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Abstract—Refactoring as a process is aimed at improving the
quality of a software system while preserving its external behav-
ior. In practice, refactoring comes in the form of many specific
and diverse refactoring operations, which have different scopes
and thus a different potential impact on both the production
and the test code. We present a large-scale quantitative study
complemented by a qualitative analysis involving 615,196 test
cases to understand how and to what extent different refactoring
operations impact a system’s test suites. Our findings show that
while the vast majority of refactoring operations do not or very
seldom induce test breaks, some specific refactoring types (e.g.,
“RENAME ATTRIBUTE” and “RENAME CLASS”) have a higher
chance of breaking test suites. Meanwhile, “ADD PARAMETER”
and “CHANGE RETURN TYPE” refactoring operations often
require additional lines of changes to fix the test suite they break.
While some modern IDEs provide features to automatically apply
these two types of refactoring operations, they are not always able
to avoid test breaks, thus demanding extra human efforts.

I. INTRODUCTION

Refactoring is a good practice, leading to improved code
quality, higher developer productivity, and less error prone
code [1] [2l]. This intuition is supported by previous stud-
ies [3][4]. By definition, refactoring does not change the
external behavior of a system. However, refactoring can break
test suites because it can modify the internal behavior which
is tested in the test suites.

Test suites can reach a considerable size in modern software
development. Fixing them can be an extensive and time-
consuming task [5]. Vassallo et al. [6] surveyed continuous
refactoring barriers and indicated that one of the reasons
developers hesitate to refactor code is the possibility to break
test suites. The problem is exacerbated by the recent adoption
of continuous integration and deployment practices and in
general fierce market competition [7].

Many studies [8][9][10][L1] investigated the impact of
refactoring on test code. Rachatasumrit et al. [8] claimed that
half of the broken test code involves refactoring edits. Still,
it is not clear how refactoring breaks test suites because they
did not conduct a qualitative analysis. Indeed, in their work,
they indicate that the refactoring operations involved in the
failed tests might not be the cause. To unveil the impact of
refactoring on test suites, this study sets out to address the
following central question:

“Does refactoring break tests and to what extent?”

We conducted a conceptual replication[12][13] of the study
by Rachatasumrit and Kim [8]], exploiting state-of-the-art
mining techniques to run a more fine-grained analysis. Specif-
ically, we use commit histories rather than released versions.

Such a change in granularity reduces the size of each change
we need to inspect, which makes it easier to identify the
cause of the failures during qualitative analysis. However,
applying dynamic trace tools as in the mentioned study is
expensive since it requires long execution time, heavy memory
usage, etc. [14]. Running such an analysis to every revision in
each studied repository further worsens the issue. Leveraging
modern technology, we exploit Kubernetes [15] to run our
analyses through several computational instances in parallel.

Our experiments involve 615,196 test methods taken from
8 projects, and a total of 22,000 computation hours in the
containers. The research questions and results are as follows:

RQ: What types of refactoring break test suites?

Most of the refactoring types, as expected, are not observed
to break test methods but Compiler-Errors can be triggered
by refactoring operations that modify method signatures (e.g.,
MOVE CLASS, ADD PARAMETER). Failures are rarely caused
by refactoring, but sometimes they do occur when CHANGE
RETURN TYPE and ADD PARAMETER are performed. A pre-
vious study [8]] reported that many test methods are broken by
refactoring operations. We found that only 2.5% of refactoring
operations break test suites.

RQ,: What is the magnitude of the fix triggered by
different types of refactoring on test methods?

We observed that the efforts needed to fix test breaks
triggered by refactoring vary for different refactoring types.
However, while ADD PARAMETER and CHANGE RETURN
TYPE seldom break tests, they are more likely to have a wider
impact than other types of refactoring, requiring 4-12 lines of
changes to fix the tests they break.

Discussion: Can IDEs help in reducing the chances of
breaking tests during refactoring activities?

IDEs automate the mechanical part of refactoring by, for
example, consistently changing all references to a variable
when its identifier is renamed. We found that they can help
to avoid test breaks triggered by refactoring involving rename
or move actions. However, they did not prevent test breaks
triggered by CHANGE RETURN TYPE, CHANGE PARAMETER
TYPE, or ADD PARAMETER.

