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Are Fix-Inducing Changes a Moving Target?
A Longitudinal Case Study of Just-In-Time Defect Prediction

Shane McIntosh, Member, IEEE and Yasutaka Kamei, Member, IEEE

Abstract—Just-In-Time (JIT) models identify fix-inducing code changes. JIT models are trained using techniques that assume that
past fix-inducing changes are similar to future ones. However, this assumption may not hold, e.g., as system complexity tends to
accrue, expertise may become more important as systems age.

In this paper, we study JIT models as systems evolve. Through a longitudinal case study of 37,524 changes from the rapidly
evolving QT and OPENSTACK systems, we find that fluctuations in the properties of fix-inducing changes can impact the performance
and interpretation of JIT models. More specifically: (a) the discriminatory power (AUC) and calibration (Brier) scores of JIT models drop
considerably one year after being trained; (b) the role that code change properties (e.g., Size, Experience) play within JIT models
fluctuates over time; and (c) those fluctuations yield over- and underestimates of the future impact of code change properties on the
likelihood of inducing fixes. To avoid erroneous or misleading predictions, JIT models should be retrained using recently recorded data
(within three months). Moreover, quality improvement plans should be informed by JIT models that are trained using six months (or
more) of historical data, since they are more resilient to period-specific fluctuations in the importance of code change properties.

Index Terms—Just-In-Time prediction, defect prediction, mining software repositories
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1 INTRODUCTION

THE limited Software Quality Assurance (SQA) resources
of software organizations must focus on software mod-

ules that are likely to be defective in the future. To that
end, defect prediction models are trained using historical
data to identify defect-prone software modules (e.g., meth-
ods [9, 15], files [48], or subsystems [30]). After being trained
using data from historical releases, defect prediction models
can be used to prioritize SQA effort according the predicted
defect proneness of the modules of a future release.

Change-level defect prediction [28], a.k.a., Just-In-Time
(JIT) defect prediction [18], is an alternative to module-
level defect prediction, which has several advantages [38].
First, since changes are often smaller than modules, JIT
predictions are made at a finer granularity, which localizes
the inspection process. Second, while modules have a group
of authors, changes have only one, which makes triaging JIT
predictions easier (i.e., predictions can be assigned to the au-
thor of the change). Finally, unlike module-level prediction,
JIT models can scan changes as they are being produced,
which means that problems can be inspected while design
decisions are still fresh in the developers’ minds.

Despite the advantages of JIT defect prediction, like
all prediction models, they assume that the properties of
past events (i.e., fix-inducing changes) are similar to the
properties of future ones. Yet, the consistency of proper-
ties of fix-inducing changes remains largely unexplored. It
may indeed be the case that the properties of fix-inducing
changes in one development period are entirely different
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from the fix-inducing changes of another. For example, since
complexity tends to accrue as systems age [3], expertise may
grow more important as systems age. To that end, in this
paper, we set out to address the following central question:

Do the important properties of fix-inducing
changes remain consistent as systems evolve?

To address our central question, we train JIT models
to identify fix-inducing changes using six families of code
change properties, which are primarily derived from prior
studies [18, 19, 23, 28]). These properties measure: (a) the
magnitude of the change (Size); (b) the dispersion of the
changes across modules (Diffusion); (c) the defect proneness
of prior changes to the modified modules (History); (d) the
experience of the author (Author Experience) and (e) code re-
viewer(s) (Reviewer Experience); and (f) the degree of partici-
pation in the code review of the change (Review). Through a
longitudinal case study of the QT and OPENSTACK projects,
we address the following research questions:
(RQ1) Do JIT models lose predictive power over time?

Motivation: If properties of fix-inducing changes do
change, JIT models that were trained to identify fix-
inducing changes of the past would quickly lose
their predictive power. Hence, we are first interested
in (a) whether JIT models lose predictive power over
time, and (b) how quickly such losses would occur.
Results: After one year, our JIT models typically lose
11–22 and 14–34 percentage points of their discrim-
inatory power (AUC) in the QT and OPENSTACK
systems, respectively. Similarly, after one year, our
JIT models lose up to 11 and 19 percentage points
from their calibration (Brier) scores in the QT and
OPENSTACK systems, respectively.
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(RQ2) Does the relationship between code change prop-
erties and the likelihood of inducing a fix evolve?
Motivation: Another symptom of changing proper-
ties of fix-inducing changes would be fluctuations in
the impact that code change properties have on the
explanatory power of JIT models. If properties of fix-
inducing changes do indeed change, the prediction
modelling assumption that properties of prior and
future events are similar may not be satisfied. To
cope with this, teams may need to refit their models.
To better understand how volatile the properties of
fix-inducing changes are, we set out to study trends
in the importance scores of code change properties
in our JIT models over time.
Results: The Size family of code change proper-
ties is a consistent contributor of large importance
scores. However, the magnitude of these impor-
tance scores fluctuates considerably, ranging be-
tween 10%–43% and 3%–37% of the period-specific
explanatory power of our QT and OPENSTACK JIT
models, respectively.

(RQ3) How accurately do current importance scores of
code change properties represent future ones?
Motivation: Fluctuations in the importance scores
of code change properties may impact quality im-
provement plans, i.e., team initiatives to reduce the
rate of defects, which are based on interpretation of
JIT models. For example, if a quality improvement
plan is formulated based on a large importance score
of a property p, but p drops in importance in the
following period, even a perfectly executed quality
improvement plan will have a smaller impact than
anticipated. On the other hand, if property p has
a small importance score in the past, but grows
more important in the following period, the quality
improvement plan may omit important focal points.
To better understand the impact that fluctuations
have on quality improvement plans, we study the
magnitude of these fluctuations in our JIT models.
Results: The stability of property importance scores
in our JIT models is project-sensitive. The contribu-
tions of impactful property families like Size are both
consistently: (a) overestimated in our QT JIT models
by a median of 5% of the total explanatory power
and (b) underestimated in our OPENSTACK JIT mod-
els by a median of 2% of the total explanatory power.

Our results lead us to conclude that properties of fix-
inducing changes can fluctuate, which may impact both
the performance and interpretation of JIT defect models. To
mitigate the impact on model performance, researchers and
practitioners should add recently accumulated data to the
training set and retrain JIT models to contain fresh data from
within the last six months. To better calibrate quality im-
provement plans (which are based on interpretation of the
importance scores of code change properties), researchers
and practitioners should put a greater emphasis on larger
caches of data, which contain at least six months worth
of data, to smooth the effect of spikes and troughs in the
importance of properties of fix-inducing changes.

Paper Organization
The remainder of the paper is organized as follows. Section 2
discusses the related work. Section 3 describes the design of
our case study, while Section 4 presents the results. Section 5
presents practical suggestions that are informed by our
study results. Section 6 discloses the threats to the validity
of our study. Finally, Section 7 draws conclusions.

2 RELATED WORK

In this section, we situate our work within the context of
past studies on JIT modelling and its assumptions.

2.1 JIT Defect Modelling
Recent work has shown that JIT models have become suffi-
ciently robust to be applied in practice. Indeed, JIT models
are included in the development processes of large software
systems at Avaya [28], Blackberry [38], and Cisco [40].

To achieve such robustness, a variety of code change
properties need to be used to predict fix-inducing changes.
For example, Mockus and Weiss [28] predicted fix-inducing
changes using a set of code change properties that are
primarily derived from the changes themselves. Kim et
al. [19] and Kamei et al. [18] built upon the set of code
change properties, reporting that the addition of a variety
of properties that were extracted from the Version Control
System (VCS) and the Issue Tracking System (ITS) helped
to improve the prediction accuracy. Kononenko et al. [23]
also found that the addition of code change properties that
were extracted from code review databases contributed a
significant amount of explanatory power to JIT models.

