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ABSTRACT
Software code review, i.e., the practice of having third-party
team members critique changes to a software system, is a
well-established best practice in both open source and pro-
prietary software domains. Prior work has shown that the
formal code inspections of the past tend to improve the qual-
ity of software delivered by students and small teams. How-
ever, the formal code inspection process mandates strict re-
view criteria (e.g., in-person meetings and reviewer check-
lists) to ensure a base level of review quality, while the mod-
ern, lightweight code reviewing process does not. Although
recent work explores the modern code review process qual-
itatively, little research quantitatively explores the relation-
ship between properties of the modern code review process
and software quality. Hence, in this paper, we study the
relationship between software quality and: (1) code review
coverage, i.e., the proportion of changes that have been code
reviewed, and (2) code review participation, i.e., the degree
of reviewer involvement in the code review process. Through
a case study of the Qt, VTK, and ITK projects, we find
that both code review coverage and participation share a
significant link with software quality. Low code review cov-
erage and participation are estimated to produce compo-
nents with up to two and five additional post-release defects
respectively. Our results empirically confirm the intuition
that poorly reviewed code has a negative impact on software
quality in large systems using modern reviewing tools.
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1. INTRODUCTION
Software code reviews are a well-documented best practice

for software projects. In Fagan’s seminal work, formal design
and code inspections with in-person meetings were found
to reduce the number of errors detected during the testing
phase in small development teams [8]. Rigby and Bird find
that the modern code review processes that are adopted in a
variety of reviewing environments (e.g., mailing lists or the
Gerrit web application1) tend to converge on a lightweight
variant of the formal code inspections of the past, where
the focus has shifted from defect-hunting to group problem-
solving [34]. Nonetheless, Bacchelli and Bird find that one of
the main motivations of modern code review is to improve
the quality of a change to the software prior to or after
integration with the software system [2].

Prior work indicates that formal design and code inspec-
tions can be an effective means of identifying defects so that
they can be fixed early in the development cycle [8]. Tanaka
et al. suggest that code inspections should be applied metic-
ulously to each code change [39]. Kemerer and Faulk in-
dicate that student submissions tend to improve in quality
when design and code inspections are introduced [19]. How-
ever, there is little quantitative evidence of the impact that
modern, lightweight code review processes have on software
quality in large systems.

In particular, to truly improve the quality of a set of pro-
posed changes, reviewers must carefully consider the poten-
tial implications of the changes and engage in a discussion
with the author. Under the formal code inspection model,
time is allocated for preparation and execution of in-person
meetings, where reviewers and author discuss the proposed
code changes [8]. Furthermore, reviewers are encouraged
to follow a checklist to ensure that a base level of review
quality is achieved. However, in the modern reviewing pro-
cess, such strict reviewing criteria are not mandated [36],
and hence, reviews may not foster a sufficient amount of
discussion between author and reviewers. Indeed, Microsoft
developers complain that reviews often focus on minor logic
errors rather than discussing deeper design issues [2].

We hypothesize that a modern code review process that
neglects to review a large proportion of code changes, or suf-
fers from low reviewer participation will likely have a nega-
tive impact on software quality. In other words:

1
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If a large proportion of the code changes that are
integrated during development are either: (1) omit-
ted from the code review process (low review cover-
age), or (2) have lax code review involvement (low
review participation), then defect-prone code will
permeate through to the released software product.

Tools that support the modern code reviewing process,
such as Gerrit, explicitly link changes to a software system
recorded in a Version Control System (VCS) to their respec-
tive code review. In this paper, we leverage these links to
calculate code review coverage and participation metrics and
add them to Multiple Linear Regression (MLR) models that
are built to explain the incidence of post-release defects (i.e.,
defects in official releases of a software product), which is a
popular proxy for software quality [5, 13, 18, 27, 30]. Rather
than using these models for defect prediction, we analyze the
impact that code review coverage and participation metrics
have on them while controlling for a variety of metrics that
are known to be good explainers of code quality. Through
a case study of the large Qt, VTK, and ITK open source
systems, we address the following two research questions:

(RQ1) Is there a relationship between code review
coverage and post-release defects?
Review coverage is negatively associated with the
incidence of post-release defects in all of our mod-
els. However, it only provides significant explana-
tory power to two of the four studied releases, sug-
gesting that review coverage alone does not guaran-
tee a low incidence rate of post-release defects.

(RQ2) Is there a relationship between code review
participation and post-release defects?
Developer participation in code review is also as-
sociated with the incidence of post-release defects.
In fact, when controlling for other significant ex-
planatory variables, our models estimate that com-
ponents with lax code review participation will con-
tain up to five additional post-release defects.

Paper organization. The remainder of the paper is orga-
nized as follows. Section 2 describes the Gerrit-driven code
review process that is used by the studied systems. Sec-
tion 3 describes the design of our case study, while Section 4
presents the results of our two research questions. Section 5
discloses the threats to the validity of our study. Section 6
surveys related work. Finally, Section 7 draws conclusions.

