have the
same maturity and frequency of code contribution from the contributors if
no release cycle change happened. Taking a subset that was too early in the
project’s life would result in comparing traditional releases commits aimed
at developing the core of the application against shorter releases commits
which are more oriented towards maintenance and feature additions since
the project is much older at that point.

Dataset Summary: The final dataset, as shown in Table 1 is made
of traditional releases data and short releases data extending over a similar
length of time. Henceforth, traditional releases refer to the time period be-
tween July 22nd, 2016, and June 27th, 2018, and short releases refer to the
time period after June 27th, 2018.

4. Case Study Results
4.1. (RQ1) Do Developers Still Refactor as Much?

Motivation. Due to the shorter releases, developers do not have as much
time to dedicate to tasks not related to feature development and maintenance

10

such as testing [39, 40, 41, 42] or refactoring. For example, Vassallo et al. [38]
found that lack of time is the main barrier to refactoring while investigating
continuous refactoring in CI. We therefore investigate if adopting shorter
release cycles affects the overall project’s refactoring activity by comparing
how much refactoring was being done during both release periods.
Approach. Refactoring is not usually done as an everyday task but rather
when it is needed to implement new features or when the code becomes
unreadable [18]. For these reasons, we decided to aggregate our data to
study refactoring activity on a weekly basis.

For RQ1, we focus our results around the median weekly values to com-
pare the refactoring done during the traditional releases period and the
shorter releases period. To extract the overall refactoring activity in our
chosen projects, we use the following two metrics:

Refactoring Instances: We use refactoring instances as our main metric to
see exactly how much refactoring was applied to the code during each
period. The number of instances directly reflects how many times the
code was changed for refactoring purposes.

Refactoring Commits: We use refactoring commits as a secondary metric
to study refactoring activities. The number of refactoring commits gives
us an insight as to how often the code is refactored.

We start our investigation by counting the number of refactoring instances
per week in each project and extracting the weekly median number of refac-
toring instances. We then compare the median values between traditional
releases and short releases to see if shorter releases impacted how much refac-
toring is applied to the code. We then proceed to look at refactoring com-
mits to see if there is more weekly refactoring activities after shortening the
releases. We extract the weekly median number of commits during the tradi-
tional releases period and the shorter releases period and then compare the
weekly median percentage of refactoring commits during both periods.

We finally use a Mann-Whitney test for statistical tests and Cliff’s delta
for effect size, which are non-parametric, to verify if there is a statistically
significant difference in the number of refactoring instances and refactoring
commits between the traditional releases and the shorter releases. We select
these non-parametric tests because refactoring activities sometimes show out-
liers and are not assured to follow a normal distribution.

11

Findings 1. We observe a decreased amount of refactoring with a
lower number of refactoring instances applied in the JDT.CORE
project after shortening the release cycle

As shown in Table 2, we find that the weekly median number of refac-
toring instances is very similar during both the traditional releases and the
shortened releases for the two platform projects. The JDT.CORE project’s
median refactoring instances per week, however, is twice as much during the
traditional releases period than the short releases period. Although both the
platform projects show a small increase in the median number of weekly refac-
toring instances, a Mann-Whitney test on the weekly number of instances for
each project confirms that out of the three projects, the JDT.CORE project
is the only one showing a statistically significant difference in the number of
refactoring instances per week (p-value < 0.01). It is also the only project
with a non-negligible effect size for the number of refactoring instances per
week. The two platform projects were found to have no statistically signifi-
cant difference in the weekly number of instances.

Findings 2. We find a decrease in refactoring activities with a lower
number of weekly refactoring commits in the JDT.CORE project
after adopting shorter releases.

The refactoring commits data shows less of a difference than the refactor-
ing instances data when looking at the weekly median number of refactoring
commits. Out of the three projects, we find that only the JDT.CORE project
has a difference in the weekly median number of refactoring commits. We
however find that this measure does not tell the whole story; when looking
at the percentage of weekly commits that contain refactoring changes in Ta-
ble 2, we find that there was an overall decrease in median percentage of
refactoring commits of almost 6% in the JDT.CORE project after adopting
shorter releases. Although the decrease is much smaller than the one found
in the JDT.CORE project, both platform projects also show a decrease in the
median percentage of refactoring commits.

Using a Mann-Whitney test and Cliff’s delta, we find that our results
remain consistent with our previous observation; only the JDT.CORE project
has a statistically significant difference in weekly refactoring commits and a
non-negligible effect size. The PLATFORM.SWT and PLATFORM.UI projects do
not show any statistically significant difference in the number of refactoring
commits between the traditional releases and the shorter releases.

12

Table 2: Weekly refactoring activities of each project during TR and SR

Project Release 'Refactoring instances ' Refacjcoring commits

Median # SS ES Median # | Median % SS ES
ons | T8 [W3 | 00 gy | 30| B 02 g
IR AT
ot | T | 80| AR [| 30| el | 0 oo

*S8S: statistical significance ES: effect size

From our investigation, we conclude that adopting shorter releases may
have affected the amount of refactoring done and the refactoring activ-
ities of the JDT.CORE project. We found no clear positive or negative
impacts of shortening the release cycle in the platform projects.

4.2. (RQ2) Are Refactoring Efforts Affected by Shorter Releases?

Motivation. In some cases, we find commits with multiple refactoring in-
stances affecting only a few lines of code. In other cases, we find single
commits with only one instance that required changing hundreds of lines of
code. Because of these different cases, we cannot determine how much effort
is put into refactoring using only the number of refactoring commits and
instances.

Since past studies have found that refactoring is more often done manually

than using refactoring tools [18, 19, 16], we need to take into account that
some refactorings require significantly more time and code changes while
others can be done very quickly and easily. In this RQ, we aim to find out
how much refactoring efforts developers dedicate to refactoring by comparing
the refactoring code churn of refactoring commits during both the traditional
releases and the shorter releases.
Approach. Because code churn has been used several times as a proxy
measure of effort or as part of a subset of multiple metrics used to measure
effort in past studies [43, 44, 45|, we decided to use the refactoring code
churn as our metric to estimate how much effort is put by developers into
refactoring during the yearly releases and the quarterly releases.

The first thing we did was to aggregate all files that had been refactored
at least once. We then looked at the Git history to extract every code change

13

and code churn from this subset of files. For every refactoring instance in
our dataset, we used the output of the RefactoringMiner to find the specific
source code lines involved with refactoring.

In some cases such as refactorings that move source code folders, we
found that the RefactoringMiner associated some code changes with a spe-
cific refactoring instance when the changes were actually caused by a different
refactoring instance. This meant that some lines of code involved with refac-
toring were counted twice when summing up code churn for all the refactoring
instances. To avoid counting the lines of code multiple times for the same
code changes, we compared the code change history with the lines flagged by
the RefactoringMiner to make sure each line was only counted once.

To calculate the refactoring code churn for a specific file, we therefore
compared the code change history of the file with the source code lines that
were flagged by the RefactoringMiner as being involved with refactoring. We
discarded all code changes that were not directly caused by refactoring in
order to only keep the history of refactoring code changes for that file. We
repeated this process for every file in our subset to get our final dataset for
RQ2.