We derive the majority of our set of studied code change
properties from those described in these prior studies. How-
ever, while these previous studies empirically evaluate the
prediction performance of JIT models, they do not focus on
the consistency of the properties of fix-inducing changes,
which is the central thrust of this paper.

2.2 Assumptions of Defect Modelling
Past work has shown that if care is not taken when collecting
data from software repositories, noise may impact defect
models. Aranda and Venolia [2] found that VCSs and ITSs
are noisy sources of data. For example, Antoniol et al. [1]
found that issue reports are often mislabelled, i.e., reports
that describe defects are labelled as enhancements, and
vice versa. Herzig et al. [16] found that this issue report
mislabelling can impact the ranking of modules that is
produced by defect models. Furthermore, Bird et al. [4]
found that characteristics of issue reports (e.g., severity) and
issue reporters (e.g., experience) can influence the likelihood
of linking related ITS and VCS records when it is necessary.
Without these links, datasets that are constructed for defect
prediction purposes may erroneously label defective mod-
ules as clean, or vice versa. To study the impact that missing
links may have on defect prediction, Kim et al. [20] sever
existing links to simulate a variety of rates of missing links.

On the other hand, recent work also shows that noise
and bias may not be a severe impediment to defect mod-
elling. For example, our prior work [41] showed that issue
report mislabelling rarely impacts the precision of defect
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TABLE 1
An overview of the studied systems. Those above the double line satisfy our criteria for analysis.

System Timespan Changes Reviews
Start End Total Defective Reviewed Self reviewed # Reviewers

QT 06/2011 03/2014 25,150 2,002 (8%) 23,821 (95%) 1,217 (5%) x̄ = 2.3, M = 1.0, sd = 2.8
OPENSTACK 11/2011 02/2014 12,374 1,616 (13%) 12,041 (97%) 117 (<1%) x̄ = 4.3, M = 3.0, sd = 5.3

ITK 08/2010 08/2014 3,347 - - - -
VTK 08/2010 08/2014 7,723 - 4,237 (55%) - -

ANDROID 08/2010 01/2013 61,789 - 2,771 (4%) - -
LIBREOFFICE 03/2012 11/2013 11,988 - 1,679 (14%) - -

models or the interpretation of the top-ranked variables.
Nguyen et al. [33] found that biases exist even in a “near-
ideal” development setting, where links are automatically
recorded, suggesting that linkage bias is a symptom of any
development process. Moreover, Rahman et al. [35] found
that the total number of modules has a larger impact on
defect model performance than noise or biases do.

Even with data that is completely free of noise and bias,
there are assumptions that must be satisfied in order to
fit defect models. Turhan [44] argued that “dataset shifts”
(i.e., dataset characteristics that violate modelling assump-
tions [27]) may influence predictive models in software
engineering. In a similar vein, we study whether properties
of fix-inducing changes are consistent enough to satisfy the
assumption that past events are similar to future events.

Past studies also use historical data to improve the
performance of defect prediction models [22, 32, 47]. For
example, Nam et al. [32] mitigated dataset shifts by ap-
plying a transfer learning approach, which makes feature
distributions in training and testing datasets more similar.
Zimmermann et al. [47] showed how complexity, problem
domain, and change rate can be used to predict defects in
Microsoft and Eclipse systems. While these studies predict
which modules are at-risk of containing defects, our study
focuses on understanding the impact that various code
change properties have on the risk that changes pose for
inducing future fixes in a longitudinal setting.

Perhaps the most similar prior work is that of Ekanayake
et al. [7], who studied the stability of module-level defect
prediction models. They used trends in the predictive power
of defect prediction models to identify periods of “concept
drift,” i.e., periods where historical trends do not aid in iden-
tifying defect-prone modules. Our work differs from that of
Ekanayake et al. in two ways. First, we study JIT models,
which are concerned with fix-inducing changes rather than
defective modules. Second, while past work focuses on
model performance, we study the impact that fluctuations
in the importance of properties of fix-inducing changes have
on both the performance (RQ1) and the interpretation (RQ2,
RQ3) of JIT models.

3 CASE STUDY DESIGN

In this section, we describe our: (1) rationale for selecting
our studied systems and (2) data extraction process. In addi-
tion, we describe our approaches to: (3) model construction
and (4) model analysis.

3.1 Studied Systems

To address our research questions, we perform a longitu-
dinal case study on successful and rapidly evolving open
source systems. In selecting the subject systems, we identi-
fied three important criteria that needed to be satisfied:

• Criterion 1: Traceability. We need reliable data in
order to produce healthy datasets (see Section 2.2).
To that end, it should be reasonably straightforward
to extract from the VCS of a studied system, a series
of code changes, i.e., listings of changed lines to a set of
code files that developers have submitted to the VCS
together. It should also be straightforward to connect
a large proportion of those code changes to issue re-
ports, which are stored in ITSs, and code review data,
which is stored in code review databases. Without a
traceable process, our code change properties will be
unreliable, and our JIT models may be misleading.

• Criterion 2: Rapidly evolving. In order for JIT mod-
els to yield the most benefit, our studied systems
must undergo plenty of change on a continual basis.

• Criterion 3: Code review policy. Recent studies
report that code review can have an impact on post-
release software quality [26, 42] and defect prone-
ness [23]. To control for this, we focus our study on
systems where code reviewing is a common practice.

In order to address criterion 1, we study systems that
adopt the Gerrit code review tool.1 Gerrit tightly integrates
with VCSs, automatically submitting commits after project-
specific quality gates are passed (e.g., two reviewers vote in
favour of acceptance of a change). These Gerrit-generated
commits are accompanied by a structured message, which
includes references to the review record (ChangeID) and any
addressed issue reports (IssueIDs).

Table 1 shows that, similar to our prior work [26, 43],
we begin with six candidate systems that adopt the Gerrit
code review tool. In order to address criterion 2, we remove
ITK from our set of candidate systems because only 3,347
changes appear in the ITK Gerrit instance over four years.

In order to address criterion 3, we ensure that the studied
systems have high rates of review coverage. Since we find
that only 55% of VTK, 4% of ANDROID, and 14% of LI-
BREOFFICE changes could be linked to reviews, we remove
these three systems from our set of candidate systems.

Table 1 provides an overview of the two candidate sys-
tems that satisfy our selection criteria (QT and OPENSTACK).

1. https://code.google.com/p/gerrit/

https://code.google.com/p/gerrit/
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Fig. 1. An overview of the Gerrit-based code review process.

QT is a cross-platform application framework whose de-
velopment is supported by the Digia corporation, how-
ever welcomes contributions from the community-at-large.2

OPENSTACK is an open-source software platform for cloud
computing that is developed by many well-known software
organizations (e.g., IBM, VMware, NEC).3 Although the
cleaning process is described below (see Section 3.2), the
clean QT dataset contains 25,150 code changes, 23,821 of
which (95%) can be linked to code reviews. Similarly, the
clean OPENSTACK dataset contains 12,374 code changes,
12,041 of which (97%) can be linked to code reviews.

3.1.1 Gerrit Code Review Process
Gerrit is a code review tool that enables a traceable code
review process for git-based software projects. It tightly
integrates with test automation and code integration tools,
allowing users to codify code review and verification criteria
that must be satisfied before a code change can be integrated
into upstream git repositories.

Using Gerrit, both the QT and OPENSTACK projects
implement similar workflows for managing code contribu-
tions. Figure 1 provides an overview of the process, which
is made up of the following steps, checks, and quality gates.
(1) Upload change revision(s). An author of a code change

uploads a new change or a change revision to a Gerrit
instance and invites a set of reviewers to critique it by
leaving comments for (a) the author to address; or (b)
review participants to discuss.

