Are Fix-Inducing Changes a Moving Target?
A Longitudinal Case Study of Just-In-Time Defect Prediction

Shane MclIntosh, Member, IEEE and Yasutaka Kamei, Member, IEEE

Abstract—Just-In-Time (JIT) models identify fix-inducing code changes. JIT models are trained using techniques that assume that
past fix-inducing changes are similar to future ones. However, this assumption may not hold, e.g., as system complexity tends to

accrue, expertise may become more important as systems age.

In this paper, we study JIT models as systems evolve. Through a longitudinal case study of 37,524 changes from the rapidly
evolving QT and OPENSTACK systems, we find that fluctuations in the properties of fix-inducing changes can impact the performance
and interpretation of JIT models. More specifically: (a) the discriminatory power (AUC) and calibration (Brier) scores of JIT models drop
considerably one year after being trained; (b) the role that code change properties (e.g., Size, Experience) play within JIT models
fluctuates over time; and (c) those fluctuations yield over- and underestimates of the future impact of code change properties on the
likelihood of inducing fixes. To avoid erroneous or misleading predictions, JIT models should be retrained using recently recorded data
(within three months). Moreover, quality improvement plans should be informed by JIT models that are trained using six months (or
more) of historical data, since they are more resilient to period-specific fluctuations in the importance of code change properties.

Index Terms—Just-In-Time prediction, defect prediction, mining software repositories

1 INTRODUCTION

HE limited Software Quality Assurance (SQA) resources
T of software organizations must focus on software mod-
ules that are likely to be defective in the future. To that
end, defect prediction models are trained using historical
data to identify defect-prone software modules (e.g., meth-
ods [9,[15], files [48], or subsystems [30]). After being trained
using data from historical releases, defect prediction models
can be used to prioritize SQA effort according the predicted
defect proneness of the modules of a future release.

Change-level defect prediction [28], a.k.a., Just-In-Time
(JIT) defect prediction [18], is an alternative to module-
level defect prediction, which has several advantages [38].
First, since changes are often smaller than modules, JIT
predictions are made at a finer granularity, which localizes
the inspection process. Second, while modules have a group
of authors, changes have only one, which makes triaging JIT
predictions easier (i.e., predictions can be assigned to the au-
thor of the change). Finally, unlike module-level prediction,
JIT models can scan changes as they are being produced,
which means that problems can be inspected while design
decisions are still fresh in the developers” minds.

Despite the advantages of JIT defect prediction, like
all prediction models, they assume that the properties of
past events (i.e., fix-inducing changes) are similar to the
properties of future ones. Yet, the consistency of proper-
ties of fix-inducing changes remains largely unexplored. It
may indeed be the case that the properties of fix-inducing
changes in one development period are entirely different

e S. Mclntosh is with the Department of Electrical and Computer Engineer-
ing, McGill University, Canada.
Email: shane.mcintosh@mcgill.ca

o Y. Kamei is with the Principles of Software Languages Group (POSL),
Kyushu University, Japan.
Email: kamei@ait kyushu-u.ac.jp

from the fix-inducing changes of another. For example, since
complexity tends to accrue as systems age [3], expertise may
grow more important as systems age. To that end, in this
paper, we set out to address the following central question:

Do the important properties of fix-inducing
changes remain consistent as systems evolve?

To address our central question, we train JIT models
to identify fix-inducing changes using six families of code
change properties, which are primarily derived from prior
studies [18} [19] 23] 28]). These properties measure: (a) the
magnitude of the change (Size); (b) the dispersion of the
changes across modules (Diffusion); (c) the defect proneness
of prior changes to the modified modules (History); (d) the
experience of the author (Author Experience) and (e) code re-
viewer(s) (Reviewer Experience); and (f) the degree of partici-
pation in the code review of the change (Review). Through a
longitudinal case study of the QT and OPENSTACK projects,
we address the following research questions:

(RQ1) Do JIT models lose predictive power over time?
Motivation: If properties of fix-inducing changes do
change, JIT models that were trained to identify fix-
inducing changes of the past would quickly lose
their predictive power. Hence, we are first interested
in (a) whether JIT models lose predictive power over
time, and (b) how quickly such losses would occur.
Results: After one year, our JIT models typically lose
11-22 and 14-34 percentage points of their discrim-
inatory power (AUC) in the QT and OPENSTACK
systems, respectively. Similarly, after one year, our
JIT models lose up to 11 and 19 percentage points
from their calibration (Brier) scores in the QT and
OPENSTACK systems, respectively.

© 2017 IEEE. Author pre-print copy. The final publication is available online at: https://dx.doi.org/10.1109/TSE.2017.2693980

https://dx.doi.org/10.1109/TSE.2017.2693980

(RQ2) Does the relationship between code change prop-

erties and the likelihood of inducing a fix evolve?
Motivation: Another symptom of changing proper-
ties of fix-inducing changes would be fluctuations in
the impact that code change properties have on the
explanatory power of JIT models. If properties of fix-
inducing changes do indeed change, the prediction
modelling assumption that properties of prior and
future events are similar may not be satisfied. To
cope with this, teams may need to refit their models.
To better understand how volatile the properties of
fix-inducing changes are, we set out to study trends
in the importance scores of code change properties
in our JIT models over time.
Results: The Size family of code change proper-
ties is a consistent contributor of large importance
scores. However, the magnitude of these impor-
tance scores fluctuates considerably, ranging be-
tween 10%-43% and 3%-37% of the period-specific
explanatory power of our QT and OPENSTACK JIT
models, respectively.