After extracting every file’s individual refactoring code churn, we aggre-
gated our data by project in order to measure the change in refactoring effort
on a project basis. We then calculated the total refactoring churn involved
during the traditional releases and the shortened releases for each project.
Similarly to our approach in RQ1, we then split our data on a weekly basis.
We use the median of weekly refactoring code churn to get an overview of
the difference in refactoring efforts over time for each project. We then look
at the weekly refactoring code churn distribution to see exactly how refac-
toring efforts changed between the yearly releases and the quarterly releases
for each project.

Although multiple studies [16, 18, 19] find that most refactoring is being
done manually, some of these studies also find that a small subset of patterns
associated with “Renaming” types of refactoring are more often applied using
tools than manually. Due to the high likelihood of tool usage, we excluded
“Renaming” types of refactoring from RQ2’s analysis.

Findings 3. The median weekly refactoring churn of the JDT.
CORE project shows a statistically significant difference between
the traditional releases and the shorter releases. We proceed to look at
the weekly data starting with the weekly median refactoring churn as shown
in Table 3. Surprisingly, we find that the highest gap in median weekly refac-

14

Table 3: Refactoring Churn in LoC during TR and SR

. Total Refactoring | Weekly Refactoring
Project litaless Churn Churn Median
idt.core TR 18,498 46.5

SR 10,973 20.5
platform.swt TR 35,131 1
SR 4,993 5.5
platform.ui TR 6,207 26
SR 45,657 20.5

toring, with more than double the weekly refactoring churn during traditional
releases, is from the JDT.CORE project which had the lowest difference in to-
tal refactoring churn. The PLATFORM.SWT shows a small decrease in weekly
refactoring churn median and the PLATFORM.UI project shows no impact at
all.

A Mann-Whitney test on the weekly refactoring code churn confirms our
findings by revealing no statistically significant difference in the two platform
projects. The JDT.CORE project, unlike the platform projects, was found to
have a statistically significant difference in weekly refactoring churn.

From our investigation, we conclude that adopting shorter releases may
have affected the weekly amount of efforts dedicated to refactoring in
the JDT.CORE project. While we also notice an overall downward
trend of refactoring efforts during the shorter releases in the platform
projects, the observed decrease in refactoring efforts was not as signif-
icant in the platform projects as it was in the JDT.CORE project.

4.3. (RQ3) Do Shorter Releases Impact What Type of Refactoring is Applied
to the Code?

Motivation. Past studies have suggested that testing activities are affected
by time constraints [39, 40, 41, 42]. Because developers must follow stricter
time constraints during the quarterly releases, we investigate if the type of
refactorings applied is also affected by the new time constraints. For exam-
ple, it is possible that only small and simple refactorings such as renaming
would be applied; leaving large refactorings that change the structure of the
code on the side due to the lack of time. In this section, we look at the

15

type of refactorings being done during the traditional yearly releases and the
quarterly releases to see if the shorter releases allow developers to still take
care of all types of refactorings after shortening the release cycle.

In RQ3, we conduct two analyses (Section 4.3.1 and 4.3.2) to evaluate
which refactoring types are the most common. We first start with a fine-
grain analysis between yearly releases and quarterly releases based on the
refactoring patterns individually. We then conduct a coarse-grain analysis by
categorizing the refactoring patterns into distinct categories and analyzing
the variation of these categories between the traditional releases and the
shorter releases.

4.8.1. Refactoring pattern analysis (Fine-granularity)

Approach. Previous work [46] found that the number of commits is an
accurate measure to estimate workload. Therefore, to get a general idea of
which patterns were the most often applied in each project, we first examined
how many commits for each refactoring pattern there are in all three projects
during both time periods. To better visualize the variation in popularity for
each refactoring pattern, we ranked every pattern during both time periods
based on the number of commits that implemented them. This allows us to
normalize the number of commits between the traditional releases and the
shorter releases. Because we are not interested in the amount of refactoring
done but rather the type of refactoring being done in RQ3, using the ranks
to compare between both time periods allows us to abstract how much refac-
toring is being done and focus exclusively on which refactoring types are the
most common during each release period. Lower ranks represent patterns
that are frequently applied to the code and high ranks represent patterns
that are not often applied to the code.

To see if the same patterns tend to have a high frequency of application
during both time periods or if the new release model affected which refactor-
ing patterns are being applied by the developers, we then selected the top 10
refactoring patterns with the most commits in traditional releases and the
top 10 refactoring patterns with the most commits in the shorter releases
respectively. To see which patterns were the most affected by the adoption
of shorter releases, we also calculated the variation in ranking (ranking A)
of each refactoring pattern from our top 10 list of patterns with the highest
number of commits.

Pattern Ranking: Each refactoring pattern is assigned a rank for the yearly

16

jdt.core project platform.swt project platform.ui project

Extract Method - E=— Extract Method- I Change Variable Type- [
Rename Method - [Rename Method- — Change Attribute Type- [T ey
Change Variable Type - [——— Rename Variable - [Rename Variable - [T —
Extract Variable - [— Rename Parameter- [Extract Variable - [—
Chan o ame Varane) __-_ Extract Variable- [Extract Method - =
Chan"‘”ge ribute Type - Change Variable Type- " Change Parameter Type - [
ge Parameter Type - [— chm 1
ge Parameter Type- .. Change Return Type- [IREE_—_—.
Change Return Type - [Ife—— Ch R Type- — g yp:
Rename Attribute - NS iange Return Type: Rename Method - [
Rename Parameter - I M SR Rename Attribute- e W SR Rename Attribute - [W SR
Extract And Move Method - BF== TR Change Atribute Type . I, B TR Rename Parameter- [B TR
c Inline Method - ™= ¢ ExtractAnd Move Method I c Move Source Folder- [l
g Move Method - = g Inline Variable- EF——— g Move Class- B
= Parameterize Variable- il] Inline Method- [=4 Move Attribute- B
aQ Move Attribute- ™= o Parameterize Variable- ™ a
Inline Method- [
=2 Pull Up Methos =2 Move Attribute- [l =
2 P 5 < Rename Class~ [
= Inline Variabl ‘S Replace Variable With Attribute- Bl = hod- B
] Extract Class- B® £ Rename Class- S Move Method-
3] 5] 3] Move And Rename Class- [l
8 Pull Up Attribute- == <4 Push Down Method- == 8
T Rename Class- ™ ‘S Pull Up Attribute- [l ‘© Replace Variable With Attribute-
@ Move Clas: o« Move Source Folder- B @ Inline Variable- Il
Extract Superclas: Move Method- [Extract Attribute- i
Push Down Methot Push Down Attribute [Parameterize Variable - b
ush Down Attribut Move Class- |l Extract And Move Method- [
Replace Variable With Attribute y
Extract Subclass- |y Extract Subclass [l Euract Class !
Extract Attribute- | Extract Attribute- fly Pull Up Method -
Extract interface 1 Move And Rename Class- | Extract Superclass -k
Move And Rename Class- b Merge Variable- || Spiit Attribute- |
Move Source Folder- | Extract Superclass- | Push Down Method- |
Move And Rename Attribute- | Extract Interface- | Move And Rename Attribute- |
Merge Parameter- | Extract Class- | Extract Interface- |
0 25 50 75 100 0 10 20 30 0 20 40 60 80
Number of commits Number of commits Number of commits

Figure 3: Number of refactoring commits per pattern during both release periods

releases period and the quarterly releases period for each project based on
how many commits implement them. Common refactoring patterns are
assigned low ranking values and uncommon patterns are assigned high
ranking values.