(2) Execute sanity tests. Before reviewers examine the sub-
mitted changes, sanity tests verify that the changes are
compliant with the coding style conventions, and does
not introduce obvious regression in system behaviour
(e.g., code does not compile). If the sanity tests report
issues, the change is blocked from integration until the
author uploads a revision of the change that addresses
the issues. This step provides quick feedback and avoids
wasting reviewer effort on finding style or low-level
coding issues that can be automatically checked.

(3) Solicit peer feedback. After the submitted changes pass
sanity testing, the author solicits reviewers to examine
the change. Each reviewer is asked to provide feedback
and a review score. In Gerrit, reviewers can provide
one of five score values: “+2” indicates strong support

2. http://qt.digia.com/
3. http://www.openstack.org/

for the change and approval for integration, “+1” in-
dicates weak support for the change without approval
for integration, “0” indicates abstention, “-2” indicates
strong disagreement with the change and also blocks
integration, and “-1” indicates weak disagreement with
the change without blocking integration.

(4) Initiate integration request. Gerrit allows teams to cod-
ify code review and verification criteria that must be sat-
isfied before changes can be integrated into the project
git repositories. For example, the OPENSTACK inte-
gration policy specifies that an author needs to receive
at least two +2 scores.4 After satisfying the integration
criteria, the author can initiate an integration request,
which queues the change for integration.

(5) Execute integration tests. Code changes that are queued
for integration are scanned by the integration testing
system. The integration testing system runs a more
rigourous set of tests than the sanity testing phase to
ensure that changes that land in the project git reposi-
tories are clean. If the integration tests report failures, the
change may not be integrated until the author uploads
a revision of the change that addresses the failures.

(6) Final integration. Once the change passes integration
testing, Gerrit automatically commits the change into
the upstream (official) project git repositories.
Table 1 shows that the Gerrit-based code review pro-

cesses of QT and OPENSTACK achieve high coverage rates
of 95% and 97%, respectively. On occasion, the code review
process is omitted due to a rush to integrate a critical
change. However, the vast majority of changes undergo a
code review. Moreover, changes are rarely approved for
integration by only the author. Only 5% and<1% of changes
were self-approved in QT and OPENSTACK, respectively.

Table 1 also shows that more people tend to be involved
in the OPENSTACK review process than the QT one. The
analyzed changes have a median of one reviewer in QT and
a median of three reviewers in OPENSTACK.

3.2 Data Extraction
In order to conduct our case study, we extract data from
the VCS, ITS, and code review databases of the studied sys-
tems. Figure 2 provides an overview of our data extraction
approach. Below, we describe each step in our approach.

(DE1) Extract Issue Data
From each issue in the ITSs of the studied systems, we
extract its unique identifier (IssueID), the timestamp from
when the issue was reported (RepDate), and the issue type
(Type, e.g., bug or enhancement). The IssueID is used to link
issues to code changes, while RepDate and Type are used to
detect false positive links in our datasets.

(DE2) Extract Code Properties
When extracting data from the VCS, we have three goals.
First, we detect whether a change is potentially fix-inducing
or not using the SZZ algorithm [39]. The SZZ algorithm
identifies fix-inducing changes by: (a) identifying defect-
fixing changes, (b) pinpointing the lines that are modified

4. http://docs.openstack.org/infra/manual/developers.html#
project-gating

http://qt.digia.com/
http://www.openstack.org/
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating
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Fig. 2. An overview of the design of our case study.

TABLE 2
A taxonomy of the studied families of code and review properties.

Property Description Rationale

Si
ze Lines added The number of lines added by a change. The more code that is changed, the more likely that defects

Lines deleted The number of lines deleted by a change. will be introduced [31].

D
iff

us
io

n Subsystems The number of modified subsystems. Scattered changes are riskier than focused ones because they
Directories The number of modified directories. require a broader spectrum of expertise [6, 14].
Files The number of modified files.
Entropy The spread of modified lines across files.

H
is

to
ry

Unique changes The number of prior changes to the modified
files.

More changes are likely more risky because developers will have to
recall and track many previous changes [18].

Developers The number of developers who have changed
the modified files in the past.

Files previously touched by more developers are likely more
risky [24].

Age The time interval between the last and current
changes.

More recently changed code is riskier than older code [10].

A
ut

ho
r/

R
ev

.E
xp

er
ie

nc
e Prior changes The number of prior changes that an actor1

has participated in.2
Changes that are produced by novices are likely to be more risky
than changes produced by experienced developers [28].

Recent changes The number of prior changes that an actor
has participated in weighted by the age of the
changes (older changes are given less weight
than recent ones).

Subsystem
changes

The number of prior changes to the modified
subsystem(s) that an actor has participated in.

Awareness3 The proportion of the prior changes to the
modified subsystem(s) that an actor has par-
ticipated in.

Changes that involve developers who are aware of the prior
changes in the impacted subsystems are likely to be less risky than
those that do not.

R
ev

ie
w

Iterations Number of times that a change was revised
prior to integration.

The quality of a change likely improves with each iteration. Hence,
changes that undergo plenty of iterations prior to integration may
be less risky than those that undergo few [34, 42].

Reviewers Number of reviewers who have voted on
whether a change should be integrated or
abandoned.

Since more reviewers will likely raise more issues so that they may
be addressed prior to integration, changes with many reviewers are
likely to be less risky than those with fewer reviewers [36].

Comments The number of non-automated, non-owner
comments posted during the review of a
change.

Changes with short discussions may not be deriving value from the
review process, and hence may be more risky [25, 26].

Review
window

The length of time between the creation of
a review request and its final approval for
integration.

Changes with shorter review windows may not have spent enough
time carefully analyzing the implications of a change prior to
integration, and hence may be more risky [34, 42].

1 Either the author or reviewer of a change. 2 Either authored or reviewed. 3 New property proposed in this paper.

by defect-fixing changes using the diff command, and
(c) traversing the version history to detect which change(s)
introduced the modified lines using the blame command.

Our second goal is to extract the IssueIDs and
ChangeIDs that are encoded in commit messages. The Is-
sueIDs are used to link code changes to issue reports in the
ITS, while the extracted ChangeIDs are used to link code
changes to review records in the code review database. The
merging and preprocessing steps are defined in more detail
under Step DE4 below.

Our third goal is to compute, for each change, four
families of code change properties that have been shown to

share a relationship with the likelihood of inducing fixes in
past work [17, 18, 19, 28]. We compute a broad range of code
change properties that measure the change volume (Size),
its dispersion across the codebase (Diffusion), the modified
areas of the codebase (History), and the experience of the
author (Author experience). Table 2 provides an overview
of the studied properties. We describe each family below.

Size properties measure the volume of code that was
modified within the change. For each change, we compute
the number of lines added and lines deleted. These properties
can be directly computed by analyzing the change itself.



6

Diffusion properties measure the dispersion of a change
across a codebase. For each change, we compute the num-
ber of distinct names of modified: (1) subsystems (i.e., root
directories), (2) directories (i.e., full directories within the
codebase), and (3) files. To illustrate, consider the file
qtbase/src/dbus/qdbuserror.cpp. The subsystem of
this file is qtbase and the directory is qtbase/src/dbus.

History properties measure the past tendencies of mod-
ules that were involved with a change. For each change,
we measure history properties using the changes that have:
(a) modified the same files that are being modified by the
change in question and (b) been recorded prior to the change
in question. With this in mind, we compute the number
of unique changes that have impacted the modified files in
the past and the number of developers who have changed
the modified files in the past. We also compute the age,
which is the average of the time intervals between the last
change that was made to each modified file and the change
in question. Similar to prior studies [18, 28], we compute
these history properties using all of the changes that were
recorded prior to the change in question.