2. GERRIT CODE REVIEW
Gerrit is a modern code review tool that facilitates a trace-

able code review process for git-based software projects [4].
Gerrit tightly integrates with test automation and code in-
tegration tools. Authors upload patches, i.e., collections of
proposed changes to a software system, to a Gerrit server.
The set of reviewers are either: (1) invited by the author, (2)
appointed automatically based on their expertise with the
modified system components, or (3) self-selected by broad-
casting a review request to a mailing list. Figure 1 shows
an example code review in Gerrit that was uploaded on De-
cember 1st, 2012. We use this figure to illustrate the role
that reviewers and verifiers play in a code review below.
Reviewers. The reviewers are responsible for critiquing
the changes proposed within the patch by leaving comments

Figure 1: An example Gerrit code review.

for the author to address or discuss. The author can reply
to comments or address them by producing a new revision
of the patch for the reviewers to consider.

Reviewers can also give the changes proposed by a patch
revision a score, which indicates: (1) agreement or disagree-
ment with the proposed changes (positive or negative value),
and (2) their level of confidence (1 or 2). The second column
of the bottom-most table in Figure 1 shows that the change
has been reviewed and the reviewer is in agreement with it
(+). The text in the fourth column (“Looks good to me,
approved”) is displayed when the reviewer has a confidence
level of two.
Verifiers. In addition to reviewers, verifiers are also invited
to evaluate patches in the Gerrit system. Verifiers execute
tests to ensure that: (1) patches truly fix the defect or add
the feature that the authors claim to, and (2) do not cause
regression of system behaviour. Similar to reviewers, ver-
ifiers can provide comments to describe verification issues
that they have encountered during testing. Furthermore,
verifiers can also provide a score of 1 to indicate successful
verification, and -1 to indicate failure.

While team personnel can act as verifiers, so too can Con-
tinuous Integration (CI) tools that automatically build and
test patches. For example, CI build and testing jobs can
be automatically generated each time a new review request
or patch revision is uploaded to Gerrit. The reports gener-
ated by these CI jobs can be automatically appended as a
verification report to the code review discussion. The third
column of the bottom-most table in Figure 1 shows that the
“Qt Sanity Bot” has successfully verified the change.
Automated integration. Gerrit allows teams to codify
code review and verification criteria that must be satisfied
before changes are integrated into upstream VCS reposito-
ries. For example, a team policy may specify that at least
one reviewer and one verifier provide positive scores prior
to integration. Once the criteria are satisfied, patches are
automatically integrated into upstream repositories. The
“Merged” status shown in the upper-most table of Figure 1
indicates that the proposed changes have been integrated.

3. CASE STUDY DESIGN
In this section, we present our rationale for selecting our

research questions, describe the studied systems, and present
our data extraction and analysis approaches.

(RQ1) Is there a relationship between code review
coverage and post-release defects?
Tanaka et al. suggest that a software team should
meticulously review each change to the source code



to ensure that quality standards are met [39]. In
more recent work, Kemerer and Faulk find that de-
sign and code inspections have a measurable impact
on the defect density of student submissions at the
Software Engineering Institute (SEI) [19]. While
these findings suggest that there is a relationship
between code review coverage and software quality,
it has remained largely unexplored in large software
systems using modern code review tools.

(RQ2) Is there a relationship between code review
participation and post-release defects?
To truly have an impact on software quality, de-
velopers must invest in the code reviewing process.
In other words, if developers are simply approving
code changes without discussing them, the code re-
view process likely provides little value. Hence, we
set out to study the relationship between developer
participation in code reviews and software quality.

3.1 Studied Systems
In order to address our research questions, we perform

a case study on large, successful, and rapidly-evolving open
source systems with globally distributed development teams.
In selecting the subject systems, we identified two important
criteria that needed to be satisfied:

Criterion 1: Reviewing Policy – We want to study sys-
tems that have made a serious investment in code re-
viewing. Hence, we only study systems where a large
number of the integrated patches have been reviewed.

Criterion 2: Traceability – The code review process for
a subject system must be traceable, i.e., it should be
reasonably straightforward to connect a large propor-
tion of the integrated patches to the associated code
reviews. Without a traceable code review process, re-
view coverage and participation metrics cannot be cal-
culated, and hence, we cannot perform our analysis.

To satisfy the traceability criterion, we focus on software
systems using the Gerrit code review tool. We began our
study with five subject systems, however after preprocess-
ing the data, we found that only 2% of Android and 14%
of LibreOffice changes could be linked to reviews, so both
systems had to be removed from our analysis (Criterion 1).

Table 1 shows that the Qt, VTK, and ITK systems sat-
isfied our criteria for analysis. Qt is a cross-platform ap-
plication framework whose development is supported by the
Digia corporation, however welcomes contributions from the
community-at-large.2 The Visualization ToolKit (VTK) is
used to generate 3D computer graphics and process im-
ages.3 The Insight segmentation and registration ToolKit
(ITK) provides a suite of tools for in-depth image analysis.4

3.2 Data Extraction
In order to evaluate the impact that code review coverage

and participation have on software quality, we extract code
review data from the Gerrit review databases of the studied
systems, and link the review data to the integrated patches
recorded in the corresponding VCSs.

2
http://qt.digia.com/

3
http://vtk.org/

4
http://itk.org/
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Figure 2: Overview of our data extraction approach.