(RQ3) How accurately do current importance scores of
code change properties represent future ones?
Motivation: Fluctuations in the importance scores
of code change properties may impact quality im-
provement plans, i.e., team initiatives to reduce the
rate of defects, which are based on interpretation of
JIT models. For example, if a quality improvement
plan is formulated based on a large importance score
of a property p, but p drops in importance in the
following period, even a perfectly executed quality
improvement plan will have a smaller impact than
anticipated. On the other hand, if property p has
a small importance score in the past, but grows
more important in the following period, the quality
improvement plan may omit important focal points.
To better understand the impact that fluctuations
have on quality improvement plans, we study the
magnitude of these fluctuations in our JIT models.
Results: The stability of property importance scores
in our JIT models is project-sensitive. The contribu-
tions of impactful property families like Size are both
consistently: (a) overestimated in our QT JIT models
by a median of 5% of the total explanatory power
and (b) underestimated in our OPENSTACK JIT mod-
els by a median of 2% of the total explanatory power.

Our results lead us to conclude that properties of fix-
inducing changes can fluctuate, which may impact both
the performance and interpretation of JIT defect models. To
mitigate the impact on model performance, researchers and
practitioners should add recently accumulated data to the
training set and retrain JIT models to contain fresh data from
within the last six months. To better calibrate quality im-
provement plans (which are based on interpretation of the
importance scores of code change properties), researchers
and practitioners should put a greater emphasis on larger
caches of data, which contain at least six months worth
of data, to smooth the effect of spikes and troughs in the
importance of properties of fix-inducing changes.

Paper Organization

The remainder of the paper is organized as follows. Section|2]
discusses the related work. Section [3] describes the design of
our case study, while Section [presents the results. Section[f]
presents practical suggestions that are informed by our
study results. Section [6 discloses the threats to the validity
of our study. Finally, Section [Z draws conclusions.

2 RELATED WORK

In this section, we situate our work within the context of
past studies on JIT modelling and its assumptions.

2.1 JIT Defect Modelling

Recent work has shown that JIT models have become suffi-
ciently robust to be applied in practice. Indeed, JIT models
are included in the development processes of large software
systems at Avaya [28]], Blackberry [38], and Cisco [40].

To achieve such robustness, a variety of code change
properties need to be used to predict fix-inducing changes.
For example, Mockus and Weiss [28] predicted fix-inducing
changes using a set of code change properties that are
primarily derived from the changes themselves. Kim et
al. [19] and Kamei et al. [18] built upon the set of code
change properties, reporting that the addition of a variety
of properties that were extracted from the Version Control
System (VCS) and the Issue Tracking System (ITS) helped
to improve the prediction accuracy. Kononenko ef al. [23]
also found that the addition of code change properties that
were extracted from code review databases contributed a
significant amount of explanatory power to JIT models.

We derive the majority of our set of studied code change
properties from those described in these prior studies. How-
ever, while these previous studies empirically evaluate the
prediction performance of JIT models, they do not focus on
the consistency of the properties of fix-inducing changes,
which is the central thrust of this paper.

2.2 Assumptions of Defect Modelling

Past work has shown that if care is not taken when collecting
data from software repositories, noise may impact defect
models. Aranda and Venolia [2] found that VCSs and ITSs
are noisy sources of data. For example, Antoniol et al. [1]
found that issue reports are often mislabelled, i.e., reports
that describe defects are labelled as enhancements, and
vice versa. Herzig et al. [16] found that this issue report
mislabelling can impact the ranking of modules that is
produced by defect models. Furthermore, Bird et al. [4]
found that characteristics of issue reports (e.g., severity) and
issue reporters (e.g., experience) can influence the likelihood
of linking related ITS and VCS records when it is necessary.
Without these links, datasets that are constructed for defect
prediction purposes may erroneously label defective mod-
ules as clean, or vice versa. To study the impact that missing
links may have on defect prediction, Kim et al. [20] sever
existing links to simulate a variety of rates of missing links.

On the other hand, recent work also shows that noise
and bias may not be a severe impediment to defect mod-
elling. For example, our prior work [41] showed that issue
report mislabelling rarely impacts the precision of defect

TABLE 1
An overview of the studied systems. Those above the double line satisfy our criteria for analysis.

System Timespan Changes Reviews
Start End Total Defective Reviewed Self reviewed # Reviewers
QT 06/2011 | 03/2014 || 25,150 | 2,002 (8%) 23,821 (95%) 1,217 (5%) =23 M=1.0,sd =2.8
OPENSTACK 11/2011 | 02/2014 12,374 | 1,616 (13%) 12,041 (97%) 117 (<1%) z=4.3, M =3.0,sd = 5.3
ITK 08/2010 | 08/2014 3,347 - - - -
T T VTK T 7||08/2010 | 08/2014 || 7723~ T -7 T || * 4237 (55%) | — - T T |0 T T T T T -
ANDROID 08/2010 | 01/2013 || 61,789 - 2,771 (4%) - -
LIBREOFFICE 03/2012 | 11/2013 11,988 - 1,679 (14%) - -

models or the interpretation of the top-ranked variables.
Nguyen et al. [33] found that biases exist even in a “near-
ideal” development setting, where links are automatically
recorded, suggesting that linkage bias is a symptom of any
development process. Moreover, Rahman et al. [35] found
that the total number of modules has a larger impact on
defect model performance than noise or biases do.