Paper Organization. Section [lI] introduces our research
questions and discuss the related literature. Section de-
scribes our study design, while Section discusses the
achieved results, thus answering our research questions. In
Section [V] we conduct additional analyses and discuss the
broader implications of our results. Finally, Section sum-
marizes our findings and discusses future work.



II. BACKGROUND AND RELATED WORK

When developers modify their source code, they run their
test suites to detect regressions. Past studies [L6][17] have
developed approaches to detect the test methods affected by
changes in the source code since exercising the whole test
suite can be time-consuming [18][19][20]. These approaches
can precisely identify test methods that should be run, which
reduces the time for running test suites. However, the modified
source code is not always in a state so that it can be built. It
has been reported that changes in the production code break
test suites in many cases [8][21].

Tang et al. [21] examined what percentage of bug-fixing
changes cause test failures. They reported that 48.7% of
bug-fixing changes would break regression test suites. Thus,
developers will recognize that they need time to fix test suites
after modifying the production code, which disrupts their
development schedule.

Even refactoring, which should not change the behavior of
a system, is known to break test suites. Rachatasumrit and
Kim [8]] examined what proportion of failed tests are relevant
to refactoring edits. They showed that half of the failed tests
involve refactoring edits in the production code. The previous
studies deepen the understanding of the impact that changes
have on test suites, which fosters the development of automatic
repair tools for test suites. However, there are still missing
pieces of evidence that we aim at building in our study:

1) It is uncertain how refactoring breaks test suites:
Rachatasumrit and Kim [8] found that refactoring operations
might lead to failed tests. It is however unclear whether
the refactoring edits are the real causes of the test failures,
since they are often part of tangled commits also involving
other types of changes. To identify the real cause, a manual
inspection would be needed. However, such an inspection
would be challenging on those data since the refactoring edits
have been extracted between releases, and the numbers of both
refactoring and non-refactoring related code changes involving
a test method are tremendous.

To overcome this issue, we mine the complete change
history of the studied systems at commit level, thus obtaining
much smaller changes. Also, we study the impact of a single
and isolated refactoring operation on the test methods exer-
cising the refactored production code. This has been possible
thanks to novel mining tools developed in the last years and
allows our study to be more fine-grained and involving a
higher number of data points. Also, the precise data extracted
(i.e., a single refactoring operation impacting tests) allow for
a simpler manual inspection that can validate the impact of
refactoring on the test.

This can be summarized by the following research question:

RQ1: What types of refactoring break test suites?

2) The fixing cost of a broken test is not a constant:
The tests broken by different refactoring types may trigger a
different fixing cost.

For example, ADDING A PARAMETER to a method may
require the writing of several new lines in the test method to
prepare the additional input represented by the new argument.
Instead, a RENAME CLASS refactoring may only impact a
single line in the test method (i.e., the change to the class
name).

A study by Elish and Alshayeb [10] estimated the impact
of refactoring operations on the testing effort required by the
refactored code components. Such an impact is estimated in
terms of internal quality metrics that are measured before and
after the refactoring and is based on the findings by Bruntink
and van Deursen [22] showing that changes in internal quality
metrics result in changes in the testing effort. Elish and
Alshayeb found that ENCAPSULATE FIELD and EXTRACT
METHOD increase the testing effort. Differently from our
study, they do not assess the size of the fix triggered in test
code by refactoring operations.

Besides the work by Elish and Alshayeb [10], it is worth
mentioning the several previous studies analyzing the impact
of refactoring on quality attributes. Stroggylos and Spinel-
lis [23] mined refactoring operations from version control
system logs of three open-source libraries with the goal of
studying their impact on the values of nine object-oriented
quality metrics. Their results show the possible negative effects
that refactoring can have on some quality metrics. Similarly,
Chavez et al. [24] and Cedrim et al. [25] reported that
refactoring not always result in an increase of code quality.
Such a research question has also been investigated by Szoke
et al. [26], who reported that small refactoring operations
performed in isolation rarely impact software quality, while
a high number of refactorings performed in a block can result
in notable code quality improvement.

Moser et al. [27] conducted a case study in a close-to
industrial environment to investigate the impact of refactoring
on the productivity of an agile team. The achieved results show
that in the context of mobile apps development, refactoring
increases developers’ productivity.