Figure 2 shows that our data extraction approach is bro-
ken down into three steps: (1) extract review data from the
Gerrit review database, (2) extract Gerrit change IDs from
the VCS commits, and (3) calculate version control metrics.
We briefly describe each step of our approach below.
Extract reviews. Our analysis is based on the Qt code re-
views dataset collected by Hamasaki et al. [12]. The dataset
describes each review, the personnel involved, and the de-
tails of the review discussions. We expand the dataset to
include the reviews from the VTK and ITK systems, as well
as those reviews that occurred during more recent develop-
ment of Qt 5.1.0. To do so, we use a modified version of the
GerritMiner scripts provided by Mukadam et al. [28].
Extract change ID. Each review in a Gerrit database is
uniquely identified by an alpha-numeric hash code called a
change ID. When a review has satisfied project-specific crite-
ria, it is automatically integrated into the upstream VCS (cf.
Section 2). For traceability purposes, the commit message of
the automatically integrated patch contains the change ID.
We extract the change ID from commit messages in order to
automatically connect patches in the VCS with the associ-
ated code review process data. To facilitate future work, we
have made the code and review databases available online.5

Calculate version control metrics. Prior work has found
that several types of metrics have a relationship with defect-
proneness. Since we aim to investigate the impact that code
reviewing has on defect-proneness, we control for the three
most common families of metrics that are known to have a
relationship with defect-proneness [5, 13, 38]. Table 2 pro-
vides a brief description and the motivating rationale for
each of the studied metrics.

We focus our analysis on the development activity that
occurs on or has been merged into the release branch of
each studied system. Prior to a release, the integration of
changes on a release branch is more strictly controlled than
a typical development branch to ensure that only the appro-
priately triaged changes will appear in the upcoming release.
Moreover, changes that land on a release branch after a re-
lease are also strictly controlled to ensure that only high
priority fixes land in maintenance releases. In other words,
the changes that we study correspond to the development
and maintenance of official software releases.

To determine whether a change fixes a defect, we search
VCS commit messages for co-occurrences of defect identi-
fiers with keywords like “bug”, “fix”, “defect”, or “patch”. A
similar approach was used to determine defect-fixing and
defect-inducing changes in other work [18, 20]. Similar to

5
http://sailhome.cs.queensu.ca/replication/reviewing_quality/
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Table 1: Overview of the studied systems. Those above the double line satisfy our criteria for analysis.
Overview Components Commits Personnel

Product Version Tag name Lines of code With defects Total With reviews Total Authors Reviewers

Qt
5.0.0 v5.0.0 5,560,317 254 1,339 10,003 10,163 435 358
5.1.0 v5.1.0 5,187,788 187 1,337 6,795 7,106 422 348

VTK 5.10.0 v5.10.0 1,921,850 15 170 554 1,431 55 45
ITK 4.3.0 v4.3.0 1,123,614 24 218 344 352 41 37

Android 4.0.4 4.0.4 r2.1 18,247,796 - - 1,727 80,398 - -
LibreOffice 4.0.0 4.0.0 4,789,039 - - 1,679 11,988 - -

prior work [18], we define post-release defects as those with
fixes recorded in the six-month period after the release date.
Product metrics. Product metrics measure the source
code of a system at the time of a release. It is common
practice to preserve the released versions of the source code
of a software system in the VCS using tags. In order to
calculate product metrics for the studied releases, we first
extract the released versions of the source code by “checking
out” those tags from the VCS.

We measure the size and complexity of each component
(i.e., directory) as described below. We measure the size of
a component by aggregating the number of lines of code in
each of its files. We use McCabe’s cyclomatic complexity [23]
(calculated using Scitools Understand6) to measure the com-
plexity of a file. To measure the complexity of a component,
we aggregate the complexity of each file within it. Finally,
since complexity measures are often highly correlated with
size, we divide the complexity of each component by its size
to reduce the influence of size on complexity measures. A
similar approach was used in prior work [17].
Process metrics. Process metrics measure the change ac-
tivity that occurred during the development of a new release.
Process metrics must be calculated with respect to a time
period and a development branch. Again, similar to prior
work [18], we measure process metrics using the six-month
period prior to each release date on the release branch.

We use prior defects, churn, and change entropy to mea-
sure the change process. We count the number of defects
fixed in a component prior to a release by using the same
pattern-based approach we use to identify post-release de-
fects. Churn measures the total number of lines added and
removed to a component prior to release. Change entropy
measures how the complexity of a change process is dis-
tributed across files [13]. To measure the change entropy in
a component, we adopt the time decay variant of the His-
tory Complexity Metric (HCM1d), which reduces the impact
of older changes, since prior work identified HCM1d as the
most powerful HCM variant for defect prediction [13].
Human factors. Human factor metrics measure developer
expertise and code ownership. Similar to process metrics,
human factor metrics must also be calculated with respect
to a time period. We again adopt a six-month period prior
to each release date as the window for metric calculation.

We adopt the suite of ownership metrics proposed by Bird
et al. [5]. Total authors is the number of authors that con-
tribute to a component. Minor authors is the number of
authors that contribute fewer than 5% of the commits to a
component. Major authors is the number of authors that
contribute at least 5% of the commits to a component. Au-
thor ownership is the proportion of commits that the most
active contributor to a component has made.