Files may be copied or renamed, which, if not handled
carefully, may have an impact on our history properties.
In this paper, we rely on the built-in capability of git to
detect copied and renamed files. When a copied/renamed
file is detected, we include the history of the source of the
copy/rename operation in the analysis of the target file.
Since git copy/rename detection is based on heuristics, the
detection results are not without limitations. We discuss the
potential impact that false positives and negatives may have
on our history properties in Section 6.1.

Author experience properties estimate the expertise of
the author of a change. Similar to the history prop-
erties, author experience properties are computed using
past changes. The experience computes the number of past
changes that an author has made to the codebase. Recent ex-
perience weighs the experience value of changes by their age.
Similar to recent work [18], we compute recent experience
by applying 1

1+age , where age is measured in years. Subsystem
experience is the number of past changes that an author has
made to the subsystems that are being modified by the
change in question. Finally, we propose author awareness—
a new expertise property that measures the proportion of
past changes that were made to a subsystem that the author
of the change in question has authored or reviewed. Again,
Section 6.1 discusses the impact that git’s copy/rename de-
tection may have on our author experience measurements.

(DE3) Extract Review Properties
When extracting data from the review databases of our
studied systems, we have two goals. First, we need to extract
the ChangeIDs that are encoded in the review records. These
IDs uniquely identify a review record, and can be used to
link them with code changes in the VCSs. Next, we compute,
for each review record, two families of properties that have
been shown to share a relationship with the likelihood of
inducing a fix [23, 42]. We compute code review properties
that measure the experience of the reviewer(s) (Reviewer
experience) and characteristics of the review process (Re-
view). Table 2 provides an overview of the studied review
properties. We describe each family below.

TABLE 3
The number of fix-inducing changes that survive each step of our

filtering process.

# Filter QT OPENSTACK
Total % ∆ Total % ∆

F0 No filters 5,495 17% - 4,423 16% -
F1 Code comments 5,407 17% 88 4,291 16% 132
F2 Whitespace

changes
5,133 16% 274 3,814 14% 477

F3 Issue report date 4,158 13% 975 3,480 13% 334
F4 Issue report type 3,242 10% 916 3,480 13% 0
F5a Too much churn 3,190 10% 52 3,474 13% 6
F5b Too many files 3,162 10% 28 3,461 13% 13
F5c No lines added 3,153 11% 9 3,450 14% 11
F6 Period 2,891 11% 262 2,788 23% 662
F7 Suspicious fixes 2,172 9% 719 1,830 15% 958
F8 Suspicious

inducing changes
2,002 8% 170 1,616 13% 214

Reviewer experience properties estimate the expertise
of the reviewers of a change. Again, experience computes
the number of past changes that a reviewer has reviewed,
recent experience weighs experience by age, and subsystem
experience focuses on the subset of past reviews that have
changed the same subsystems as the change in question.
Finally, awareness is the proportion of past changes that
were made to a subsystem that the reviewer has authored
or reviewed. Again, we refer readers to Section 6.1 for a
discussion of the impact that our reliance on git’s built-
in copy/rename detection may be having on our reviewer
experience measurements.

Review properties estimate the investment that devel-
opers have made in the code review process. Iterations
counts the number of times that a code change was updated
prior to integration. Reviewers counts the number of devel-
opers who approved a change for integration. Comments
counts the number of reviewer comments that appear in
a review record. Review window is the length of the time
interval between when a review record was opened and
when the changes were approved for integration.

(DE4) Merge and Preprocess Data

After extracting data from the VCSs, ITSs, and review
databases of the studied systems, we merge them using the
extracted identifiers (ChangeIDs and IssueIDs). This merg-
ing allows us to filter our data to mitigate false positives
in our datasets. Table 3 shows the impact of applying each
filter sequentially to our sets of fix-inducing changes.

First, as suggested by Kim et al. [21], we ignore potential
fix-inducing changes that only update code comments (F1)
or whitespace (F2). Next, we filter out potential fix-inducing
changes that appear after the date that the implicated defect
was reported (F3) [39]. Then, we focus on only those defect-
fixing changes where the issue type in the ITS is bug (F4).

After merging the datasets and cleaning the fix-inducing
changes, we preprocess our dataset to remove extremities.
We ignore large commits—those that change at least 10,000
lines (F5a) or at least 100 files (F5b)—because these commits
are likely noise that is caused by routine maintenance (e.g.,
copyright updates). We also ignore changes that do not add
any new lines (F5c), since due to a limitation in the SZZ
approach, only commits that introduce new lines have the
potential to be flagged as fix-inducing.
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Fig. 3. The rate of changes that are fix-inducing and the review coverage rate in the studied systems. The shaded areas are filtered out of our
analysis due to large fluctuations in review coverage or drops in the rate of fix-inducing changes.

In order to study whether properties of fix-inducing
changes are consistent, we stratify our data into time pe-
riods. We analyze period lengths of three and six months,
since we find that at least three months are needed for our
studied systems to accrue a substantial amount of data (i.e.,
1,721–2,984 changes in QT and 831–2,094 in OPENSTACK),
while still yielding enough time periods to study trends
(at least 18 periods in QT and 16 periods in OPENSTACK).
Although the primary goal of our paper is not to identify the
optimal period length, we discuss the threat that our choice
of period lengths imposes on our conclusions in Section 6.1.

Figure 3 shows the results of a preliminary analysis
of the rates of (a) fix-inducing changes and (b) reviewed
changes in each time period (F6). We consider the rate
of fix-inducing changes to counteract a limitation in the
SZZ algorithm. The SZZ algorithm identifies defect-fixing
changes, then traverses the version history to detect which
change(s) had introduced the lines that were modified by
the fix using the blame command. The SZZ algorithm needs
future data to detect whether a change is fix-inducing or not.
Hence, the later the period in the analyzed data, the lower
the chances that a fix has been committed to address the
problems in those commits. We do not filter out periods
using a threshold value for the rate of fix-inducing changes
in a period, but instead remove the latest periods where we
begin to see a steady drop in the rate by analyzing Figure 3.

We also consider the rate of reviewed changes, since one
of our criteria to select our subject systems is code review
policy. However, even if the QT and OPENSTACK projects
have satisfied this criterion overall, the early periods of
these projects may not. These early periods of adoption of
code review are likely turbulent as changes are being made
to development processes. To prevent the turbulent initial
adoption period from impacting our reviewing measure-
ments, we filter out periods where the review rate is low.
Similar to the rate of fix-inducing changes, we do not select a
threshold value for the rate of reviewed changes, but instead
analyze Figure 3 in search of suspicious values.

Figure 3a shows that code review coverage was spo-
radic in the early periods of QT development (periods 1–
5). Furthermore, the rate of fix-inducing changes drops
dramatically in the final two development periods on record
(periods 17 and 18). Since this will introduce an additional
confounding factor in our analysis, we elect to filter those

periods out of our QT dataset. Similarly, since Figure 3b
shows that code review coverage was extremely low for the
first six development periods of OPENSTACK (periods 1–6),
we opt to filter those periods out of our OPENSTACK dataset.

Finally, our recent work proposes a framework for eval-
uating the results of SZZ-generated data [5]. We use the
framework to highlight suspicious fixes (F7), i.e., changes
that fix more than the upper Median Absolute Deviation
(MAD) of the number of fixed issues by a change for
that project. Similarly, we use the framework to highlight
suspicious fix-inducing changes as well (F8), i.e., changes
that induce more than the upper MAD of the number of
fixes that were induced by a change for that project.

3.3 Model Construction

In this step, we use the preprocessed data to construct our
JIT models. Figure 2 provides an overview of our model
construction approach. We describe each step below.

(MC1) Handle Collinear Properties
Collinear code change properties will interfere with each
other, distorting the modelled relationship between them
and the likelihood of introducing defects. Thus, we remove
collinear properties prior to constructing our JIT models.