Previous work also analyzed the extent to which refactoring
activities induce faults [28]. Authors showed that refactor-
ings involving hierarchies (e.g., Push Down Method) induce
faults more frequently than others that are likely to be
harmless in practice. This finding highlights the strong bond
between refactoring and (regression) testing, that also pushed
researchers to propose techniques aimed at recommending
refactoring solutions (e.g., to remove antipatterns) by keeping
low the testing effort required after refactoring [29]. On a
related research thread, it is also worth mentioning the study
by Sabané et al. [30], that showed the higher testing cost of
classes affected by antipatterns.

Related to the above-described work, we formulate the
following research question for our study:

RQy: What is the magnitude of the fix triggered
by different types of refactoring on test methods?



TABLE I
SUMMARY OF THE SYSTEMS UNDER STUDY.

History Latest snapshot

Project Domain Commits Refactoring | Refactoring LOC LOC Test

commits instances (Production) (Test) methods
COMMONS-10 10 functional library 2,740 444 4,064 13,736 24,714 1,310
SPRING SQL mapping framework 1,615 155 782 1,924 3,933 120
JODA-BEANS Code generator framework 840 279 3,515 17,068 34,185 444
Jsoup HTML library 1,386 289 1,358 12,570 9,201 725
SPARK Web framework 1,062 309 1,789 6,253 5,045 320
LiTTLEPROXY | HTTP proxy 1,003 252 1,616 4,180 4,665 55
RXJAVA-IDBC Database client library 850 186 849 4,611 3,330 74
SPOON Program analysis library 3,278 878 9,564 64,038 44,960 1,938

III. STUDY DESIGN

The goal of our study is to investigate the extent to which
refactoring operations break the related test suites, by answer-
ing the two research questions we formulated in Section
The basic idea behind our study is to simulate a regression
testing scenario during a refactoring process: Once the code
is refactored, developers can check whether bugs have been
introduced by running (part of) the test suite. To reproduce
such a scenario, we take the production code refactored in
commit ¢; and we run on it the test suite before any change
triggered by the refactoring has been implemented by the
developer. To do so, we run on the production code in ¢; the
test suite in the previous revision (c;—1). In particular, as what
was done in the previous studies [8]][21]], we first checkout the
two snapshots ¢; and ¢;_;. Then, we replace the test directory
in ¢; with the one in ¢;_;. Finally, we identify tests broken
(i.e., tests that fail or that exhibit compilation errors) by the
refactoring operation.

Below we detail our study design, explaining how we collect
and analyze the data to answer our research questions.

A. Context Selection

We selected as context for our study eight projects from
GitHub (summarized in Table [) satisfying the following
criteria.

(Criterion 1) Java system: In this study, we use a state-of-
art refactoring mining tool [31]] that only works on Java
code.

(Criterion 2) JUnit: There are many testing frameworks for
Java systems, such as JUnit [32] and TestNG [33]]. We
target projects that use JUnit 4 or 5, which is an open-
source testing framework and a de facto standard for Java
projects [34].

(Criterion 3) Maven project: We must compile production
and test code and run test code for each commit, which is
computationally expensive. In this study, we target maven
projects to easily automate these processes. Maven [335]
is a popular build tool widely adopted for Java systems.

(Criterion 4) Simple Project: Projects sometimes have sub-
projects depending on each other. When a sub-project is
broken, the project build might fail. To avoid this, we
decided to exclude projects that contain sub-projects.

B. Data Collection

To determine which test methods are affected by each
refactoring operation performed in a software repository, it is
necessary to verify if each test method exercises the production
code where refactoring operations have been performed. Such
a procedure, depicted in Figure [I] consists of three main steps
that we detail in the following: “Refactoring Detection”, “Test
Run”, and “Impact Analysis”.

Refactoring Detection. We detect refactoring operations
performed in the production code of each commit of the
studied repositories. This has been done by using Refactoring-
Miner (ver. 2.0.3) [31]], the state-of-the-art refactoring detector.
RefactoringMiner provides, together with each detected refac-
toring, also exact information about the code lines impacted by
it. Note that the location of the refactoring can be a single file
(e.g., in the case of rename operations) as well as multiple
files (e.g., a method moved from a source to a target file).
RefactoringMiner has been shown to be able to detect 55 types
of refactoring operations with higher precision and recall than
other tools [31][36].