6
http://www.scitools.com/documents/metricsList.php?#Cyclomatic

3.3 Model Construction
We build Multiple Linear Regression (MLR) models to

explain the incidence of post-release defects detected in the
components of the studied systems. An MLR model fits a
line of the form y = β0 + β1x1 + β2x2 + · · · + βnxn to the
data, where y is the dependent variable and each xi is an
explanatory variable. In our models, the dependent variable
is post-release defect count and the explanatory variables
are the set of metrics outlined in Table 2.

Similar to Mockus [25] and others [6, 37], our goal is to un-
derstand the relationship between the explanatory variables
(code review coverage and participation) and the dependent
variable (post-release defect counts). Hence, we adopt a
similar model construction technique.

To lessen the impact of outliers on our models, we apply
a log transformation [log(x+ 1)] to those metrics whose val-
ues are natural numbers. To handle metrics whose values
are proportions ranging between 0 and 1, we apply a logit
transformation [log( x

1−x
)]. Since the logit transformations

of 0 and 1 yield undefined values, the data is proportionally
remapped to a range between 0.025 and 0.975 by the logit

function provided by the car package [10] in R.
Minimizing multicollinearity. Prior to building our
models, we check for explanatory variables that are highly
correlated with one another using Spearman rank correla-
tion tests (ρ). We choose a rank correlation instead of other
types of correlation (e.g., Pearson) because rank correlation
is resilient to data that is not normally distributed. We con-
sider a pair of variables highly correlated when |ρ| > 0.7,
and only include one of the pair in the model.

In addition to correlation analysis, after constructing pre-
liminary models, we check them for multicollinearity using
the Variance Inflation Factor (VIF) score. A VIF score is
calculated for each explanatory variable used by the model.
A VIF score of 1 indicates that there is no correlation be-
tween the variable and others, while values greater than 1
indicate the ratio of inflation in the variance explained due
to collinearity. We select a VIF score threshold of five as sug-
gested by Fox [9]. When our models contain variables with
VIF scores greater than five, we remove the variable with
the highest VIF score from the model. We then recalculate
the VIF scores for the new model and repeat the removal
process until all variables have VIF scores below five.

3.4 Model Analysis
After building MLR models, we evaluate the goodness of

fit using the Akaike Information Criterion (AIC) [1] and the
Adjusted R2 [14]. Unlike the unadjusted R2, the AIC and
the adjusted R2 account for the bias of introducing addi-
tional explanatory variables by penalizing models for each
additional metric.

To decide whether an explanatory variable is a signifi-

http://www.scitools.com/documents/metricsList.php?#Cyclomatic


Table 2: A taxonomy of the considered control (top) and reviewing metrics (bottom).
Metric Description Rationale

P
ro

d Size Number of lines of code. Large components are more likely to be defect-prone [21].
Complexity The McCabe cyclomatic complexity. More complex components are likely more defect-prone [24].

P
ro

ce
ss

Prior defects Number of defects fixed prior to release. Defects may linger in components that were recently defective [11].
Churn Sum of added and removed lines of code. Components that have undergone a lot of change are likely defect-

prone [29, 30].
Change en-
tropy

A measure of the volatility of the change
process.

Components with a volatile change process, where changes are
spread amongst several files are likely defect-prone [13].

H
u

m
a
n

F
a
ct

o
rs

Total authors Number of unique authors. Components with many unique authors likely lack strong owner-
ship, which in turn may lead to more defects [5, 11].

Minor authors Number of unique authors who have con-
tributed less than 5% of the changes.

Developers who make few changes to a component may lack the
expertise required to perform the change in a defect-free man-
ner [5]. Hence, components with many minor contributors are
likely defect-prone.

Major authors Number of unique authors who have con-
tributed at least 5% of the changes.

Similarly, components with a large number of major contributors,
i.e., those with component-specific expertise are less likely to be
defect-prone [5].

Author owner-
ship

The proportion of changes contributed by
the author who made the most changes.

Components with a highly active component owner are less likely
to be defect-prone [5].

C
o
v
er

a
g
e

(R
Q

1
) Proportion

of reviewed
changes

The proportion of changes that have been
reviewed in the past.

Since code review will likely catch defects, components where
changes are most often reviewed are less likely to contain defects.

Proportion of
reviewed churn

The proportion of churn that has been re-
viewed in the past.

Despite the defect-inducing nature of code churn, code review
should have a preventative impact on defect-proneness. Hence,
we expect that the larger the proportion of code churn that has
been reviewed, the less defect prone a module will be.

P
a
rt

ic
ip

a
ti

o
n

(R
Q

2
)

Proportion of
self-approved
changes

The proportion of changes to a component
that are only approved for integration by
the original author.

By submitting a review request, the original author already be-
lieves that the code is ready for integration. Hence, changes that
are only approved by the original author have essentially not been
reviewed.

Proportion
of hastily re-
viewed changes

The proportion of changes that are ap-
proved for integration at a rate that is
faster than 200 lines per hour.

Prior work has shown that when developers review more than
200 lines of code per hour, they are more likely to produce lower
quality software [19]. Hence, components with many changes that
are approved at a rate faster than 200 lines per hour are more
likely to be defect-prone.

Proportion of
changes with-
out discussion

The proportion of changes to a component
that are not discussed.