Correlation analysis: We first check for code change
properties that are highly correlated with one another using
Spearman rank correlation tests (ρ). We choose a rank cor-
relation instead of other types of correlation (e.g., Pearson)
because rank correlation is resilient to data that is not nor-
mally distributed. We use a variable clustering analysis to
construct a hierarchical overview of the correlation among
the properties [37]. For sub-hierarchies of code change prop-
erties with correlation |ρ| > 0.7, we select only one property
from the sub-hierarchy for inclusion in our models.

Redundancy analysis: In order to detect redundant code
change properties, we fit preliminary models that explain
each property using the others. We use the R2 value of these
models to measure how well each property is explained by
the others. We use the implementation of this approach pro-
vided by the redun function in the rms R package, which
iteratively drops the property that is most well-explained
by the other properties until either: (1) no model achieves
an R2 ≥ 0.9, or (2) removing a property would make a
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previously dropped property no longer explainable, i.e., its
preliminary model will no longer achieve an R2 ≥ 0.9.

(MC2) Fit Regression Model
We use a nonlinear variant of multiple regression modelling
to fit our JIT models, which relaxes the assumption of a
linear relationship between the likelihood of introducing
defects and our code change properties. This relaxed fitting
technique enables a more accurate fit of the data. We allocate
a maximum of three degrees of freedom to each property
(i.e., allowing the relationship to change directions once).
Moreover, we fit our curves with restricted cubic splines,
which fit smooth transitions at the points where curves
change in direction (due to the curling nature of cubic
curves). Finally, as suggested by Harrell Jr. et al. [12, 13],
we ensure that we do not exceed a ratio of 15 events (i.e.,
fix-inducing changes) per degree of freedom spent, which
mitigates the risk of overfitting, i.e., producing a model that
is too specialized for the training dataset to apply to others.

The nonlinear variant of multiple regression modelling
is often used in modelling of software engineering phenom-
ena [26, 29, 46], especially for understanding the relationship
between software development practices and software qual-
ity. However, using other techniques may lead to different
conclusions. We discuss this threat to validity in Section 6.2.

3.4 Model Analysis
Next, we address our research questions by analyzing our
JIT models. Figure 2 provides an overview of our model
analysis approach. We describe each step below.

(MA1) Analyze Model Performance
To assess the accuracy of our JIT models, we compute
threshold-independent measures of model performance. We
avoid threshold-dependent measures like precision and re-
call, which depend on arbitrarily thresholds and are sensi-
tive to imbalanced data.

The Area Under the receiver operator characteristics
Curve (AUC) is a measure of a model’s discriminatory power,
i.e., its ability to differentiate between fix-inducing and clean
changes. AUC is computed by measuring the area under
the curve that plots the true positive rate against the false
positive rate, while varying the threshold that is used to
determine if a change is classified as fix-inducing or not.
Values of AUC range between 0 (worst discrimination), 0.5
(random guessing), and 1 (perfect discrimination).

In addition to being a measure of discriminatory power,
the Brier score is also a measure of a model’s calibration, i.e.,
its absolute predictive accuracy. The Brier score is computed
as Brier = 1

N

∑N
i=1(yi − ŷi)2, where N is the total number

of changes; yi = 1 if the ith change is fix-inducing, yi = 0
otherwise; and ŷi is the probability of the ith change being
fix-inducing according to the JIT model under analysis. It is
important to note that low Brier scores are desirable. Indeed,
Brier = 0 indicates perfect calibration, while Brier = 1
indicates the worst possible calibration.

(MA2) Analyze Property Importance
We estimate the impact that each family of code change
properties has on the explanatory power of our JIT models.

Period 1 Period 2 Period 3 Testing period

Long-period training data Short-period 
training data

Fig. 4. An illustrative example of the types of the JIT model types.

In addition to each family being composed of several prop-
erties, each property has been allocated several degrees of
freedom due to our nonlinear model construction approach
(see Section 3.3). Each degree of freedom is represented with
a model term. Hence, to control for the effect of multiple
properties (and multiple terms), we jointly test the set of
model terms for each family using Wald χ2 maximum like-
lihood (a.k.a., “chunk”) tests [11]. In order to make the Wald
χ2 values of multiple models comparable, we normalize
them by the total Wald χ2 score of the JIT model from which
they originate. The larger the normalized Wald χ2 score, the
larger the impact that a particular family of properties has
on the explanatory power of the JIT model under analysis.

(MA3) Analyze Property Stability
To assess the stability of the importance scores for a family
of code change properties f over time, we compute the
difference between the importance scores of f in a model
that is trained using time period p and a future model that
is trained using time period p+ x, where x > 0.

4 CASE STUDY RESULTS

In this section, we present the results of our case study
with respect to our research questions. For each research
question, we present our approach and discuss the results.

(RQ1) Do JIT models lose predictive power over time?
RQ1: Approach
To address RQ1, we study how quickly a JIT model loses
its predictive power by training JIT models for each of the
time periods (i.e., varying the training period), and measur-
ing their performance on future periods. As illustrated in
Figure 4, for each period, we train two types of models:

1) Short-period models are JIT models that are only
trained using changes that occurred during one time
period. We train short-period models because older
changes may have characteristics that no longer apply
to the latest changes.

2) Long-period models are JIT models that are trained
using all of the changes that occurred during or prior
to a particular period. We train long-period models
because recent work suggests that larger amounts of
training data tend to yield defect models that perform
better, even when biases are introduced [35]. Hence, de-
spite potential changes in the properties of fix-inducing
changes, being exposed to additional data may improve
the performance of our JIT models.

After training our JIT models, we test their performance
when they are applied to the periods that occur after the last
training period. As described in Section 3.4, we measure the
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(a) AUC in three-month periods (QT)
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(b) AUC in six-month periods (QT)
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(c) AUC in three-month periods (OPENSTACK)
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(d) AUC in six-month periods (OPENSTACK)
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(e) Brier score in three-month periods (QT)
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(f) Brier score in six-month periods (QT)
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(g) Brier score in three-month periods (OPENSTACK)
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(h) Brier score in six-month periods (OPENSTACK)

Fig. 5. The predictive performance of JIT models as the studied systems age.

performance of our models using the AUC (discriminatory
power) and the Brier score (calibration).

For example, Figure 4 illustrates that for a training pe-
riod 3, the short-period model is trained using the changes
that occurred during period 3, while the long-period model
is trained using changes that occurred during periods 1,
2, and 3. These short-period and long-period models of
period 3 are tested using periods 4 through to the last
studied period. The AUC and Brier performance scores are
computed for each testing period individually.

Finally, we plot the trends in AUC and Brier perfor-
mance scores over time using heatmaps. In Figure 5, the
shade of a box indicates the performance value, where blue
shades indicate strong performance, red shades indicate
weak performance, and the palest (white) shade indicates
the performance that a random guessing model would
achieve (on average). In Figure 6, the shade indicates the
difference in AUC and Brier performance scores between
the training and testing periods in question. Red, blue,
and pale (white) shades indicate drops, improvements, and
unchanged performance in the testing period, respectively.
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(a) AUC in three-month periods (QT)
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(b) AUC in six-month periods (QT)
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(c) AUC in three-month periods (OPENSTACK)
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(d) AUC in six-month periods (OPENSTACK)

Short−period Long−period

0.08 0.03 0.12 0.09 0.16 0.23 0.29 0.3 0.22 0.24

0.01 0.04 −0.01 0 −0.01 0.13 0.11 0.02 0.03

0.05 −0.01 0 −0.02 0.08 0.08 −0.01−0.03

0 0.01 0 0.1 0.1 0.01 0

0.02 0.01 0.11 0.11 0.02 0.01

0.02 0.12 0.12 0.03 0.01

0.11 0.12 0.02 0.01

0.12 0.02 0.01

0.03 0.01

0

0.08 0.03 0.12 0.09 0.16 0.23 0.29 0.3 0.22 0.24

0 0.04 −0.02−0.01−0.02 0.08 0.08 −0.02−0.03

0.04 −0.02−0.01−0.03 0.08 0.08 −0.01−0.03

−0.01−0.01−0.02 0.08 0.08 −0.01−0.03

0 −0.02 0.08 0.09 −0.01−0.02

−0.01 0.09 0.09 −0.01−0.02

0.09 0.09 0 −0.02

0.09 0 −0.01

0 −0.01

−0.01

1
2
3
4
5
6
7
8
9

10

2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11
Testing Period

Tr
ai

ni
ng

 P
er

io
d

0.0 0.1 0.2 0.3Brier Score  

(e) Brier score in three-month periods (QT)
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(f) Brier score in six-month periods (QT)
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(g) Brier score in three-month periods (OPENSTACK)
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(h) Brier score in six-month periods (OPENSTACK)

Fig. 6. The delta in the estimated performance of JIT models as the studied systems age.