Ranking A: We calculate the ranking A for each refactoring pattern by
calculating the variation in ranking between yearly releases and quar-
terly releases. A positive A indicates that a pattern’s rank increased and
therefore became less common during the shorter releases and a negative
delta indicates that a refactoring pattern’s rank decreased and therefore
became more common during the shorter releases.

Findings 4. We find that most refactoring patterns that were com-
mon during traditional releases were also common after shortening
the release cycles. To get a general view of which patterns were popular
during both time periods, we first extracted how many commits implement
each refactoring pattern for each project during the traditional releases and
the shorter releases. From Figure 3, we notice that the distribution of refac-
toring patterns that were popular in each project is similar during both time
periods. Looking at the refactoring patterns with the most commits for each
project, we also find that the three projects share a lot of similarities with
patterns such as Extract Method being applied frequently during both the
traditional releases and the shortened releases in all three projects.

From the ranking assignment process previously described, we calculate

17

the rank of each refactoring pattern and find that the most common refactor-
ing patterns remain very similar even after shortening the releases. As shown
in Table 4, 9 of the top 10 refactoring patterns are common in both the tra-
ditional releases and the shorter releases in the JDT.CORE project. From
Table 5, we find that 8 out of 10 patterns are common in both time periods
in the PLATFORM.SWT project and from Table 6, we find that all 10 patterns
with the highest ranks during the traditional releases remain the same during
the shorter releases in the PLATFORM.UI project. From these results, we find
that most patterns that were popular during traditional releases remained
popular after adopting shorter releases.

Looking at the ranking A of each pattern in Table 4, we notice that
the Change refactoring patterns have significantly gone down in popularity
during the shorter releases in the JDT.CORE project. We also observe that
the Rename refactoring patterns have been oppositely affected and became
much more common during the shorter release cycle. From Table 5, we find
similar results as in the JDT.CORE project with Change refactoring patterns
decreasing in popularity and Rename refactoring patterns increasing in pop-
ularity in the PLATFORM.SWT project. These results align with a previous
study’s findings [47] where they observed that Eclipse puts a heavy empha-
sis on backward compatibility. It is therefore not surprising that developers
would be reluctant to perform refactorings that can affect the API such as
changing method signatures.

While these results seem to confirm our initial assumption that simpler
refactorings such as renaming are increasing in popularity due to the shorter
releases, from Table 6 we find that the patterns in the PLATFORM.UI project
were affected differently than in the JDT.CORE project: the Fxtract refac-
torings had a small decrease in popularity, the Rename refactorings saw no
change at all and the Change refactorings saw a small increase in popular-
ity. The PLATFORM.UT results therefore suggest that developers have started
modifying their refactoring behaviors after adopting shorter releases by tak-
ing advantage of the more frequent major releases and applying refactorings
that modify the API. Since we cannot draw a clear conclusion from our fine-
grain analysis, we proceed with our coarse-grain analysis.

18

Table 4: Top 10 most common refactoring patterns in the JDT.CORE project during each
release period
Pattern Ranking in TR Ranking in SR Ranking A

Change Return Type (M) 6 15 +9
Change Variable Type (L) 2 6 +4
Change Attribute Type (M) 5 7 +2
Extract Method (M) 1 1 +0
Change Parameter Type (M) 8 8 +0
Rename Parameter (H) 9 9 +0
Extract Variable (L) 3 3 +0
Rename Method (H) 4 2 -2
Rename Variable (L) 7 4 -3
Rename Attribute (H) 10 5 -5
Parameterize Variable (H) 15 10 -5

(L): Low level refactoring, (M): Medium level refactoring, (H): High level refactoring

4.8.2. Categorization analysis (Coarse granularity)

Approach. To investigate the impacts of shorter releases on the different
types of refactorings being applied rather than the impacts on each refactor-
ing pattern’s individual frequency, we proceeded to aggregate the refactoring
patterns by categorizing them. We were then able to abstract our analy-
sis and use our refactoring categories to continue our comparison between
traditional releases and shorter releases.

We decided to use Murphy et al.’s categorization model [19] because it is
less likely to be affected by subjectivity than estimating the complexity of a
specific code change.

Following the categorization criteria given in the original paper [19], the
patterns detected by the RefactoringMiner were categorized into three dif-
ferent categories: high-level refactorings which only affect the signatures of
classes methods and field, medium-level refactorings which change the sig-
nature of classes, methods, and field while also significantly changing blocks
of code and finally low-level refactorings which only affect blocks of code. In
short, medium-level refactorings require to change the code in several places,
unlike high-level and low-level refactorings that only target a specific sec-
tion of the code and therefore are less likely to affect the structure of the
codebase. Based on these characteristics, we hypothesize that the frequency
of medium-level refactorings should be reduced during the shorter releases
due to the combination of the higher complexity involved with changing the
structure of the code and shorter release time.

19

Table 5: Top 10 most common refactoring patterns in the PLATFORM.SWT project
during each release period

Pattern Ranking in TR Ranking in SR Ranking A
Inline Variable (L) 9 17 +8
Change Variable Type (L) 4 8 +4
Change Return Type (M) 7 11 +4
Extract Method (M) 1 2 +1
Rename Variable (L) 2 3 +1
Extract Variable (L) 5 5 +0
Change Attribute Type (M) 10 10 +0
Rename Method (H) 3 1 -2
Rename Parameter (H) 6 4 -2
Change Parameter Type (M) 8 6 -2
Extract And Move Method (M) 11 9 -2

Rename Attribute (H) 12 7 -5
(L): Low level refactoring, (M): Medium level refactoring, (H): High level refactoring

Table 6: Top 10 most common refactoring patterns in the PLATFORM.UI project during
each release period
Pattern Ranking in TR Ranking in SR Ranking A

Extract Variable (L) 2 6 +4
Extract Method (M) 5 7 +2
Rename Variable (L) 3 4 +1
Rename Method (H) 8 8 +0
Rename Attribute (H) 9 9 +0
Rename Parameter (H) 10 10 +0
Change Variable Type (L) 1 1 +0
Change Attribute Type (M) 4 2 -2

Change Return Type (M) 7 5 -2

Change Parameter Type (M) 6 3 -3

(L): Low level refactoring, (M): Medium level refactoring, (H): High level refactoring

To categorize the refactoring patterns that were not previously catego-
rized in Murphy et al.’s previous study [19], two authors separately classified
each pattern detected by the RefactoringMiner. The two authors then com-
bined the result of their individual classification to get the final classification
for each pattern. For the cases where there were conflicts, the two authors
discussed and agreed on the best categorization based on the criteria defined
in Murphy et al.’s previous study [19]. After categorizing every refactoring
pattern, we started to investigate if the type of refactorings applied changed
between the traditional releases and the shorter releases.