Components with many changes that are approved for integration
without critical discussion are likely to be defect-prone.

cant contributor to the fit of our models, we perform drop
one tests [7] using the implementation provided by the core
stats package of R [31]. The test measures the impact of an
explanatory variable on the model by measuring the AIC of
models consisting of: (1) all explanatory variables (the full
model), and (2) all explanatory variables except for the one
under test (the dropped model). A χ2 test is applied to the
resulting values to detect whether each explanatory variable
improves the AIC of the model to a statistically significant
degree. We discard the explanatory variables that do not
improve the AIC by a significant amount (α = 0.05).
Explanatory variable impact analysis. To study the
impact that explanatory variables have on the incidence of
post-release defects, we calculate the expected number of
defects in a typical component using our models. First, an
artificial component is simulated by setting all of the ex-
planatory variables to their median values. The variable
under test is then set to a specific value. The model is then
applied to the artificial component and the Predicted Defect
Count (PDC) is calculated, i.e., the number of defects that
the model estimates to be within the artificial component.

Note that the MLR model may predict that a component
has a negative or fractional number of defects. Since nega-
tive or fractional numbers of defects cannot exist in reality,
we calculate the Concrete Predicted Defect Count (CPDC)
as follows:

CPDC(xi) =

{
0, if PDC(xi) ≤ 0

dPDC(xi)e, otherwise
(1)

We take the ceiling of positive fractional PDC values rather
than rounding so as to accurately reflect the worst-case con-
crete values. Finally, we use plots of CPDC values as we
change the variable under test to evaluate its impact on
post-release defect counts.

4. CASE STUDY RESULTS
In this section, we present the results of our case study

with respect to our two research questions. For each ques-
tion, we present the metrics that we use to measure the
reviewing property, then discuss the results of adding those
metrics to our MLR models.

(RQ1) Is there a relationship between code re-
view coverage and post-release defects?
Intuitively, one would expect that higher rates of code review
coverage will lead to fewer incidences of post-release defects.
To investigate this, we add the code review coverage metrics
described in Table 2 to our MLR models.
Coverage metrics. The proportion of reviewed changes is
the proportion of changes committed to a component that



Table 3: Review coverage model statistics. ∆AIC indicates the change in AIC when the given metric is
removed from the model (larger ∆AIC values indicate more explanatory power). Coef. provides the coefficient
of the given metric in our models.

Qt VTK ITK
5.0.0 5.1.0 5.10.0 4.3.0

Adjusted R2 0.40 0.19 0.38 0.24
Total AIC 4,853 6,611 219 15

Coef. ∆AIC Coef. ∆AIC Coef. ∆AIC Coef. ∆AIC
Size � 0.46 6∗∗ 0.19 223.4∗ �
Complexity � � � �
Prior defects 5.08 106∗∗∗ � 3.47 71∗∗∗ 0.08 13∗∗∗

Churn � � † †
Change entropy � � � �
Total authors ‡ † ‡ ‡
Minor authors 2.57 49∗∗∗ 10.77 210∗∗∗ 2.79 50∗∗∗ 1.58 23∗∗∗

Major authors † † † †
Author ownership � � � �
Reviewed changes -0.25 9∗∗∗ � -0.30 15∗∗∗ �
Reviewed churn † † † †
† Discarded during correlation analysis (|ρ| > 0.7)
‡ Discarded during VIF analysis (VIF coefficient > 5)
Statistical significance of explanatory power according to Drop One analysis:
� p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

are associated with code reviews. Similarly, proportion of
reviewed churn is the proportion of the churn of a component
that is associated with code reviews.

Table 3 shows that the proportion of reviewed churn is too
highly correlated with the proportion of reviewed changes
to include both metrics in the same model. We selected the
proportion of reviewed changes for our models because it is
a simpler metric. For the sake of completeness, we analyzed
models that use the proportion of reviewed churn instead of
the proportion of reviewed changes and found that it had no
discernible impact on model performance.
Components with higher review coverage tend to
have fewer post-release defects. Table 3 shows that the
proportion of reviewed changes has a statistically significant
impact in the defect models of Qt 5.0.0 and VTK 5.10.0.
Even in the Qt 5.1.0 and ITK models (where the proportion
of reviewed changes is removed due to a lack of explanatory
power), its estimated coefficient is negative, indicating that
an increase in review coverage tends to lower the incidence
rate of post-release defects in a component.
Components with review coverage below 0.29 (VTK)
or 0.6 (Qt) are expected to contain at least one post-
release defect. Figure 3 shows the CPDC (cf. Equa-
tion 1) of a component with a varying proportion of reviewed
changes. In other words, each point on the line indicates the
expected number of post-release defects in a typical compo-
nent due to a corresponding proportion of reviewed changes.

As shown in Figure 3, our models indicate that a typical
Qt 5.0.0 component with a proportion of reviewed changes of
less than 0.6 is expected to contain at least one post-release
defect. Moreover, Qt 5.0.0 components with a proportion
of reviewed changes of less than 0.06 are expected to have
at least two post-release defects. To put this in perspective,
a post-release defect count of two corresponds to the 89th

percentile of the observed post-release defect counts in Qt
5.0.0, and the 40th percentile of Qt 5.0.0 components with
at least one post-release defect.