RQ1: Results

Models that are trained using periods that are closer to
the testing period tend to outperform models that are
trained using older periods. When we focus on the columns
of Figure 5, the performance values tend to improve as
the training period increases. In QT, the trend is especially
prominent in testing periods 5 and later of the three-month
period models, where at least one year has elapsed. For
example, the long-period sections of Figures 5a and 5c show
an AUC score improvement of 16–24 percentage points for
QT and 6–12 percentage points for OPENSTACK by training

using the most recent data (i.e., the period just prior to the
testing period) instead of the data from period 1. Figures 5e
and 5g also show a boost in Brier score of 12–28 and 6–7
percentage points for QT and OPENSTACK, respectively.

Although the magnitude is lower, similar improvement
trends are observed in the six-month periods. Figures 5b
and 5d show an AUC score improvement of 5–6 percentage
points in QT and 9 percentage points in OPENSTACK. While
Figure 5e shows an improvement in Brier score of only
1 percentage point for QT, Figure 5g shows a boost of 5
percentage points for OPENSTACK.
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The improving trend tends to stabilize (at least) one
period before the testing period. For example, Figures 5a
and 5c show that the AUC improvement gained by adding
the most recent three-month period to the long-period mod-
els of both studied systems is -1–2 percentage points. The
-1 indicates a 1 percentage point loss in testing periods 6
and 8 of QT (0.68 and 0.67 in training periods 4 and 5)
and OPENSTACK (0.64 and 0.63 in training periods 5 and
6), respectively. Figures 5b and 5d show similar trends of
adding the most recent six-month period to the long-period
models of both studied systems yields improvements of 0–3
percentage points. Figures 5e, 5f, 5g, and 5h show similar
fluctuations of 0–2 percentage points in Brier score.

Our models lose a large amount of predictive power
one year after being trained. Analysis of the rows of
Figure 6 shows that after one year, there is often a large
drop in the AUC and a sharp increase in the Brier score.
Figures 6a and 6c show that our short-period models lose
3–22 and 3–34 AUC percentage points one year after being
trained (i.e., testing period = training period + 4) in QT and
OPENSTACK, respectively. The drops of only three AUC
percentage points are observed in period 7 of QT and period
9 of OPENSTACK, which Figures 5a and 5c show have a
tendency to yield strong performance scores (with perfor-
mance scores noticeably higher than those of nearby rows).
If those periods are omitted, the drops in AUC associated
with our short-period models range from 11–22 percentage
points in QT and 14–34 percentage points in OPENSTACK.
Moreover, while training periods 1 and 2 of the long-period
models in QT also suffer from large AUC drops of 22 and
13 percentage points, respectively, our long-period models
that we train using periods 5 and later tend to retain their
predictive power, only losing 1–9 AUC percentage points
after one year. Similarly, after one year, the Brier score of
our QT and OPENSTACK models drop by up to 11 and 19
percentage points, respectively (see Figures 6e and 6g).

Interestingly, Figures 6a, 6b, 6e, and 6h show that after
losing a large amount of predictive power after one year,
our QT and OPENSTACK models of periods 1 and 2 recover
some predictive power in later periods. This suggests that
the properties of fix-inducing changes in those later periods
share some similarities with the fix-inducing changes of the
earliest periods. We investigate this in RQ2.

Long-period JIT models do not always retain predictive
power for longer than short-period JIT models. Note that
the short-period and long-period models for period 1 are
identical because there is no additional data added when
training the long-period model. Hence, we only discuss the
improvement in retention of predictive power for the JIT
models that are trained using periods 2 and later.

We observe improvements in the predictive power of our
QT models when they are tested in both the three-month
and six-month settings. The rows of Figures 6a and 6b show
that the long-period models of periods 2 and later retain
more predictive power than their short-period counterparts
in terms of AUC. For example, Figure 6a shows that the
short-period model that was trained using period 3 drops
8 percentage points in AUC when it is tested on period 4,
while the long-period model only drops 5 percentage points
under the same circumstances. Moreover, Figure 6b shows
that long-period models in the six-month period setting

drop at most 3 percentage points of AUC when they are
tested on the final period (period 6), while short-period
models drop up to 10 percentage points. Figures 6e and 6f
show that there is also an improvement in the retention of
Brier score for QT.

Surprisingly, in OPENSTACK, Figures 6c and 6g show
that the long-period models underperform with respect to
the short-period models in terms of AUC and Brier score.
This suggests that fix-inducing changes vary from period to
period, with a sensitivity to more recent changes being more
beneficial than accruing additional data in OPENSTACK.

A large proportion of the predictive power of JIT models is
lost one year after being trained, suggesting that properties of
fix-inducing changes may be in flux. JIT performance decay
can be dampened by training JIT models using data that is
recorded nearer to the testing period (i.e., more recent data).

(RQ2) Does the relationship between code change prop-
erties and the likelihood of inducing a fix evolve?

RQ2: Approach
In order to address RQ2, we compute the normalized Wald
χ2 importance scores (see Section 3.4) of each studied family
of code change properties in each of our short-period and
long-period JIT models. We study trends in the importance
scores using heatmaps. The darker the shade of a given
box, the more important that that family is to our model
fit for that period. Figure 7 shows the results of our family
importance analysis. In addition, we compute the p-values
that are associated with the importance scores and denote
the significance of each cell using asterisks (*).

RQ2: Results
The Size family is a consistent top-contributor to the fits
of our models. Figure 7 shows that Size is often the most
darkly shaded cell per period (columns). Figures 7a and 7b
show that in QT, the Size family accounts for 23%–38%
and 23%–37% of the explanatory power of our three- and
six-month long-period JIT models, respectively. Moreover,
Size accounts for 10%–43% and 13%–37% of the explanatory
power of our three- and six-month short-period JIT models,
respectively. Figures 7a and 7b also show that the Size family
is the top contributor in 8 of the 11 three-month periods and
5 of the 6 six-month periods of our short-period JIT models,
and all of the three- and six-month periods for our long-
period JIT models. The contributed explanatory power of
the Size family is statistically significant in all of the periods
for our short- and long-period models in both three- and
six-month settings (p < 0.05 and p < 0.01, respectively).

Similarly, Figures 7c and 7d show that in OPENSTACK,
the Size family accounts for 11%–37% and 15%–19% of the
explanatory power of our three- and six-month long-period
JIT models, respectively. Size also contributes 3%–37% and
14%–25% of the explanatory power of our three- and six-
month short-period JIT models, respectively. Moreover, Size
is only a non-significant contributor to two of the nine three-
month short-period models, providing a significant amount
of explanatory power to all of the other three-month short-
and long-period models, as well as all of the six-month
short- and long-period models. In short, the magnitude and
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(a) Three-month periods (QT)
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(b) Six-month periods (QT)
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(c) Three-month periods (OPENSTACK)
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(d) Six-month periods (OPENSTACK)

Fig. 7. How the importance scores of the studied families of code change properties change over time. Shade indicates magnitude while asterisks
indicate significance according to Wald χ2 test, where: * p < 0.05; ** p < 0.01; *** p < 0.001.

consistency of the importance of Size suggests that advice
about limiting change size is sound.