We started by investigating which refactoring category (high-level, medium-
level, low-level) was the most impacted by the change in release cycle. We

20

first looked at how many patterns in each refactoring category became more
common after shortening the release cycles (ranking A < 0), how many pat-
terns became less common (ranking A > 0) and how many patterns were not
affected by the change (ranking A = 0). We continued our investigation by
looking at the overall variation in ranking of each refactoring category. To
do so, we aggregated every refactoring pattern according to the refactoring
category it belonged to. We then summed up the ranking A to see which
type of refactoring (high-level, medium-level, low-level) showed the largest
increase or decrease in popularity during both time periods.

Refactoring category A: To determine if a refactoring category became more
or less common, we sum the ranking A for each pattern belonging to that
category.

Findings 5. We find that medium-level refactoring patterns became
less popular in the JDT.CORE project after shortening the release
cycles.

From traditional yearly releases to quarterly releases, the JDT.CORE project
has one less medium-level refactoring and one more high-level refactoring in
its top 10 as shown in Table 4. From Table 5, we find that the PLAT-
FORM.SWT project has one more low-level refactoring and one less high-level
refactoring in its top 10 and the PLATFORM.UI project shows no difference
between both periods as shown in Table 6. If we look at the top end of
the rankings, however, we notice that in both the JDT.CORE project and the
PLATFORM.SWT project, medium-level refactorings are less common than
high-level and low-level refactorings during the shorter releases. This de-
crease in medium-level refactorings indicate that developers may not be as
inclined to apply more complex refactorings during shorter releases because
medium-level refactorings require to change the code in several places [19].

From the ranking A shown in Table 7, we find that in both the JDT.CORE
project and the PLATFORM.SWT project, high-level refactorings got signifi-
cantly more common after adopting shorter releases. The main difference
between the two project, however, is that in the JDT.CORE project, medium-
level refactorings became much less common whereas in the PLATFORM.SWT
project, low-level refactorings became less common. Surprisingly, the PLAT-
FORM.UI shows a different trend from the JDT.CORE project and the PLAT-
FORM.SWT by having an increased amount of medium-level refactoring dur-
ing the shorter releases. In fact, the PLATFORM.UI project is also the project
with the smallest degree of variation in terms of rankings after adopting

21

Table 7: Ranking and workload variation between TR and SR

R eeisoning jdt.core | platform.swt | platform.ui
type
Low-level Sum of A +1 +13 +5
Medium-level | Sum of A +11 +1 -5
High-level | Sum of A -12 -9 +0

shorter releases on top of being the only project that increased medium-level
refactorings. From these results, it appears that only the JDT.CORE project
satisfies our initial hypothesis that medium-level refactorings should see a
significant decrease during the shorter releases. Our results also suggest that
the PLATFORM.UI is the only one out of the three project that was able to
keep up with its refactoring workload in all three categories of refactorings
even after shortening the release cycle.

We therefore confirm our hypothesis and find that developers do not

apply complex refactorings as much after shortening the releases in the
JDT.CORE project. Although the PLATFORM.SWT project also shows a de-
crease in medium-level refactoring, the decrease is not significant enough
to confirm our initial hypothesis. The PLATFORM.UI shows opposite results
with medium-level refactoring becoming more common during the shorter
releases.
Findings 6. We find that patterns that are commonly applied using
refactoring tools have greatly increased in popularity during the
shorter releases. If we take a look at ‘Renaming’ refactoring patterns which
are commonly implemented using refactoring tools [16, 18], we also find that
these types of pattern became way more common during the shorter releases
in two of our three projects. Using the data from Tables 4, 5, and 6, we sum
the A values of ‘Renaming’ refactoring patterns in each project and find a
clear increase in popularity in the JDT.CORE project and the PLATFORM.SWT
with a sum of A of -10 and -8 respectively. The PLATFORM.UTI is the only
project where we find a small decrease in popularity with a sum of A of +1.
These results indicate that shorter releases may increase the use of refactoring
tools by developers.

22

We find that developers do not apply complex refactorings as much
during the shorter releases in the JDT.CORE project. We also find
that patterns that are commonly implemented using refactoring tools
became more common in two of the three analyzed projects after short-
ening the releases.

4.4. (RQ4) Does Shortening the Releases Affect the Human Resources Ded-
icated to Refactoring Activities and their Refactoring Workload?

Motivation. In this RQ, we aim to determine how human resources were
affected after switching to shorter release cycles. A previous study about the
impacts of shorter releases on testing found that switching to shorter releases
led to a higher workload for testers due to fewer testers being involved with
testing activities [2]. Since releases are shorter and development teams have
to keep up with the development of new features, we want to see if the number
of developers that refactor is affected when adopting shorter releases.
Approach. For the first part, we investigated if the number of developers
that refactored was impacted by adopting shorter releases. We first extract
the total number of developers, the number of developers that refactored
during the traditional releases and the number of developers that refactored
during the shorter releases. We then calculated the percentage of developers
that refactored during each time period and compared the results between
both periods. To see if shorter releases promote developer involvement with
refactoring activities, we then extracted how many developers refactored dur-
ing both periods and how many developers started refactoring only after
shortening the release cycles.

For the second part, we investigated how the refactoring contribution of
the developers was affected by adopting shorter releases. Using refactoring
instances as our metric, we measured every developer’s overall contribution
to refactoring activities. We first extracted the median number of refactoring
instances per developer. Then, to understand how the refactoring workload is
shared among developers that refactor, we looked at the median percentage of
refactoring instances contribution per developer during both release periods.
Findings 7. We find no clear impacts of adopting shorter releases
on the number of developers that refactor.

23

Table 8: Developer resources during TR and SR

Project Release | # Dev | # Refactoring Dev | % Refactoring Dev
TR 43 20 46.51%

dteoe LSR om0 | 4000%
TR A SR - 8 -
TR A SR - 6 -
TR 55 29 52.73%

attommewt | SE a5 B 4000%
TR A SR - 13 -
TRANSR - 5 -
TR 100 46 46.00%

tformai | SR\ a0s|) 5238%
TR A SR - 16 -
TR A SR - 39 -

From our initial data extraction, as shown in Table 8, we find that two out
of the three projects have a higher number of refactoring developers as well
as a higher percentage of developers that refactor during traditional releases.
We also notice that for the same two projects, namely the JDT.CORE and
PLATFORM.SWT projects, most of the developers that are refactoring during
the shorter releases were already refactoring during traditional releases. The
PLATFORM.UI project is the only project of the three that differs. In fact, not
only is there a higher percentage of developers that refactor during the shorter
releases but most of the developers refactoring during that time period did
not refactor during traditional releases.