Typical VTK 5.10.0 components are expected to contain
one post-release defect if the proportion of reviewed changes
drops below 0.29. Since VTK components with post-release
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Figure 3: The predicted count of post-release defects
in a typical component for various proportions of
reviewed changes.

defects are relatively rare, a post-release defect count of
one corresponds to the 92nd percentile of the observed post-
release defect counts in VTK 5.10.0.
Other code review properties may provide additional
explanatory power. While the proportion of reviewed
changes is associated with components of higher software
quality in two of the four studied releases, it does not have a
significant impact on our Qt 5.1.0 and ITK models. To gain
a richer perspective about the relationship between code re-
view coverage and software quality, we manually inspect the
Qt 5.0.0 components with the most post-release defects.

As our Qt 5.0.0 model suggests, the components with
many post-release defects indeed tend to have lower propor-
tions of reviewed changes. This is especially true for the col-
lection of nine components that make up the QtSerialPort

subsystem, where the proportion of reviewed changes does
not exceed 0.1. Initial development of the QtSerialPort

subsystem began during Qt 4.x, prior to the introduction of
Gerrit to the Qt development process. Many foundational
features of the subsystem were introduced in an incubation
area of the Qt development tree, where reviewing policies
are lax. Hence, much of the QtSerialPort code was likely



not code reviewed, which may have lead to the inflation in
post-release defect counts.

On the other hand, there are components with a propor-
tion of reviewed changes of 1 that still have post-release de-
fects. Although only 7% of the VTK components with post-
release defects (1/15) have a proportion of reviewed changes
of 1, 87% (222/254), 70% (131/187), and 83% (20/24) of Qt
5.0.0, Qt 5.1.0, and ITK respectively have a proportion of re-
viewed changes of 1. We further investigate with one-tailed
Mann-Whitney U tests (α = 0.05) comparing the incidence
of post-release defects in components with a proportion of
reviewed changes of 1 to those components with proportions
of reviewed change below 1. Test results indicate that only
in Qt 5.1.0 is the incidence of post-release defects in compo-
nents with proportions of reviewed changes of 1 significantly
less than the incidence of post-release defects in components
with proportions lower than 1 (p < 2.2×10−16). In the other
systems, the difference is not significant (p > 0.05).

Although review coverage is negatively associated with
software quality in our models, several defect-prone com-
ponents have high coverage rates, suggesting that other
properties of the code review process are at play.

(RQ2) Is there a relationship between code re-
view participation and post-release defects?
As discussed in RQ1, even components with a proportion of
reviewed changes of 1 (i.e., 100% code review coverage) can
have high post-release defect rates. We suggest that a lack of
participation in the code review process could be contribut-
ing to this. In fact, in thriving open source projects, such as
the Linux kernel, insufficient discussion is one of the most
frequently cited reasons for the rejection of a patch.7 In re-
cent work, Jiang et al. found that the amount of reviewing
discussion is an important indicator of whether a patch will
be accepted for integration into the Linux kernel [16]. To
investigate whether code review participation has a measur-
able impact on software quality, we add the participation
metrics described in Table 2 to our defect models.

Since we have observed that review coverage has an im-
pact on post-release defect rates (RQ1), we need to con-
trol for the proportion of reviewed changes when addressing
RQ2. We do so by selecting only those components with a
proportion of reviewed changes of 1 for analysis. Although
90% (1,201/1,339) of the Qt 5.0.0, 88% (1,175/1,337) of the
Qt 5.1.0, and 125/218 (57%) of the ITK components survive
the filtering process, only 5% (8/170) of the VTK compo-
nents survive. Since the VTK dataset is no longer large
enough for statistical analysis, we omit it from this analysis.
Participation metrics. We describe the three metrics
that we have devised to measure code review participation
below. The proportion of self-approved changes is the pro-
portion of changes that have only been approved for inte-
gration by the original author of the change.

An appropriate amount of time should be allocated in or-
der to sufficiently critique a proposed change. Best practices
suggest that code should be not be reviewed at a rate faster
than 200 lines per hour [19]. Therefore, if the time window
between the creation of a review request and its approval for
integration is shorter than this, the review is likely subopti-
mal. The proportion of hastily reviewed changes is the pro-

7
https://www.kernel.org/doc/Documentation/SubmittingPatches

Table 4: Review participation model statistics.
∆AIC indicates the change in AIC when the given
metric is removed from the model (larger ∆AIC val-
ues indicate more explanatory power). Coef. indi-
cates whether the coefficient of the given metric is
positive or negative.

Qt ITK
5.0.0 5.1.0 4.3.0

Adjusted R2 0.44 0.26 0.25
Total AIC 4,328 1,639 71

Coef. ∆AIC Coef. ∆AIC Coef. ∆AIC

Size � 0.08 4∗ �
Complexity � � �
Prior defects 4.20 68∗∗∗ 0.95 28∗∗∗ 0.70 5∗
Churn † � †
Change entropy � � �
Total authors ‡ † ‡
Minor authors 2.06 24∗∗∗ 3.22 85∗∗∗ 1.01 8∗∗
Major authors † † †
Author ownership † † �
Self-approval 1.34 11∗∗∗ � �
Hastily reviewed � 0.55 8∗∗ �
No discussion 0.83 4∗ 0.74 15∗∗∗ 0.70 4∗
† Discarded during correlation analysis (|ρ| > 0.7)
‡ Discarded during VIF analysis (VIF coefficient > 5)
Statistical significance of explanatory power according to Drop One anal-
ysis:

� p ≥ 0.05; ∗ p < 0.05; ∗∗ p < 0.01; ∗∗∗ p < 0.001

portion of changes that have been reviewed at a rate faster
than 200 lines per hour. Since our definition of hastily re-
viewed changes assumes that reviewers begin reviewing a
change as soon as it is assigned to them, our metric repre-
sents a lower bound of the actual proportion. We discuss
the further implications of this definition in Section 5.