While the explanatory power of the Size family often
dominates our models, there are periods where other fami-
lies have larger importance scores. For example, Figures 7c
and 7d also show that in OPENSTACK, the Review family
achieves a larger importance score than the Size family in:
(a) periods 2, 3, and 6 of the three-month short-term models,
(b) periods 2–7 of the three-month long-period models, (c)
periods 1–3 of the six-month short-term models, and (d)
all periods of the six-month long-term models. Figures 7a
shows that in QT, the Review family achieves a larger
importance score than the Size family in periods 5, 6, and
9 of the three-month short-term models, while the History
family achieves a larger importance score than the Size
family in the short-period model of period 6.

Fluctuations in family importance are common in
short-period models. Figure 7 shows that the shades of
family importance (rows) vary more in short-period models
than they do in long-period models. For example, in the
three-month periods of QT (Figure 7a), the delta of the
maximum and minimum explanatory power in the Size
family is 0.33 (0.43 − 0.10) and 0.15 (0.38 − 0.23) in the
short- and long-period settings, respectively. This is as one
might expect, given that long-period models are eventually
trained using much more data. Nonetheless, varying family
importance in short-period models is another indication of
fluctuation of the properties of fix-inducing changes.

Fluctuations in family importance also do occur in long-
period models, albeit less often than short-period models.
For example, Figure 7c shows that Diffusion, Reviewer
Experience, and Review importance scores grow and shrink
over the studied periods. Reviewer Experience increases
and decreases in importance as OPENSTACK ages, while the
importance of the Reviewer Experience and Diffusion fades
in the early periods and grows again in later periods.

Our awareness measures do not contribute a significant
amount of explanatory power. In this paper, we propose au-
thor and reviewer awareness—two new code change prop-
erties that compute how much of the prior change activity
the author and reviewer has been involved with (see Ta-
ble 2). Analysis of our model fits reveals that the awareness
change properties did not improve our fits to a statistically
significant degree. In fact, author awareness is often highly
correlated with other Experience properties, suggesting that
in the studied systems, author awareness does not provide
any new information that existing Experience measures do
not already capture. Despite the negative outcome of this
empirical analysis, it may still be worthwhile to compute
awareness values in future studies, since larger amounts of
data may provide an opportunity for awareness values to
differ from those of other Experience measures.

The importance of most families of code change properties
fluctuate from period to period, suggesting that the properties
of fix-inducing changes tend to evolve as projects age.
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(d) Six-month periods (OPENSTACK)

Fig. 8. The stability of the importance scores of the studied families of code change properties over time (FISDiff(f, i, j)).

(RQ3) How accurately do current importance scores of
code change properties represent future ones?

RQ3: Approach

To address RQ3, we study the stability of the importance
scores of the studied families of code change properties.
To do so, we first select the short-period and long-period
JIT models that we trained using each of the time periods.
For each model, we compute the Family Importance Score
(FIS) for each family f in: (a) the training period i (FIS(f, i))
and (b) the short-period JIT models in each period j in the
year that follows after the training period (i.e., FIS(f, j),
where j ∈ {i + 1, i + 2, · · · , i + # periods per year})). The
FIS(f, n) is the jointly tested model terms for all of the
metrics belonging to a family f in the model of period n.
Note that when computing FIS(f, j) (i.e., those values that
belong to “future” time periods), we use short-period JIT
models instead of long-period models because short-period

models should more accurately reflect the characteristics of
the period in question. We then compute the differences
between the importance scores in periods i and j using
FISDiff(f, i, j) = FIS(f, i)− FIS(f, j).

It is important to note that FISDiff(f, i, j) > 0 indicates
that the importance of family f is larger in period i (the
training period) than it is in period j, i.e., the JIT model that
is trained using period i overestimates the future importance
of family f . In these situations, quality improvement plans
that are based on the importance of f at the end of period i
would have a smaller impact than anticipated.

On the other hand, FISDiff(f, i, j) < 0 indicates that
the importance of family f is smaller in period i than
it is in period j, i.e., the JIT model that is trained using
period i underestimates the importance of family f . In these
situations, quality improvement plans that are based on the
importance of f in period imay miss important families that
would yield larger quality improvements than anticipated.
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Similar to RQ2, we show the FISDiff(f, i, j) values using
heatmaps. We also compute the p-values that are associated
with the importance score of the model of period i, since this
is the model upon which quality improvement plans would
be based. We again denote the statistical significance of
these importance scores using asterisks (*). For presentation
clarity, we only show FISDiff(f, i, j) values for the year that
follows the training of each model. As shown below, this
one-year period is enough to demonstrate interesting trends.

RQ3: Results
Long-period models should be preferred for quality im-
provement planning. The short-period models of Figure 7
show several periods where trends in importance fluctuate
sporadically. These spikes and troughs in importance scores
can have a misleading impact on quality improvement plans
when they are the source of data that is used to train
JIT models. Figure 8 shows that long-period models tend
to cope with these periods of sporadic fluctuation more
gracefully than short-period models do.

For example, Figure 7a shows that the Size family has
a large spike in importance in period 7 of the three-month
setting of QT. Training periods 5 and 6 of Figure 8a show
that the importance of the Size family is underestimated by
18 and 22 percentage points, respectively for testing period 7
in short-period models. Since the long-period models have
a smoothing effect, these underestimates drop to 7 and 9
percentage points, respectively. When period 7 becomes the
training period in Figure 8a, the impact of the Size family
is overestimated by up to 23 percentage points in the short-
period models. The maximum overestimate for the related
long-period models is 15 percentage points.

Turning to OPENSTACK, Figure 7c shows that the Review
family has a large spike in importance in period 6. Training
periods 4 and 5 of Figure 8c show that the importance of the
Review family is underestimated by 57 and 46 percentage
points, respectively in the short-period models. Again, the
smoothing effect of the long-period reduces the impact of
this spike to 27 and 29 percentage points, respectively.

The six-month setting (Figures 8b and 8d) shows less
severe over/underestimates, also suggesting that larger
amounts of training data will smooth the impact of period-
specific fluctuations on quality improvement plans.

The stability of many families of code change prop-
erties is project-sensitive. For example, the consistency of
blue-shaded cells in Figure 8a indicates that the importance
of the Size family is often overestimated in QT (median
of 5%), especially in training period 2. Indeed, Figure 7a
shows that importance of Size was largest at training period
2 of QT, trending downwards after that. Conversely, the
consistency of red-shaded cells in Figure 8c indicates that
the importance of the Size family is often underestimated in
OPENSTACK (median of 2%), especially in training periods
2 and 3. Again, Figure 7c shows that importance of Size
is growing as OPENSTACK ages from periods 2 and 3.
Models that are trained using the early periods tend to
underestimate the importance of the Size family in later
periods.

Similarly, Figure 8a shows that the History family tends
to be underestimated in QT (13 out of 24 periods for short-
period and 20 out of 24 periods for long-period), while Fig-

ure 8c shows that the Review family tends to be overvalued
in OPENSTACK (17 out of 20 periods for short-period and 19
out of 20 periods for long-period). Indeed, Figure 7a shows
that the History family tends to grow more important as QT
ages, while Figure 7c shows that the Review family tends to
become less important as OPENSTACK ages.

When constructing quality improvement plans, one should
favour large caches of data (e.g., long-period models, six-
month periods). The importance of impactful families of
code change properties like Size and Review are consistently
under/overestimated in the studied systems.