Even with data that is completely free of noise and bias,
there are assumptions that must be satisfied in order to
fit defect models. Turhan [44] argued that “dataset shifts”
(i.e., dataset characteristics that violate modelling assump-
tions [27]) may influence predictive models in software
engineering. In a similar vein, we study whether properties
of fix-inducing changes are consistent enough to satisfy the
assumption that past events are similar to future events.

Past studies also use historical data to improve the
performance of defect prediction models [22] 32| 47]. For
example, Nam et al. [32] mitigated dataset shifts by ap-
plying a transfer learning approach, which makes feature
distributions in training and testing datasets more similar.
Zimmermann et al. [47] showed how complexity, problem
domain, and change rate can be used to predict defects in
Microsoft and Eclipse systems. While these studies predict
which modules are at-risk of containing defects, our study
focuses on understanding the impact that various code
change properties have on the risk that changes pose for
inducing future fixes in a longitudinal setting.

Perhaps the most similar prior work is that of Ekanayake
et al. [7], who studied the stability of module-level defect
prediction models. They used trends in the predictive power
of defect prediction models to identify periods of “concept
drift,” i.e., periods where historical trends do not aid in iden-
tifying defect-prone modules. Our work differs from that of
Ekanayake et al. in two ways. First, we study JIT models,
which are concerned with fix-inducing changes rather than
defective modules. Second, while past work focuses on
model performance, we study the impact that fluctuations
in the importance of properties of fix-inducing changes have
on both the performance (RQ1) and the interpretation (RQ2,
RQ3) of JIT models.

3 CASE STuDY DESIGN

In this section, we describe our: (1) rationale for selecting
our studied systems and (2) data extraction process. In addi-
tion, we describe our approaches to: (3) model construction
and (4) model analysis.

3.1

To address our research questions, we perform a longitu-
dinal case study on successful and rapidly evolving open
source systems. In selecting the subject systems, we identi-
fied three important criteria that needed to be satisfied:

Studied Systems

e Criterion 1: Traceability. We need reliable data in
order to produce healthy datasets (see Section [2.2).
To that end, it should be reasonably straightforward
to extract from the VCS of a studied system, a series
of code changes, i.e., listings of changed lines to a set of
code files that developers have submitted to the VCS
together. It should also be straightforward to connect
a large proportion of those code changes to issue re-
ports, which are stored in ITSs, and code review data,
which is stored in code review databases. Without a
traceable process, our code change properties will be
unreliable, and our JIT models may be misleading.

o Criterion 2: Rapidly evolving. In order for JIT mod-
els to yield the most benefit, our studied systems
must undergo plenty of change on a continual basis.

e Criterion 3: Code review policy. Recent studies
report that code review can have an impact on post-
release software quality [26, 42] and defect prone-
ness [23]. To control for this, we focus our study on
systems where code reviewing is a common practice.

In order to address criterion 1, we study systems that
adopt the Gerrit code review toolﬂ Gerrit tightly integrates
with VCSs, automatically submitting commits after project-
specific quality gates are passed (e.g., two reviewers vote in
favour of acceptance of a change). These Gerrit-generated
commits are accompanied by a structured message, which
includes references to the review record (ChangelD) and any
addressed issue reports (IssuelDs).

Table [1f shows that, similar to our prior work [26} 43],
we begin with six candidate systems that adopt the Gerrit
code review tool. In order to address criterion 2, we remove
ITK from our set of candidate systems because only 3,347
changes appear in the ITK Gerrit instance over four years.

In order to address criterion 3, we ensure that the studied
systems have high rates of review coverage. Since we find
that only 55% of VTK, 4% of ANDROID, and 14% of LI-
BREOFFICE changes could be linked to reviews, we remove
these three systems from our set of candidate systems.

Table |1 provides an overview of the two candidate sys-
tems that satisfy our selection criteria (QT and OPENSTACK).

1. https:/ /code.google.com/p/gerrit/

https://code.google.com/p/gerrit/

)

: Legend : Execute sanity

iPass —>! / tests N

: Fail —==>: 1) I 3)

Upload change [« -~~~ -~~---1 Solicit
revision(s) e Sl peer feedback

4)
Initiate integration
request

</

Version
Control
System

(6)

Final integration

k (5)

Execute
integration tests

|
1
- | ~
- 1 ~
- ~
- ! ~
- | ~
|
1
!
|
1

Fig. 1. An overview of the Gerrit-based code review process.

QT is a cross-platform application framework whose de-
velopment is supported by the Digia corporation, how-
ever welcomes contributions from the community-at-largeﬂ
OPENSTACK is an open-source software platform for cloud
computing that is developed by many well-known software
organizations (e.g., IBM, VMware, NEC)E] Although the
cleaning process is described below (see Section [3.2), the
clean QT dataset contains 25,150 code changes, 23,821 of
which (95%) can be linked to code reviews. Similarly, the
clean OPENSTACK dataset contains 12,374 code changes,
12,041 of which (97%) can be linked to code reviews.

3.1.1 Gerrit Code Review Process

Gerrit is a code review tool that enables a traceable code
review process for git-based software projects. It tightly
integrates with test automation and code integration tools,
allowing users to codify code review and verification criteria
that must be satisfied before a code change can be integrated
into upstream git repositories.