Because the PLATFORM.UI project shows the exact opposite trend when
compared with the JDT.CORE project and the PLATFORM.SWT project, we
cannot conclude what impacts shortening the release cycles had on the num-
ber of developers that refactor. From our observations, a project can be posi-
tively affected by making more developers involved with refactoring as shown
with the PLATFORM.UI project, or negatively impacted by having less devel-
opers refactor the code as shown with the JDT.CORE and PLATFORM.SWT
projects.

Findings 8. The refactoring workload is more evenly distributed
among developers that refactor during the shorter releases.

We investigate how the contribution of refactoring developers is affected
by the change in release cycle. Using the median number of refactoring
instances as our metric, we find that all three projects have less than half the
number of refactoring instances per developer during the shorter releases as

24

Table 9: Refactoring workload contribution of developers during TR and SR
Median # | Median %

Project Release | refactoring | refactoring
instances instances

idt.core TR 28.0 0.82%
’ SR 5.0 3.42%
platform.swt TR w0 0.20%
SR 3.5 3.04%

platform.ui TR 25 0.29%
SR 2.0 0.89%

shown in Table 9. In the case of the JDT.CORE project, we observe almost
six times less refactoring instances per developer. These results indicate
that there is a clear downward trend in the number of refactoring instances
applied to the code per developer and that most of the refactoring workload
may therefore be taken care of by ‘refactoring experts’.

We therefore analyze how the total refactoring workload is split among
developers. To measure the refactoring contribution of each developer that
refactors, we measure what percentage of the total number of refactoring in-
stances each developer has contributed. We then use the median to determine
if the workload is more evenly shared among refactoring contributors or if
most of them only take on a minor portion of the total refactoring workload.

We find that in both the JDT.CORE and PLATFORM.SWT projects, each
developer take on a higher percentage of the total workload during the shorter
releases than during the traditional releases. While the PLATFORM.SWT
project also has a higher percentage of refactoring instances contribution per
developer during the shorter releases, the increment is much smaller than the
other two projects.

We find no negative impacts on the amount of human resources ded-
icated to refactoring after shortening the release cycle. We also find
that the refactoring workload is more evenly distributed among the
developers during shorter releases.

25

jdt.core refactoring activity over time platform.swt refactoring activity over time platform.ui refactoring activity over time

Refactoring
—— False

Refactoring
—— False

1200 Refactoring 1750
— False

1000

Commits
o ®
S o
S S

Figure 4: Evolution of refactoring activities over time

5. Discussion
5.1. Ewvolution of Refactoring Activities

Intuitively, it would make sense if refactoring activities diminish over
time as a project ages and becomes more mature. If that was the case, then
it would be less likely that the impacts observed in RQ1 and subsequent
RQs would be consequences of shortening the release cycle. To verify this
hypothesis, we plotted the evolution of refactoring activities since the first
named version (3.2) in 2006. From Figure 4, we notice that the JDT.CORE
seems to already have been on a downward trend of refactoring when the
release cycle was shortened in 2018. The two platform projects, however,
show a very stable amount of refactoring commits regardless of how many
non-refactoring commits are being contributed to the projects.

Another concern we face is that the results and the statistical significance
we observed in the JDT.CORE project in RQ1 may not be due to the event
we are studying: the adoption of shorter release cycles. Since our results
might be due to the way we separate our data, we decided to evaluate two
separate chunks of data from the same time period (i.e., early TR and late
TR, early SR and late SR). By comparing two subsets of data from the same
time period, we can determine if the statistically significant difference in the
number of commits that we found in RQ1 could be related to the change
in release cycles or if this statistical significance is due to the seemingly
decreasing refactoring activity previously observed.

We therefore used a Mann-Whitney test on the number of refactoring
commits in the first half of the traditional releases period versus the second
half of the traditional releases period and did the same for the shorter releases
period for all 3 projects. Our results, as shown in Table 10, show that there
is no statistically significant difference in the number of refactoring commits

26

Table 10: p—values for the number of refactoring commits during early versus late TR
and early versus late SR

Project early TR and late TR | early SR and late SR
statistical significance | statistical significance

jdt.core 0.853 0.565
platform.swt 0.236 0.407
platform.ui 0.0215 0.0193

during the traditional releases period and shorter releases period for both
the JDT.CORE project and the PLATFORM.SWT project. This indicates to us
that the the statistically significant difference in the number of refactoring
commits found between the yearly releases period and the quarterly releases
period for the JDT.CORE project may have been caused by the change in
release cycles.

5.2. Refactoring and Software Quality

In RQ3, we observed that certain complex refactoring operations became
less common after shortening the releases. Using a previous survey based
study led by Silva et al. [16], we investigate the reasons why developers apply
these patterns that became less popular. More specifically, we are interested
to know how they think the quality of the code is improved by applying this
type of refactoring patterns. In their survey, Silva et al. investigated the
refactoring behavior of developers based on eight refactoring patterns. Two
of these patterns; ‘Extract Method’ and ‘Move Method’, are classified as
medium-level refactoring patterns per our classification in RQ3. We therefore
use these two refactoring patterns as our basis to investigate how developers
think they improve the quality of the code when they apply medium-level
refactorings.

During the survey led by Silva et al., developers confessed that they
usually extract methods to improve the reusability and the readability of the
code. In the case of the ‘Move Method’ refactorings, the developers’ answers
point to a desire to increase cohesion and reusability. Because readability and
reusability are not metrics that can easily be measured, we cannot empirically
verify that the developers’ refactorings achieved the intended purpose.

A past study led by Hindle et al. [48] however defined and studied the
concept of software “naturalness”. This code “naturalness” studies how “nat-
ural” a software’s code feels similar to how a natural language can feel natural

27

or unnatural. A previous study led by Baishakhi and Hellendoorn [49] found
that buggy code tends to be more unnatural and becomes more natural as
bugs are fixed. We therefore conduct a small literature survey and find two
studies led by Arima et al. [50] and Bin et al. [51] that studied the relationship
between refactoring patterns and the naturalness of the code. Interestingly,
both of these studies have found that the ‘Extract Method’ refactoring im-
prove the naturalness of the code. The ‘Move Method’ refactoring, however,
was found to improve the code naturalness in one study and decrease it in
the other. We therefore hypothesize that the readability and reusability may
indeed increase when these two refactoring patterns are applied.

To conclude, the code’s quality may decrease in the long term if some
refactoring patterns are ignored due to their time cost or complexity. Devel-
opers should therefore try not to modify their refactoring behaviors even if
the release cycles become shorter. On the contrary, they should make sure
all types of refactorings are applied to maintain the code’s quality in the long
term.