5 PRACTICAL SUGGESTIONS

Based on our findings, we make the following suggestions
for practitioners:
(1) JIT models should be retrained to include data from

at most three months prior to the testing period. Our
findings from RQ1 suggest that JIT models lose a large
amount of predictive power one year after they are
trained using the datasets that are collected from early
periods. To avoid producing misleading predictions,
JIT models should be retrained using more recent data
often, at least more than once per year.

(2) Long-term JIT models should be trained using a cache
of plenty of changes. Complementing recent work on
module-level defect predictors [35], our findings from
RQ1 indicate that larger amounts of data (i.e., our
long-period models) can dampen performance decay in
JIT models. Indeed, JIT models that are trained using
more changes tend to retain their predictive power for
a longer time than JIT models that are trained only
using the changes that were recorded during most recent
three-month period.

(3) Quality improvement plans should be revisited peri-
odically using feedback from recent data. Our findings
from RQ2 suggest that the importance of code change
properties fluctuates over time. Moreover, our findings
from RQ3 suggest that these fluctuations can lead to
misalignments of quality improvement plans. Since RQ3
shows that long-period models achieve better stability,
they should be preferred when making short-term qual-
ity plans. For long-term plans, we note that families
for whom their importance scores were underestimated
(overestimated) in the past tend to also be underes-
timated (overestimated) in the future. Hence, quality
improvement plans should be periodically reformulated
using the stability of the importance scores in the past to
amplify or dampen raw importance scores.

6 THREATS TO VALIDITY

We now discuss the threats to the validity of our study.

6.1 Construct Validity
Threats to construct validity have to do the alignment of
our choice of indicators with what we set out to measure.
We identify fix-inducing changes in our datasets using the
SZZ algorithm [39]. The SZZ algorithm is commonly used
in defect prediction research [17, 18, 19, 23], yet has known
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limitations. For example, if a defect identifier is not recorded
in the VCS commit message of a change, it will not be
flagged as defect-fixing. To combat this potential bias, we
select systems that use the Gerrit code reviewing tool, which
tightly integrates with the VCS, allowing projects to auto-
matically generate reliable commit messages based on fields
of the approved code reviews. These commit messages can
easily be processed. Hence, insofar as developers are care-
fully filling in code review records in Gerrit, our VCS data
will be clean. Nonetheless, an approach to recover missing
links that improves the accuracy of the SZZ algorithm [45]
may further improve the accuracy of our results.

Similarly, we conduct a preliminary analysis of the rates
of (a) fix-inducing changes and (b) reviewed changes in each
time period to mitigate limitations of the SZZ algorithm
and to prevent the turbulent initial adoption periods from
impacting our reviewing measurements. Although the pre-
liminary analysis is conducted to mitigate false positives in
our datasets of fix-inducing changes, it may bias our results.

Copied and renamed files may truncate our history
and experience code change properties. We rely on the
copied and renamed file detection algorithms that are built
into the git VCS. Since these algorithms are based on
heuristics, they may introduce false positives or false neg-
atives. To check how serious concerns of false positives
are, we selected a sample of 50 files that were identified
as copied/renamed from our dataset. In our opinion, all
of these files were indeed copied/renamed, suggesting that
false positives are not severely affecting our measurements.
False negatives are more difficult to quantify. Nonetheless, a
more accurate copy/rename detection technique may yield
more accurate history and experience measurements.

More broadly speaking, our code change measurements
are computed using various scripts that we have written.
These scripts may themselves contain defects, which would
affect our measurements and results. We combat this threat
by testing our tools and scripts on subsamples of our
datasets, and manually verifying the results.

Our results may be sensitive to the period length. We
select period lengths of three and six months such that each
period contains a sufficient amount of data to train stable
defect models, while still yielding enough periods to study
evolutionary trends. Moreover, this paper aims to study
changes in the properties of fix-inducing changes over time,
not to identify the “optimal” period length.

6.2 Internal Validity

Threats to internal validity have to do with whether other
plausible hypotheses could explain our results. We assume
that fluctuations in the performance and impactful prop-
erties of JIT models are linked with fluctuations in the
nature of fix-inducing changes. However, other intangible
confounding factors could be at play (e.g., changes to team
culture, contributor turnover). On the other hand, we con-
trol for six families of code change properties that cover a
broad range of change characteristics.

Our findings may be specific to nonlinear logistic regres-
sion models, and may not apply to other classification tech-
niques. As suggested by our prior work [8], we are actively
investigating other classification techniques like Random

Forest. Preliminary results indicate that the findings of RQ1
can be reproduced in the Random Forest context. However,
since the Wald χ2 importance scores are not well-defined
for such classifiers, a common importance score needs to be
identified before RQ2 and RQ3 can be replicated.

6.3 External Validity
Threats to external validity have to do with the generaliz-
ability of our results to other systems. We focus our study on
two open source systems. We chose strict eligibility criteria,
which limits the systems that are available for analysis (see
Section 3.1). Due to our small sample size, our results may
not generalize to all software systems. However, the goal
of this paper is not to build a grand theory that applies
to all systems, but rather to show that there are some
systems for which properties of fix-inducing changes are
fluctuating. Our results suggest that these fluctuations can
have a large impact on the performance of JIT models
and the quality improvement plans that are derived from
JIT models. Nonetheless, additional replication studies are
needed to generalize our results.

7 CONCLUSIONS & FUTURE WORK

JIT models are trained to identify fix-inducing changes.
However, like any method that is based on historical data,
JIT models assume that future fix-inducing changes are simi-
lar to past fix-inducing changes. In this paper, we investigate
whether or not fix-inducing changes are a moving target,
addressing this following central question:

Do the important properties of fix-inducing
changes remain consistent as systems evolve?

Through a longitudinal case study of the QT and OPEN-
STACK systems, we find that the answer is no:

• JIT models lose a large proportion of their discrim-
inatory power and calibration scores one year after
being trained.

• The magnitude of the importance scores of the six
studied families of code change properties fluctuate
as systems evolve.

• These fluctuations can lead to consistent overesti-
mates (and underestimates) of the future impact of
the studied families of code change properties.

7.1 Future Work
Below, we outline several avenues for future work that we
believe are ripe for exploration.

• Measuring (and improving) the costs of retraining
JIT models. A continuous refitting solution, where
JIT models are refit after each new change appears,
may be the optimal choice from a performance stand-
point. However, the costs of refitting JIT model must
be quantified in order to check whether this contin-
uous solution is truly the best option. These refitting
costs are difficult to quantify, since they vary based
on the model construction and analysis steps that
need to be performed. For example, the approach
that we adopt in this paper is semi-automatic. There
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are some manual steps in our correlation analysis
(see Step MC-1 in Section 3.3) and model fitting
process (see Step MC-2 in Section 3.3). These steps
would be infeasible to repeat if one must refit models
for every change. Future work may explore other
modelling techniques where these steps could be
automated (or omitted if collinearity and linearity
assumptions are not of concern). In such a setting,
continuous retraining may be a viable solution.

• Analyzing other stratification approaches. In this
study, we stratify our data into time periods using
three- and six-month period lengths. Other period
lengths could be explored in future work. Further-
more, although time periods are intuitive for splitting
data, there are other stratification approaches that
could be used (e.g., a consistent number of changes,
project releases).

• Revisiting construct and internal validity concerns.
For example, the recovery of missing links between
the individual repositories or a better technique for
detecting copied or renamed entities may produce
more accurate results.

• Replication using systems that are developed in
other contexts. Historical data from other systems
may provide other insights into the evolving na-
ture of fix-inducing changes. For example, while we
focused on two open source organizations in this
paper, a natural avenue for future work would be
to explore whether the same patterns emerge in
proprietary software development organizations.

Replication
To facilitate future work, we have made the data that we
collected and the scripts that we used to analyze them
available online.5
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