Using Gerrit, both the QT and OPENSTACK projects
implement similar workflows for managing code contribu-
tions. Figure [1| provides an overview of the process, which
is made up of the following steps, checks, and quality gates.

(1) Upload change revision(s). An author of a code change
uploads a new change or a change revision to a Gerrit
instance and invites a set of reviewers to critique it by
leaving comments for (a) the author to address; or (b)
review participants to discuss.

(2) Execute sanity tests. Before reviewers examine the sub-
mitted changes, sanity tests verify that the changes are
compliant with the coding style conventions, and does
not introduce obvious regression in system behaviour
(e.g., code does not compile). If the sanity tests report
issues, the change is blocked from integration until the
author uploads a revision of the change that addresses
the issues. This step provides quick feedback and avoids
wasting reviewer effort on finding style or low-level
coding issues that can be automatically checked.

(3) Solicit peer feedback. After the submitted changes pass
sanity testing, the author solicits reviewers to examine
the change. Each reviewer is asked to provide feedback
and a review score. In Gerrit, reviewers can provide
one of five score values: “+2” indicates strong support

2. http:/ /qt.digia.com/
3. http:/ /www.openstack.org/

4

for the change and approval for integration, “+1” in-
dicates weak support for the change without approval
for integration, “0” indicates abstention, “-2” indicates
strong disagreement with the change and also blocks
integration, and “-1” indicates weak disagreement with
the change without blocking integration.

(4) Initiate integration request. Gerrit allows teams to cod-
ify code review and verification criteria that must be sat-
isfied before changes can be integrated into the project
git repositories. For example, the OPENSTACK inte-
gration policy specifies that an author needs to receive
at least two +2 scoresE] After satisfying the integration
criteria, the author can initiate an integration request,
which queues the change for integration.

(5) Execute integration tests. Code changes that are queued
for integration are scanned by the integration testing
system. The integration testing system runs a more
rigourous set of tests than the sanity testing phase to
ensure that changes that land in the project git reposi-
tories are clean. If the integration tests report failures, the
change may not be integrated until the author uploads
a revision of the change that addresses the failures.

(6) Final integration. Once the change passes integration
testing, Gerrit automatically commits the change into
the upstream (official) project git repositories.

Table [I| shows that the Gerrit-based code review pro-
cesses of QT and OPENSTACK achieve high coverage rates
of 95% and 97%, respectively. On occasion, the code review
process is omitted due to a rush to integrate a critical
change. However, the vast majority of changes undergo a
code review. Moreover, changes are rarely approved for
integration by only the author. Only 5% and <1% of changes
were self-approved in QT and OPENSTACK, respectively.

Table|1|also shows that more people tend to be involved
in the OPENSTACK review process than the QT one. The
analyzed changes have a median of one reviewer in QT and
a median of three reviewers in OPENSTACK.

3.2 Data Extraction

In order to conduct our case study, we extract data from
the VCS, ITS, and code review databases of the studied sys-
tems. Figure 2| provides an overview of our data extraction
approach. Below, we describe each step in our approach.

(DE1) Extract Issue Data

From each issue in the ITSs of the studied systems, we
extract its unique identifier (IssuelD), the timestamp from
when the issue was reported (RepDate), and the issue type
(Type, e.g., bug or enhancement). The IssuelD is used to link
issues to code changes, while RepDate and Type are used to
detect false positive links in our datasets.

(DE2) Extract Code Properties

When extracting data from the VCS, we have three goals.
First, we detect whether a change is potentially fix-inducing
or not using the SZZ algorithm [39]. The SZZ algorithm
identifies fix-inducing changes by: (a) identifying defect-
fixing changes, (b) pinpointing the lines that are modified

4. http:/ /docs.openstack.org/infra/manual /developers.html#
project-gating

http://qt.digia.com/
http://www.openstack.org/
http://docs.openstack.org/infra/manual/developers.html#project-gating
http://docs.openstack.org/infra/manual/developers.html#project-gating

Data Extraction

Model Construction Model Analysis

— Repeated for each ReQ'ezSi?? T
X . mode
lssue (DE1) I<<|1ml RepDate{Type] IC:alndg(i- studied period >| Analyze Model
Tracking Extract Issue > ceve’ data Performance
System Data — >
Period 1 Regression
prp (DE2) ssuelD|[ChangelD|Metric A]-.. (DE4) (MC1) model 2 (MA2)
Version T Merge and) Handle Colli > —>| Analyze Property
Control Extract Code > Preprocess Period 2 ar;’r; el?ti;r;ear Importance
System Properties Data P =
~
A v Regression
Code (DE3) hangelD|Metric A|... (MC2) model ... (MA3)
Review Extract Review 1 Fit Regression > >| Analyze Property
System Properties 2 Model W Stability

Fig. 2. An overview of the design of our case study.

TABLE 2
A taxonomy of the studied families of code and review properties.

Property Description Rationale
g | Lines added The number of lines added by a change. The more code that is changed, the more likely that defects
& [Lines deleted The number of Tines deleted by a change. will be introduced [31].

g | Subsystems The number of modified subsystems. Scattered changes are riskier than focused ones because they
g) Directories The number of modified directories. require a broader spectrum of expertise [6]/14].