Reviews without accompanying discussion have not re-
ceived critical analysis from other members of the devel-
opment team, and hence may be prone to defects that a
more thorough critique could have prevented. The opera-
tional definition that we use for a review without discussion
is a patch that has been approved for integration, yet does
not have any attached comments from other team members.
Since our intent is to measure team discussion, we ignore
comments generated by automated verifiers (e.g., CI sys-
tems), since they do not create a team dialogue. Finally,
the proportion of changes without discussion is calculated
as the proportion of changes that have been approved for
integration without discussion.

Table 4 describes the results of our model construction
experiment. Although our code review participation models
achieve better adjusted R2 and AIC scores than the code
review coverage models do, a comparison between the two
should not be drawn, since the participation models are built
using a subset of the system components.
Components with high rates of participation in code
review tend to have fewer post-release defects. Ta-
ble 4 shows that the proportion of changes without discus-
sion has a statistically significant impact on the models of all
three of the studied releases. Furthermore, the proportion
of self-approved changes has a significant impact on the Qt
5.0.0 model and the proportion of hastily reviewed changes
has a significant impact on the Qt 5.1.0 model. The esti-
mated coefficients are positive in all cases, indicating that
the components that integrate more insufficiently discussed,
hastily reviewed, and/or self-approved patches tend to be
more defect-prone.
Conversely, components with low participation rates
in code review tend to have high post-release defect
counts. Figure 4 shows that Qt 5.0.0 components with a
proportion of self-approved changes of 0.84 or higher are es-

https://www.kernel.org/doc/Documentation/SubmittingPatches
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Figure 4: The predicted count of post-release defects
in a component for varying participation rates.

timated to contain five additional post-release defects. To
put this in perspective, a post-release defect count of five cor-
responds to the 95th percentile of the observed post-release
defect counts in Qt 5.0.0, and the 70th percentile of Qt 5.0.0
components with at least one post-release defect. Compo-
nents where the proportion of changes without discussion is
above 0.71 are estimated to have at least two post-release
defects in both of the studied Qt releases, while those Qt
5.0.0 components with a proportion above 0.9 are estimated
to have at least three post-release defects.

Manual analysis of the data reveals that the several Qt
components that provide backwards compatibility for Qt 4
APIs (e.g., qt4support) have a proportion of changes with-
out discussion above 0.9. Perhaps this is due to a shift in
team focus towards newer functionality. However, our re-
sults suggest that changes to these components should also
be reviewed actively.

Our models also indicate that Qt components quickly be-
come defect-prone when review participation decreases. Ei-
ther the proportion of hastily reviewed changes or the pro-
portion of changes without discussion need only reach 0.1
and 0.13 respectively before our Qt 5.1.0 model expects that
a component will contain a post-release defect. Similarly, the
proportion of self-approved changes need only reach 0.16 in
Qt 5.0.0 before our model anticipates a post-release defect.

Lack of participation in code review has a negative im-
pact on software quality. Reviews without discussion are
associated with higher post-release defect counts, suggest-
ing that the amount of discussion generated during review
should be considered when making integration decisions.

5. THREATS TO VALIDITY
External validity. We focus our study on three open
source systems, due to the low number of systems that sat-
isfied our eligibility criteria for analysis. The proportion of
commits that underwent code review through Gerrit pre-
sented a major challenge. Nonetheless, additional replica-
tion studies are needed.
Construct validity. Our models assume that each post-
release defect is of the same weight, while in reality it may be
that some post-release defects are more severe than others.
Although modern Issue Tracking Systems (ITS) provide a
field for practitioners to denote the priority and severity of
a defect, recent work suggests that these fields are rarely
accurate. For example, Herraiz et al. argue that the severity

levels offered by the Eclipse bug reporting tool do not agree
with clusters of defects that form based on the time taken
to deliver a fix [15]. Indeed, Mockus et al. find that the
recorded priority in Apache and Mozilla projects was not
related to the time taken to resolve an issue, largely because
the reporters who file the defects had far less experience than
the core developers who fix them [26]. Nonetheless, each
defect that we consider as a quality-impacting post-release
defect was at least severe enough to warrant a fix that was
integrated into the strictly controlled release branches of
the studied systems.
Internal validity. We assume that a code review has been
rushed if the elapsed time between the time that a patch
has been uploaded and the time that it has been approved
is shorter than the amount of time that should have been
spent if the reviewer was digesting 200 lines of code per hour.
However, there are likely cases where reviewers do not start
reviewing the change immediately, but rush their review on
a later date. Unfortunately, since reviewers do not record
the time that they actually spent reviewing a patch, we must
rely on heuristics to recover this information. On the other
hand, our heuristic is highly conservative, i.e., reviews that
are flagged as rushed are certainly rushed. Furthermore,
setting the reviewing speed threshold to 100 lines per hour
had little impact on our models.