5.8. Summary and Implications

To get an overall view of the impacts of shorter releases, including our new
findings on refactoring activities, we aggregated the results of related work
studying the impacts of shortening release cycles on different development
tasks as shown in Table 11. Although other studies use the Firefox project for
their datasets, we notice that the impacts observed by previous studies are
similar to our findings: although reducing the release cycle length has some
impacts, these impacts are manageable. For example, shorter releases had
an impact on how many platforms are tested in Firefox but each supported
platform is tested more thoroughly [2]. From a previous study investigating
short releases and bugs, one solution to keep up with the workload was to
have more developers work on each release [1]. Another study investigating
the impacts of short releases on the integration delay of fixed issues in the
Firefox project [7] also found that developers adjusted to shorter releases by
assigning an issue to a release rather than queuing issues in a backlog.

From this case study’s results we were able to see how shortening the re-
leases may affect a project’s refactoring activities by looking at the JDT.CORE
project’s evolution. From RQ1 and RQ2, the decreased weekly number of
refactoring instances, the decreased weekly percentage of commits that refac-
tor the code and the lower weekly median number of lines refactored indicate
that refactoring activities in the JDT.CORE project may have been negatively

28

Table 11:

Impact of shorter releases on software development tasks

Refactoring Integration Bugs Testing

Our Paper [7] 1] 2]
RQL1: Does | Short releases | Issues are | Harder bugs are | Fewer platforms
adopting shorter | may reduce how | queued up as | propagated to | tested in total
releases affect the | much refactor- | backlog in tra- | later releases. | but each sup-
amount or the | ing is applied to | ditional releases | Fewer changes | ported more
frequency of the | the code versus a per- | per developers | thoroughly.

task

release basis in
shorter releases.

but the changes
touch more
files.

RQ2: Does
adopting shorter
releases affect the
effort dedicated to
the task

Shorter releases

may impact
refactoring
efforts

Not studied

Not studied

Not studied

RQ3: Does | In some cases, | Issues addressed | Negligible dif- | More tests exe-
adopting shorter | refactorings more quickly | ference in the | cutions per day
releases affect the | that affect | but take more | number of post- | but the tests fo-
characteristics of | many parts of | time to be in- | release bugs. | cus on a smaller
the task the code are | tegrated. The | Bugs are fixed | subset of the
not applied | total time from | more quickly | corpus. Overall
as frequently | the issue report | but fewer bugs | fewer tests but
during shorter | date to its | are being fixed. | larger builds.
releases integration is
not significantly
different.
RQ4: Does the | The refactor- | Not studied More developers | Fewer testers
change to shorter | ing workload working on each | but higher
releases affect the | is split more short release. workload.
human resources | evenly among
dedicated to the | developers

task

affected by the shorter releases. From RQ3, we also found that specific types
of refactorings are becoming less common after changing the release cycle in
the JDT.CORE project. Past studies have shown that refactoring improves
software quality and maintainability [3, 18] which leads to fewer bugs in the
long term. In Section 5.2, we also found that the refactoring patterns that
were less common during the shorter releases were associated with readability
and reusability; two aspects of software quality that can deteriorate in the
long term if not addressed. Short releases adopters should therefore take into
account, the risks of shortening their release cycles on refactoring activities

29

and assign their resources accordingly.

By looking at the PLATFORM.UI project, however, our results also show
how a project could benefit from the shorter releases while also keeping up
with its refactoring workload. From RQ1 and RQ2, we found that the shorter
releases did not impact the amount of refactoring being done in the PLAT-
FORM.UI project. From RQ3, we even find that medium-level refactorings
increased after shortening the releases. These results indicate that the devel-
opers are adapting their refactoring behaviors with the new release cycles.
Since every release is a major release with the new release model, the de-
velopers now have the flexibility of refactoring their API during any release
and our results show that they are actively taking advantage of that. From
RQ4, we also find that a higher percentage of developers refactor during the
shorter releases in the PLATFORM.UI project. From this case study, short
releases adopters can therefore also see how their project could benefit from
shortening their release cycles.

While it is not yet clear as to why some projects adapt better to shorter
releases than others, we hypothesize that one of the possible reason as to why
the JDT.CORE is having a harder time keeping up with its refactoring work-
load might be due to the nature of the code itself. Since the PLATFORM.UI
project is a Ul project, the chances of having to refactor the API is most
likely lower than in the JDT.CORE project which is made of core application
code. As we have seen previously, the Eclipse community also tends to be
more reluctant to refactor their API in order to maintain a strong back-
ward compatibility [47]. The same study also finds that the developers are
aware of how many downstream users can get affected by their changes and
are therefore sensitive about making breaking changes. Since the JDT.CORE
project makes up the core of the Eclipse application and can affect all other
aspects of the platform, we therefore assume that the developers might be
less inclined to refactor their API as much as in other projects.

5.4. Threats to Validity

Internal threats: In RQ1 and RQ2, we aggregate our data on a weekly
basis and use the weekly median values for our analysis. Aggregating the data
on a weekly basis allows us to have enough data points to follow the evolution
of refactoring activities while also keeping the time frame short enough to
avoid having outliers significantly affect our results.

In RQ2, we removed all ‘Rename’ refactoring types because more than
50% of developers admit using refactoring tools for renaming in previous

30

studies investigating the usage of refactoring tools [16]. Still, several refac-
toring types (e.g., ‘Extract Local’) can be performed by tools, which might
affect the results of RQ2. As of today, there is still no tool that can allow us
to detect if a refactoring was performed manually or automatically. Filtering
out patterns that are commonly implemented using refactoring tools based
on previous studies’ findings is therefore the best approach we currently have
to minimize refactoring tools’ impacts on our results.

In RQ3, we categorize each refactoring pattern based on a previous study
authored by Murphy et al. [19]. We know that this categorization is not
optimal because it does not allow us to accurately categorize refactoring
patterns based on the complexity of the task or the efforts required to apply
each refactoring pattern. However, it does allow us to get a hint of both
complexity and efforts by taking into account which sections of the code
need to be changed to apply each refactoring pattern.

External threats: Because we only used open-source software projects
from the Eclipse foundation, the results shown in this paper may not be
representative of other software systems. We also found that the Eclipse
foundation gradually adopted shorter releases over a long period of time
unlike other known projects using short releases such as Firefox. The impacts
of shorter releases on the projects investigated in this study may therefore
differ from other projects that chose to adopt short releases more abruptly.
Because we observed different impacts of shorter release cycles on all three
of our projects, it is difficult to generalize our results.

Constructive threats: Code churn has been used by multiple past
studies as a measure of effort [52, 53, 54, 55|. However, it has also been
suggested that code churn is not a direct measure of effort but rather one of
many metrics used to measure development effort [56]. We therefore only get
a general idea of the actual efforts put into refactoring by using refactoring
churn. Although we used a state of the art refactoring detection tool that was
used several times in previous studies [57, 58, 59, 60], we have no guarantee
that all refactorings applied to the code were detected.