& [Files The number of modified files.

A [Entropy The spread of modified lines across files.

Unique changes | The number of prior changes to the modified | More changes are likely more risky because developers will have to
> files. recall and track many previous changes [18].

& [Developers The number of developers who have changed | Files previously touched by more developers are likely more

4 the modified files in the past. risky [24].

= Age The time interval between the Jast and current | More recently changed code is riskier than older code [10].
changes.

o | Prior changes The number of prior changes that an actor! | Changes that are produced by novices are likely to be more risky

g has participated in.2 than changes produced by experienced developers [28].

& [Recent changes | The number of prior changes that an actor

8 has participated in weighted by the age of the

e changes (older changes are given less weight

g than recent ones).

& | Subsystem The number of prior changes to the modified

E changes subsystem(s) that an actor has participated in.

£ | Awareness® The proportion of the prior changes to the | Changes that involve developers who are aware of the prior

fé modified subsystem(s) that an actor has par- | changes in the impacted subsystems are likely to be less risky than
ticipated in. those that do not.

Iterations Number of times that a change was revised | The quality of a change likely improves with each iteration. Hence,

prior to integration. changes that undergo plenty of iterations prior to integration may
be less risky than those that undergo few [34]142].

Reviewers Number of reviewers who have voted on | Since more reviewers will likely raise more issues so that they may
> whether a change should be integrated or | be addressed prior to integration, changes with many reviewers are
9 abandoned. likely to be less risky than those with fewer reviewers [36].

& [Comments The number of non-automated, non-owner | Changes with short discussions may not be deriving value from the
= comments posted during the review of a | review process, and hence may be more risky [25]26].
change.
Review The length of time between the creation of | Changes with shorter review windows may not have spent enough
window a review request and its final approval for | time carefully analyzing the implications of a change prior to
integration. integration, and hence may be more risky [34]142].

T Either the author or reviewer of a change. ? Either authored or reviewed. > New property proposed in this paper.

by defect-fixing changes using the diff command, and
(c) traversing the version history to detect which change(s)
introduced the modified lines using the blame command.

Our second goal is to extract the IssuelDs and
ChangelDs that are encoded in commit messages. The Is-
suelDs are used to link code changes to issue reports in the
ITS, while the extracted ChangelDs are used to link code
changes to review records in the code review database. The
merging and preprocessing steps are defined in more detail
under Step DE4 below.

Our third goal is to compute, for each change, four
families of code change properties that have been shown to

share a relationship with the likelihood of inducing fixes in
past work [17,[18][19] 28]. We compute a broad range of code
change properties that measure the change volume (Size),
its dispersion across the codebase (Diffusion), the modified
areas of the codebase (History), and the experience of the
author (Author experience). Table 2 provides an overview
of the studied properties. We describe each family below.
Size properties measure the volume of code that was
modified within the change. For each change, we compute
the number of lines added and lines deleted. These properties
can be directly computed by analyzing the change itself.

Diffusion properties measure the dispersion of a change
across a codebase. For each change, we compute the num-
ber of distinct names of modified: (1) subsystems (i.e., root
directories), (2) directories (i.e., full directories within the
codebase), and (3) files. To illustrate, consider the file
gtbase/src/dbus/qgdbuserror. cpp. The subsystem of
this file is gtbase and the directory is gtbase/src/dbus.

History properties measure the past tendencies of mod-
ules that were involved with a change. For each change,
we measure history properties using the changes that have:
(a) modified the same files that are being modified by the
change in question and (b) been recorded prior to the change
in question. With this in mind, we compute the number
of unique changes that have impacted the modified files in
the past and the number of developers who have changed
the modified files in the past. We also compute the age,
which is the average of the time intervals between the last
change that was made to each modified file and the change
in question. Similar to prior studies [18] 28], we compute
these history properties using all of the changes that were
recorded prior to the change in question.

Files may be copied or renamed, which, if not handled
carefully, may have an impact on our history properties.
In this paper, we rely on the built-in capability of git to
detect copied and renamed files. When a copied/renamed
file is detected, we include the history of the source of the
copy/rename operation in the analysis of the target file.
Since git copy/rename detection is based on heuristics, the
detection results are not without limitations. We discuss the
potential impact that false positives and negatives may have
on our history properties in Section

Author experience properties estimate the expertise of
the author of a change. Similar to the history prop-
erties, author experience properties are computed using
past changes. The experience computes the number of past
changes that an author has made to the codebase. Recent ex-
perience weighs the experience value of changes by their age.
Similar to recent work [18], we compute recent experience
by applying fw, where age is measured in years. Subsystem
experience is the number of past changes that an author has
made to the subsystems that are being modified by the
change in question. Finally, we propose author awareness—
a new expertise property that measures the proportion of
past changes that were made to a subsystem that the author
of the change in question has authored or reviewed. Again,
Section[6.1]discusses the impact that git’s copy/rename de-
tection may have on our author experience measurements.

(DE3) Extract Review Properties

When extracting data from the review databases of our
studied systems, we have two goals. First, we need to extract
the ChangelDs that are encoded in the review records. These
IDs uniquely identify a review record, and can be used to
link them with code changes in the VCSs. Next, we compute,
for each review record, two families of properties that have
been shown to share a relationship with the likelihood of
inducing a fix [23, 42]. We compute code review properties
that measure the experience of the reviewer(s) (Reviewer
experience) and characteristics of the review process (Re-
view). Table [2| provides an overview of the studied review
properties. We describe each family below.