Since there is an inherent delay between the code review
(and integration) of a change and its appearance in a release,
confounding factors could influence our results. However,
our conclusions are intuitive, i.e., lax reviewing practices
could allow defects to permeate through to the release.

6. RELATED WORK
In this section, we discuss the related work with respect

to code review and software quality dimensions.
Code reviews. Prior work has qualitatively analyzed the
modern code review process used by large software systems.
Rigby et al. find that the Apache project adopted a broadcast-
based style of code review, where frequent reviews of small
and independent changes were in juxtaposition to the formal
code inspection style prescribed by prior research, yet were
still able to achieve a high level of software quality [35]. In
more recent work, Rigby and Storey find that open source
developers that adopt the broadcast-based code review style
actively avoid discussions in reviews about opinionated and
trivial patch characteristics [36]. In our work, we find that
active participation in the code review process tends to re-
duce post-release counts and improve software quality.

The identification of defects is not the sole motivation for
modern code review. For example, Rigby and Storey show
that non-technical issues are a frequent motivation for the
patch rejection in several open source systems [36]. Indeed,
Baysal et al. find that review positivity, i.e., the proportion
of accepted patches, is also influenced by non-technical fac-
tors [3]. Furthermore, a recent qualitative study at Microsoft
indicates that sharing knowledge among team members is
also considered a very important motivation of modern code
review [2]. Inspired by these studies, we empirically analyze
the relationship between developer investment in the code
review process and software quality.

Kemerer and Faulk show that the introduction of design
and code review to student projects at the SEI leads to code
that is of higher quality [19]. By studying student projects,
Kemerer and Faulk are able to control for several confound-



ing factors like team dynamics. Rather than control for team
dynamics, our study aims to complement prior work by ex-
amining the impact of participation in the code review pro-
cess of three large open source systems.
Software quality. There are many empirical studies that
propose software metrics to predict software quality. For
example, Hassan proposes complexity metrics (e.g., change
entropy used in our paper) that are based on the code change
process instead of on the code [13]. He shows that the
entropy of the code change process is a good indicator of
defect-prone source code files. Rahman and Devanbu built
defect prediction models to compare the impact of product
and process metrics [33]. They show that product metrics
are generally less useful than process metrics for defect pre-
diction. Through a case study of Eclipse, Kamei et al. also
find that process metrics tend to outperform product metrics
when software quality assurance effort is considered [17]. In
this paper, our focus is on explaining the impact that code
review coverage and participation have on software qual-
ity, rather than predicting it. Hence, we build models to
study whether metrics that measure code review coverage
and participation add unique information that helps to ex-
plain incidence rates of post-release defects.

Recent work studies the relationship between source code
ownership and software quality. Bird et al. find that owner-
ship measures have a strong relationship with both pre- and
post-release defect-proneness. Matsumoto et al. show that
their proposed ownership measures (e.g., the number of de-
velopers and the code churn generated by each developer)
are also good indicators of defect-prone source code files [22].
Rahman and Devanbu find that lines of code that are impli-
cated in a fix for a defect are more strongly associated with
single developer contributions, suggesting that code review
is a crucial part of the software quality assurance [32]. We
find that the code ownership metrics that we adopt in the
baseline analysis of the studied systems are very powerful,
contributing a statistically significant amount of explanatory
power to each of the defect models that we built.

7. CONCLUSIONS
Although code reviewing is a broadly endorsed best prac-

tice for software development, little work has empirically
evaluated the impact that properties of the modern code re-
view process have on software quality in large software sys-
tems. With the recent emergence of modern code reviewing
tools like Gerrit, high quality data is now becoming available
to enable such empirical studies.

The lightweight nature of modern code review processes
relaxes the strict criteria of the formal code inspections that
were mandated to ensure that a basic level of review partic-
ipation was achieved (e.g., in-person meetings and reviewer
checklists). In this paper, we quantitatively investigate three
large software systems using modern code review tools (i.e.,
Gerrit). We build and analyze MLR models that explain the
incidence of post-release defects in the components of these
systems. Specifically, we evaluate the conjecture that:

If a large proportion of the code changes that are
integrated during development are either: (1) omit-
ted from the code review process (low review cover-
age), or (2) have lax code review involvement (low
review participation), then defect-prone code will
permeate through to the released software product.

The results of our case study indicate that:

• Code review coverage metrics only contribute a signif-
icant amount of explanatory power to two of the four
defect models when we control for several metrics that
are known to be good explainers of software quality.

• Two of the three code review participation metrics con-
tribute significant amounts of explanatory power to the
defect models of each of the studied Qt releases.

• Components with low review participation are esti-
mated to contain up to five additional post-release de-
fects.

We believe that our findings provide strong empirical evi-
dence to support the design of modern code integration poli-
cies that take code review coverage and participation into
consideration. Our models suggest that such policies will
lead to higher quality, less defect-prone software.
Future work. Although code review coverage tends to
improve software quality in general, there are still many
components with high review coverage rates that suffer from
poor quality. This suggests that there are other properties of
the code review process at play. In this paper, we study par-
ticipation, but there are several other code review properties
that are ripe for exploration. For example, code ownership
metrics are strong indicators of defect-prone code [5, 32].
However, these metrics are calculated based only on version
control repositories. We are actively exploring the impact
of an expansion of the scope of the code ownership concept
to include data from code review processes.
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