6. Conclusion

In this study, we investigated the impacts of shortening the release cy-
cles on refactoring activities in three Eclipse projects which all developed
using both traditional yearly releases and shorter quarterly cycles. Through
this case study, we found that shortening the release cycles may impact the

31

refactoring activities of a software project in various ways. We also found
that some of the refactoring patterns that were less common after shortening
the releases are usually applied to improve the readability and reusability of
the code. Not applying them could therefore affect the software’s quality in
the long term. This case study further contributes to the empirical knowl-
edge related to shortening the release cycles. With the results we present
in this paper, potential short releases adopters now have a better insight of
the potential impacts on refactoring activities that can occur from shorten-
ing their release cycle. When aggregated with previous studies that study
the impacts of shortening the release cycles, our results allow short releases
adopters to have an overall picture of which area of development can be im-
pacted when shortening the release cycles. It also allows them to dedicate
resources accordingly to make the transition as smooth as possible.

Intuitively, it would make sense to observe less refactoring, more bugs, or
other issues when shortening a project’s development cycle due to the short
amount of time available to developers. One interesting factor that however
seems common across studies investigating the impacts of shorter release cy-
cles is that developers can adapt to the shorter releases and manage software
development tasks even with less time between each release. Although the
impacts of shorter seem manageable, it would be interesting to study in the
future what problems early adopters such as Google and Firefox have en-
countered when adopting shorter releases and how these issues were solved.
In the case of our study, for example, while we cannot prove with certainty
that developers are using more refactoring tools to keep up the with refac-
toring workload, our results do seem to indicate that more tools may have
been used to mitigate the impacts of the shorter releases.

Acknowledgment

We gratefully acknowledge the financial support of JSPS and SNSF for
the project “SENSOR” (JPJSJRP20191502), and JSPS for the KAKENHI
grants (JP21H04877, JP21K17725).

32

References

1]

F. Khomh, B. Adams, T. Dhaliwal, Y. Zou, Understanding the impact
of rapid releases on software quality, Empirical Software Engineering
20 (2] [2015] 336-373.

M. V. Mantyla, B. Adams, F. Khomh, E. Engstrom, K. Petersen,
On rapid releases and software testing: A case study and a semi-
systematic literature review, Empirical Software Engineering 20 (5]
[2015] 1384-1425.

F. Palomba, A. Zaidman, R. Oliveto, A. De Lucia, An exploratory study
on the relationship between changes and refactoring, in: Proceedings of
the 25th International Conference on Program Comprehension, 2017, p.
176-185.

M. Kim, D. Cai, S. Kim, An empirical investigation into the role of api-
level refactorings during software evolution, in: Proceedings of the 33rd
International Conference on Software Engineering, 2011, pp. 151-160.

K. Stroggylos, D. Spinellis, Refactoring—does it improve software qual-
ity?, in: Proceedings of the 5Hth International Workshop on Software
Quality, 2007, p. 10.

A. Silva, G. Carneiro, F. Brito e Abreu, M. Monteiro, Frequent releases
in open source software: A systematic review, Information 8 (3] [2017]
109.

D. A. da Costa, S. McIntosh, C. Treude, U. Kulesza, A. E. Hassan,
The Impact of Rapid Release Cycles on the Integration Delay of Fixed
Issues, Empirical Software Engineering 23 (2] [2018] 835-904.

M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts, Refactoring:
improving the design of existing code, Addison-Wesley, 1999.

M. Kim, M. Gee, A. Loh, N. Rachatasumrit, Ref-finder: A refactoring
reconstruction tool based on logic query templates, in: Proceedings of

the Eighteenth ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, 2010, p. 371-372.

33

[10]

[11]

[12]

[13]

[14]

[17]

[18]

N. Tsantalis, M. Mansouri, L. M. Eshkevari, D. Mazinanian, D. Dig,
Accurate and efficient refactoring detection in commit history, in: Pro-
ceedings of the 40th International Conference on Software Engineering,
2018, pp. 483-494.

D. Silva, M. T. Valente, Refdiff: Detecting refactorings in version his-
tories, in: Proceedings of the 2017 IEEE/ACM 14th International Con-
ference on Mining Software Repositories, 2017, pp. 269-279.

D. Dig, C. Comertoglu, D. Marinov, R. Johnson, Automated detection
of refactorings in evolving components, in: Proceedings of the 20th Eu-
ropean Conference on Object-Oriented Programming, 2006, p. 404-428.

Z. Xing, E. Stroulia, Umldiff: An algorithm for object-oriented design
differencing, in: Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering, 2005, pp. 54—65.

C. Vassallo, G. Grano, F. Palomba, H. Gall, A. Bacchelli, A large-scale
empirical exploration on refactoring activities in open source software
projects, Science of Computer Programming 180 [2019] 1-15.

A. Peruma, M. W. Mkaouer, M. J. Decker, C. D. Newman, An em-
pirical investigation of how and why developers rename identifiers, in:
Proceedings of the 2nd International Workshop on Refactoring, 2018, p.
26-33.

D. Silva, N. Tsantalis, M. T. Valente, Why we refactor? confessions of
github contributors, in: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2016,

p. 858-870.

G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto,
O. Strollo, When does a refactoring induce bugs? an empirical study, in:
Proceedings of the 2012 IEEE 12th International Working Conference
on Source Code Analysis and Manipulation, 2012, p. 104-113.

M. Kim, T. Zimmermann, N. Nagappan, A field study of refactoring
challenges and benefits, in: Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering,
2012, pp. 1-11.

34

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

E. Murphy-Hill, C. Parnin, A. P. Black, How we refactor, and how
we know it, in: Proceedings of the 31st International Conference on
Software Engineering, 2009, p. 287-297.

G. Lacerda, F. Petrillo, M. Pimenta, Y. Guéhéneuc, Code smells and
refactoring: A tertiary systematic review of challenges and observations,
Journal of Systems and Software [2020] 110610.

R. Moser, P. Abrahamsson, W. Pedrycz, A. Sillitti, G. Succi, A case
study on the impact of refactoring on quality and productivity in an
agile team, 2007.

R. Moser, A. Sillitti, P. Abrahamsson, G. Succi, Does refactoring im-
prove reusability?, 2006, pp. 287-297.

D. Dig, R. Johnson, The role of refactorings in api evolution, 2005, pp.
389-398.

S. Herbold, J. Grabowski, H. Neukirchen, Automated refactoring sug-
gestions using the results of code analysis tools, 2009, pp. 104 — 109.

X. Ge, E. Murphy-Hill, Manual refactoring changes with automated
refactoring validation, in: Proceedings of the 36th International Confer-
ence on Software Engineering, 2014, p. 1095-1105.

H. K. Wright, D. Jasper, M. Klimek, C. Carruth, Z. Wan, Large-scale
automated refactoring using clangmr, in: 2013 IEEE International Con-
ference on Software Maintenance, 2013, pp. 548-551.

Z. Xing, E. Stroulia, Refactoring practice: How it is and how it should
be supported - an eclipse case study, in: Proceedings of the 22nd IEEE
International Conference on Software Maintenance, 2006, pp. 458-468.

B. Daniel, D. Dig, K. Garcia, D. Marinov, Automated testing of refac-
toring engines, 2007, pp. 185-194.

M. Michlmayr, B. Fitzgerald, K.-J. Stol, Why and how should open
source projects adopt time-based releases?, IEEE Software 32 (2] [2015]
55-63.