TABLE 3
The number of fix-inducing changes that survive each step of our
filtering process.

Filter QT OPENSTACK
Total % A | Total % A
T, | No filters 5495 17% 4423 16% -
Fy Code comments 5407 17% 88 | 4291 16% 132
Fy Whitespace 5133 16% 274 | 3,814 14% 477
changes
F3 Issue report date 4,158 13% 975 | 3,480 13% 334
Fy Issue report type 3242 10% 916 | 3,480 13% 0
Fs5, | Too much churn 3,190 10% 52 | 3474 13% 6
F5;, | Too many files 3,162 10% 28 | 3461 13% 13
Fs. | No lines added 3,153 11% 9 | 3450 14% 11
Fg Period 2,891 11% 262 | 2,788 23% 662
F7 Suspicious fixes 2,172 9% 719 | 1,830 15% 958
Fy Suspicious 2,002 8% 170 | 1,616 13% 214
inducing changes

Reviewer experience properties estimate the expertise
of the reviewers of a change. Again, experience computes
the number of past changes that a reviewer has reviewed,
recent experience weighs experience by age, and subsystem
experience focuses on the subset of past reviews that have
changed the same subsystems as the change in question.
Finally, awareness is the proportion of past changes that
were made to a subsystem that the reviewer has authored
or reviewed. Again, we refer readers to Section for a
discussion of the impact that our reliance on git’s built-
in copy/rename detection may be having on our reviewer
experience measurements.

Review properties estimate the investment that devel-
opers have made in the code review process. Iterations
counts the number of times that a code change was updated
prior to integration. Reviewers counts the number of devel-
opers who approved a change for integration. Comments
counts the number of reviewer comments that appear in
a review record. Review window is the length of the time
interval between when a review record was opened and
when the changes were approved for integration.

(DE4) Merge and Preprocess Data

After extracting data from the VCSs, ITSs, and review
databases of the studied systems, we merge them using the
extracted identifiers (ChangelDs and IssuelDs). This merg-
ing allows us to filter our data to mitigate false positives
in our datasets. Table 3| shows the impact of applying each
filter sequentially to our sets of fix-inducing changes.

First, as suggested by Kim et al. [21], we ignore potential
fix-inducing changes that only update code comments (£7)
or whitespace (F3). Next, we filter out potential fix-inducing
changes that appear after the date that the implicated defect
was reported (F3) [39]]. Then, we focus on only those defect-
fixing changes where the issue type in the ITS is bug (F}).

After merging the datasets and cleaning the fix-inducing
changes, we preprocess our dataset to remove extremities.
We ignore large commits—those that change at least 10,000
lines (F5,) or at least 100 files (F5;,)—because these commits
are likely noise that is caused by routine maintenance (e.g.,
copyright updates). We also ignore changes that do not add
any new lines (F5.), since due to a limitation in the SZZ
approach, only commits that introduce new lines have the
potential to be flagged as fix-inducing.

Rate of o fix-inducing changes A reviewed changes

Periods removed because of review rate fluctuations low rate of fix-inducing changes

' ' ' ' ' ' ' ' '
10 11 12 13 14 15 16 17 18

L
1 2 3 4 5 6 7 8 9
Time period

(a) QT

Rate of o fix-inducing changes A\ reviewed changes

low review rate

Periods removed because of

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Time period

(b) OPENSTACK

Fig. 3. The rate of changes that are fix-inducing and the review coverage rate in the studied systems. The shaded areas are filtered out of our
analysis due to large fluctuations in review coverage or drops in the rate of fix-inducing changes.

In order to study whether properties of fix-inducing
changes are consistent, we stratify our data into time pe-
riods. We analyze period lengths of three and six months,
since we find that at least three months are needed for our
studied systems to accrue a substantial amount of data (i.e.,
1,721-2,984 changes in QT and 831-2,094 in OPENSTACK),
while still yielding enough time periods to study trends
(at least 18 periods in QT and 16 periods in OPENSTACK).
Although the primary goal of our paper is not to identify the
optimal period length, we discuss the threat that our choice
of period lengths imposes on our conclusions in Section

Figure [3| shows the results of a preliminary analysis
of the rates of (a) fix-inducing changes and (b) reviewed
changes in each time period (Fs). We consider the rate
of fix-inducing changes to counteract a limitation in the
S7ZZ algorithm. The SZZ algorithm identifies defect-fixing
changes, then traverses the version history to detect which
change(s) had introduced the lines that were modified by
the fix using the blame command. The SZZ algorithm needs
future data to detect whether a change is fix-inducing or not.
Hence, the later the period in the analyzed data, the lower
the chances that a fix has been committed to address the
problems in those commits. We do not filter out periods
using a threshold value for the rate of fix-inducing changes
in a period, but instead remove the latest periods where we
begin to see a steady drop in the rate by analyzing Figure

We also consider the rate of reviewed changes, since one
of our criteria to select our subject systems is code review
policy. However, even if the QT and OPENSTACK projects
have satisfied this criterion overall, the early periods of
these projects may not. These early periods of adoption of
code review are likely turbulent as changes are being made
to development processes. To prevent the turbulent initial
adoption period from impacting our reviewing measure-
ments, we filter out periods where the review rate is low.
Similar to the rate of fix-inducing changes, we do not select a
threshold value for the rate of reviewed changes, but instead
analyze Figure 3] in search of suspicious values.

Figure shows that code review coverage was spo-
radic in the early periods of QT development (periods 1-
5). Furthermore, the rate of fix-inducing changes drops
dramatically in the final two development periods on record
(periods 17 and 18). Since this will introduce an additional
confounding factor in our analysis, we elect to filter those

periods out of our QT dataset. Similarly, since Figure
shows that code review coverage was extremely low for the
first six development periods of OPENSTACK (periods 1-6),
we opt to filter those periods out of our OPENSTACK dataset.

Finally, our recent work proposes a framework for eval-
uating the results of SZZ-generated data [5]. We use the
framework to highlight suspicious fixes (F%), i.e., changes
that fix more than the upper Median Absolute Deviation
(MAD) of the number of fixed issues by a change for
that project. Similarly, we use the framework to highlight
suspicious fix-inducing changes as well (F3y), i.e., changes
that induce more than the upper MAD of the number of
fixes that were induced by a change for that project.

3.3 Model Construction

In this step, we use the preprocessed data to construct our
JIT models. Figure [2] provides an overview of our model
construction approach. We describe each step below.

(MC1) Handle Collinear Properties

Collinear code change properties will interfere with each
other, distorting the modelled relationship between them
and the likelihood of introducing defects. Thus, we remove
collinear properties prior to constructing our JIT models.
Correlation analysis: We first check for code change
properties that are highly correlated with one another using
Spearman rank correlation tests (p). We choose a rank cor-
relation instead of other types of correlation (e.g., Pearson)
because rank correlation is resilient to data that is not nor-
mally distributed. We use a variable clustering analysis to
construct a hierarchical overview of the correlation among
the properties [37]. For sub-hierarchies of code change prop-
erties with correlation |p| > 0.7, we select only one property
from the sub-hierarchy for inclusion in our models.
Redundancy analysis: In order to detect redundant code
change properties, we fit preliminary models that explain
each property using the others. We use the R? value of these
models to measure how well each property is explained by
the others. We use the implementation of this approach pro-
vided by the redun function in the rms R package, which
iteratively drops the property that is most well-explained
by the other properties until either: (1) no model achieves
an R? > 0.9, or (2) removing a property would make a

previously dropped property no longer explainable, i.e., its
preliminary model will no longer achieve an R? > 0.9.

(MC2) Fit Regression Model

We use a nonlinear variant of multiple regression modelling
to fit our JIT models, which relaxes the assumption of a
linear relationship between the likelihood of introducing
defects and our code change properties. This relaxed fitting
technique enables a more accurate fit of the data. We allocate
a maximum of three degrees of freedom to each property
(i.e., allowing the relationship to change directions once).
Moreover, we fit our curves with restricted cubic splines,
which fit smooth transitions at the points where curves
change in direction (due to the curling nature of cubic
curves). Finally, as suggested by Harrell Jr. et al. [12} [13],
we ensure that we do not exceed a ratio of 15 events (i.e.,
fix-inducing changes) per degree of freedom spent, which
mitigates the risk of overfitting, i.e., producing a model that
is too specialized for the training dataset to apply to others.

The nonlinear variant of multiple regression modelling
is often used in modelling of software engineering phenom-
ena [26)29]46], especially for understanding the relationship
between software development practices and software qual-
ity. However, using other techniques may lead to different
conclusions. We discuss this threat to validity in Section [6.2]

3.4 Model Analysis

Next, we address our research questions by analyzing our
JIT models. Figure 2] provides an overview of our model
analysis approach. We describe each step below.

(MA1) Analyze Model Performance

To assess the accuracy of our JIT models, we compute
threshold-independent measures of model performance. We
avoid threshold-dependent measures like precision and re-
call, which depend on arbitrarily thresholds and are sensi-
tive to imbalanced data.

The Area Under the receiver operator characteristics
Curve (AUC) is a measure of a model’s discriminatory power,
i.e., its ability to differentiate between fix-inducing and clean
changes. AUC is computed by measuring the area under
the curve that plots the true positive rate against the false
positive rate, while varying the threshold that is used to
determine if a change is classified as fix-inducing or not.
Values of AUC range between 0 (worst discrimination), 0.5
(random guessing), and 1 (perfect discrimination).

In addition to being a measure of discriminatory power,
the Brier score is also a measure of a model’s calibration, i.e.,
its absolute predictive accuracy. The Brier score is computed
as Brier = % Zi\lzl(yZ — 4;)?, where N is the total number
of changes; y; = 1 if the i change is fix-inducing, y; = 0
otherwise; and g; is the probability of the i change being
fix-inducing according to the JIT model under analysis. It is
important to note that low Brier scores are desirable. Indeed,
Brier = 0 indicates perfect calibration, while Brier = 1
indicates the worst possible calibration.

(MA2) Analyze Property Importance

We estimate the impact that each family of code change
properties has on the explanatory power of our JIT models.

Short-period

Long-period training data training data

| Period 1 Period 2 Period 3 Testing period

Fig. 4. An illustrative example of the types of the JIT model types.