35

[30]

[31]

[32]

F. Khomh, T. Dhaliwal, Y. Zou, B. Adams, Do faster releases im-
prove software quality? An empirical case study of Mozilla Firefox, in:
Proceedings of the 9th IEEE Working Conference on Mining Software
Repositories, 2012, pp. 179-188.

O. Baysal, 1. Davis, M. W. Godfrey, A Tale of Two Browsers, in: Pro-
ceedings of the 8th Working Conference on Mining Software Reposito-
ries, 2011, p. 238-241.

V. M. Mika, F. Khomh, B. Adams, E. Engstr, K. Petersen, On Rapid
Releases and Software Testing, in: Proceedings of the 2013 IEEE Inter-
national Conference on Software Maintenance, 2013, pp. 20-29.

E. Kula, A. Rastogi, H. Huijgens, A. Van Deursen, G. Gousios, Releas-
ing fast and slow: An exploratory case study at ING, in: Proceedings
of the 2019 27th ACM Joint Meeting European Software Engineering
Conference and Symposium on the Foundations of Software Engineer-
ing, 2019, pp. 785-795.

M. Claes, M. Mantyla, M. Kuutila, B. Adams, Abnormal Working
Hours: Effect of Rapid Releases and Implications to Work Content, in:
Proceedings of the 14th International Conference on Mining Software
Repositories, 2017, pp. 243-247.

N. Kerzazi, F. Khomh, Factors impacting rapid releases: An industrial
case study, in: Proceedings of the 8th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement, 2014, pp.
98-107.

G. N. Tonietto, S. A. Malkoc, S. M. Nowlis, When an Hour Feels Shorter:
Future Boundary Tasks Alter Consumption by Contracting Time, Jour-
nal of Consumer Research 45 (5] [2018] 1085-1102.

A. Garrido, R. Johnson, Challenges of refactoring ¢ programs, 2002, p.
6-14.

C. Vassallo, F. Palomba, H. C. Gall, Continuous refactoring in ci: A
preliminary study on the perceived advantages and barriers, in: Inter-

national Conference on Software Maintenance and Evolution, 2018, pp.
564-568.

36

[39]

[40]

[43]

[44]

[46]

[47]

H. Do, S. Mirarab, L. Tahvildari, G. Rothermel, The effects of time
constraints on test case prioritization: A series of controlled experiments,
IEEE Transactions on Software Engineering 36 (5] [2010] 593-617.

H. Do, G. Rothermel, An empirical study of regression testing tech-
niques incorporating context and lifetime factors and improved cost-
benefit models, in: Proceedings of the 14th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, 2006, p.
141-151.

K. R. Walcott, M. L. Soffa, G. M. Kapthammer, R. S. Roos, Timeaware
test suite prioritization, in: Proceedings of the 2006 International Sym-
posium on Software Testing and Analysis, 2006, p. 1-12.

Jung-Min Kim, A. Porter, A history-based test prioritization technique
for regression testing in resource constrained environments, in: Proceed-
ings of the 24th International Conference on Software Engineering, 2002,
pp. 119-129.

S. Karus, M. Dumas, Predicting coding effort in projects containing
xml, in: Proceedings of the 2012 16th European Conference on Software
Maintenance and Reengineering, 2012, p. 203-212.

T. Mende, R. Koschke, Revisiting the evaluation of defect prediction
models, in: Proceedings of the 5th International Conference on Predictor
Models in Software Engineering, 2009, pp. 1-10.

Y. Kamei, S. Matsumoto, A. Monden, K.-i. Matsumoto, B. Adams, A. E.
Hassan, Revisiting common bug prediction findings using effort-aware
models, in: Proceedings of the 2010 IEEE International Conference on
Software Maintenance, 2010, p. 1-10.

M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D. Penta, A. De Lu-
cia, D. Poshyvanyk, When and why your code starts to smell bad (and
whether the smells go away), IEEE Transactions on Software Engineer-
ing 43 (11] [2017] 1063-1088.

C. Bogart, C. Kastner, J. Herbsleb, F. Thung, How to break an api:
Cost negotiation and community values in three software ecosystems, in:
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016, p. 109-120.

37

[48]

[49]

[50]

[51]

A. Hindle, E. T. Barr, Z. Su, M. Gabel, P. Devanbu, On the naturalness
of software, in: Proceedings of the 34th International Conference on
Software Engineering, 2012, p. 837-847.

B. Ray, V. Hellendoorn, S. Godhane, Z. Tu, A. Bacchelli, P. Devanbu,
On the "naturalness” of buggy code, in: Proceedings of the 38th Inter-
national Conference on Software Engineering, 2016, p. 428-439.

R. Arima, Y. Higo, S. Kusumoto, Toward refactoring evaluation with
code naturalness, in: Proceedings of the 26th Conference on Program
Comprehension, 2018, p. 316-319.

B. Lin, C. Nagy, G. Bavota, M. Lanza, On the impact of refactoring
operations on code naturalness, in: 2019 IEEE 26th International Con-

ference on Software Analysis, Evolution and Reengineering, 2019, pp.
594-598.

E. Arisholm, L. Briand, E. Johannessen, A systematic and comprehen-
sive investigation of methods to build and evaluate fault prediction mod-
els, Journal of Systems and Software 83 (1] [2010] 2-17.

S. Karus, M. Dumas, Predicting coding effort in projects containing
xml, in: Proceedings of the 2012 16th European Conference on Software
Maintenance and Reengineering, 2012, p. 203-212.

T. Mende, R. Koschke, Revisiting the evaluation of defect prediction
models, in: Proceedings of the 5th International Conference on Predictor
Models in Software Engineering, 2009, pp. 1-10.

T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, A. Bener, Defect
prediction from static code features: Current results, limitations, new
approaches, Automated Software Engineering [2010] 375-407.

E. Shihab, Y. Kamei, B. Adams, A. E. Hassan, Is lines of code a good
measure of effort in effort-aware models?, Information and Software
Technology [2013] 1981-1993.

P. Thongtanunam, W. Shang, A. E. Hassan, Will this clone be short-
lived? towards a better understanding of the characteristics of short-
lived clones, Empirical Software Engineering 24 (2] [2019] 937-972.

38

[58]

[59]

[60]

L. Sousa, D. Cedrim, W. Oizumi, A. Bibiano, A. Oliveira, A. Garcia,
D. Oliveira, M. Kim, Characterizing and identifying composite refactor-
ings: Concepts, heuristics and patterns, 2020.

M. lammarino, F. Zampetti, L. Aversano, M. Di Penta, Self-admitted
technical debt removal and refactoring actions: Co-occurrence or more?,
in: 2019 IEEE International Conference on Software Maintenance and
Evolution, 2019, pp. 186-190.

E. C. Neto, D. A. d. Costa, U. Kulesza, Revisiting and improving szz im-
plementations, in: 2019 ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement, 2019, pp. 1-12.

39