In addition to each family being composed of several prop-
erties, each property has been allocated several degrees of
freedom due to our nonlinear model construction approach
(see Section[3.3). Each degree of freedom is represented with
a model term. Hence, to control for the effect of multiple
properties (and multiple terms), we jointly test the set of
model terms for each family using Wald x* maximum like-
lihood (a.k.a., “chunk”) tests [11]. In order to make the Wald
x? values of multiple models comparable, we normalize
them by the total Wald x? score of the JIT model from which
they originate. The larger the normalized Wald x? score, the
larger the impact that a particular family of properties has
on the explanatory power of the JIT model under analysis.

(MA3) Analyze Property Stability

To assess the stability of the importance scores for a family
of code change properties f over time, we compute the
difference between the importance scores of f in a model
that is trained using time period p and a future model that
is trained using time period p + x, where z > 0.

4 CASE STuDY RESULTS

In this section, we present the results of our case study
with respect to our research questions. For each research
question, we present our approach and discuss the results.

(RQ1) Do JIT models lose predictive power over time?
RQ1: Approach

To address RQ1, we study how quickly a JIT model loses
its predictive power by training JIT models for each of the
time periods (i.e., varying the training period), and measur-
ing their performance on future periods. As illustrated in
Figure [for each period, we train two types of models:

1) Short-period models are JIT models that are only
trained using changes that occurred during one time
period. We train short-period models because older
changes may have characteristics that no longer apply
to the latest changes.

2) Long-period models are JIT models that are trained
using all of the changes that occurred during or prior
to a particular period. We train long-period models
because recent work suggests that larger amounts of
training data tend to yield defect models that perform
better, even when biases are introduced [35]. Hence, de-
spite potential changes in the properties of fix-inducing
changes, being exposed to additional data may improve
the performance of our JIT models.

After training our JIT models, we test their performance
when they are applied to the periods that occur after the last
training period. As described in Section 3.4, we measure the

AUC Score 0.00 0.25 0.50 0.75 1.00

AUC Score 0.00 0.25 0.50 0.75 1.00

Short-period Long-period

\/1//0.67 0.64 0.61 0.61 0.65
/068 ' (061063068
4/ 069 ' 061063067068
1)7(10.68 /- 065 06 062068 '
4 (045 11 0.67 0.69 0.64 0.68 0.54 0.56 0.63 0.66
1 ‘{ 104/ 0.58 0.59 0.53 0.55 0.48 0.49 0.41 0.42 0.54 0.54 |[177/0.58 0.59 0.53 0.55 0.48 0.49 0.41 0.42 0.54 0.54

T R e e S A e e S R R A R SR

1234567891011 123456 7 8 91011
Testing Period

Training Period
?

(a) AUC in three-month periods (QT)

Long-period

Short-period

Testing Period
(b) AUC in six-month periods (QT)

T
AUCScore 50 025 050 075 1.00 AUCScore g5 025 050 075 1.00
Short-period Long-period Short-period Long—period
9- 0.78 il
B8+ 072 0.74 3 5 o
5 7+ 068 064 q:) a- 0.69 073
a 6 067 061 059 064 063 0. a
o5+ 063 064 0.62 0.69 0.64 >»3- 0.69 0.64 0.69
% 4 063 063 0.6 064 066 0.64 063 O %
‘3 31 063 064 061 0.67 064 063 0.62 3 2- 0.76 0.66 0.63 0.67
|= 2+ (R 052 052 053 059 058 057 0.6 (P8 059 0.56 0.56 0.59 0.58 O.! ':
1 ‘{ LRG0 054 055 054 057 057 055 0.58 LECR 0 054 055 054 057 057 0. 1- oee 087 058 058 061
e S A e S S A R A e R S A i | . |
1 2 3 4 5 6 7 8 9 12 3 4 5 6 7 8 9 1 2 3 4 5

Testing Period

(c) AUC in three-month periods (OPENSTACK)

; | - -
BrierScore oo™ "01 02 03 04 05

Short-period Long—period

11
10
9
8
7
6
5
4
3
2
1

°
L2
=
[o]
o
j=2)
£
£
o
=

0.22 0.19 0.26 0.33
o
4 56 7

0.22 0.19 0.260.33;
i

45678

Testing Period

(e) Brier score in three-month periods (QT)

; | |
Brier Score o501 02 03 04 05

Testing Period

(d) AUC in six-month periods (OPENSTACK)

; | -
Brier Score 5501 02 03 04 05

Long—period

Short—period

Training Period
PN WA OO

Testing Period

(f) Brier score in six-month periods (QT)

; [|
Brier Score 5507 02 03 04 05

Long-period

Short-period

017 016 022
021 02 025

8 9 1
Testing Period

(g) Brier score in three-month periods (OPENSTACK)

Short-period Long-period

Training Period
= N w S (&

Testing Period

(h) Brier score in six-month periods (OPENSTACK)

Fig. 5. The predictive performance of JIT models as the studied systems age.

performance of our models using the AUC (discriminatory
power) and the Brier score (calibration).

For example, Figure [illustrates that for a training pe-
riod 3, the short-period model is trained using the changes
that occurred during period 3, while the long-period model
is trained using changes that occurred during periods 1,
2, and 3. These short-period and long-period models of
period 3 are tested using periods 4 through to the last
studied period. The AUC and Brier performance scores are
computed for each testing period individually.

Finally, we plot the trends in AUC and Brier perfor-
mance scores over time using heatmaps. In Figure [p the
shade of a box indicates the performance value, where blue
shades indicate strong performance, red shades i