We run RefactoringMiner on every commit in all branche{]
of the cloned repositories to obtain the type and location of the
performed refactorings. Note that common commits present in
multiple branches are considered only once. Merge commits
are excluded since they generate duplicated results.

Test Run. To determine whether a specific test method was
broken by refactoring edits, we must know which lines in the
production code are exercised by the test method. Indeed, in
our study, we consider a refactoring as responsible for breaking
a test method ¢ only if there is an overlap between the lines of
production code impacted by the refactoring (as reported by
RefactoringMiner) and the ones exercised by ¢. To establish
such a link, we employ a dynamic execution trace method that
provides us with the production code paths executed by each
test method.

To run tests with Maven, the Surefire plugin is needed. Most
of the maven projects have it, but some projects do not (they
test the product on their local environments without continuous
integration). We inserted the plugin setting in the build files
(pom.xml) to automate testing.

I'We decided to use all branches because Kovalenko et al. [37] claimed
that using only partial history distorts results.
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Fig. 1. Overview of the study design. Goal: Identifying if each test method in a repository is affected by a refactoring operation. Our approach extracts two
snapshots and runs tests on them, using a dynamic execution analyzer, and examines if there are refactoring edits impacting the traces.

By default, maven testing stops if a test method fails. Since
we need to run all tests even if a test method fails, we enabled
the “testFailurelgnore” option in the Surefire plugin.

Also, running the tests requires to identify them in the
analyzed repositories. If the pom file of a project did not
contain specified production and test directories, maven de-
fault production and test directories (i.e., “src/main/java” and
“src/test/java”) are used. Test methods are identified using the
@Test JUnit annotation. We regard these test methods as test
cases and do not distinguish unit tests or system tests.

Dynamic trace execution methods are known for being
costly. To reduce the required time, memory, and disk space we
use SELogger [38]. SELogger collects most of the execution
paths but omits redundant paths (i.e., for/while loops). We add
the dependency on SELogger into the build file of the studied
projects so that SELogger can be executed during test runs.
With the updated file, we first compile the test code for each
commit on which we detected at least one refactoring. Tests are
run both on the snapshot before and after the refactoring (i.e.,
¢; and ¢;_1). If a test method causes compilation errors, we
remove it and the remaining test methods get compiled again.
The removed methods are recorded and this information is
used to count compiler errors in R(Q);. We repeat this removing
and compiling process until all of the tests are successfully
compiled. After that, we execute the tests remaining in test
suites. More specifically, we run each test method in isolation
rather than the whole test suite to avoid Out of Memory
Exceptions during log trace collection.

We skip commits that include errors in production code
(e.g., due to dependency problems, compiler errors). On the
remaining commits, we executed 615,196 test methods. Then,
we excluded test methods failing in c;—;: If a refactoring
has been performed in commit ¢; and the related tests in the
revision c;_; were failing even before the refactoring, those
must be excluded, since we want to identify test breaks caused
by the refactoring operation, and not already present in the
system. This filter removed 3,411 test methods.

Impact Analysis. After running tests, the execution trace
for each revision is generated, which provides us with the lines

the tests exercise in the production code. In addition, Refactor-
ingMiner provides us with the location of the production code
where refactoring is performed. Matching the two outputs, we
identify whether refactoring edits impacted any of the paths
exercised by any of the test methods. Figure 2] outlines how
we match refactoring edits to test case execution paths.

Production Code Test Code
1| class Calc{ 1] class TestCalc{
2 inti=10; 2| @Test
3 intj=3; 3] public void testAdd(){
4] int add(){ —_— 4 Calc ¢ = new Calc();
5 Noreturn i + j; =+ assertEquals( 13, c.add());
6] } 6f 1}
7| rint divide(){ 7| @Test
8 if G ==0) 8| public void testDivide(){
9 < throw ncm~\q Calc ¢ = new_Calc();
10 return i/ j; 10 N asserlEquals c.divide());
1|} }
il il
int -> double

Fig. 2. Specifying refactoring impact: A red shade represents a refactoring.
The refactored line is used only by testDivide(). After refactoring, the assertion
in testDivide should be modified from the int value of 3 to the double value
of 10/3. The arrows represent the order of statements invoked by each test
method.

In Figure 2] a CHANGE RETURN TYPE refactoring is per-
formed in Calc.divide(). Since the refactored line is exercised
by testDivide(), the method signature (i.e., package, class,
method name, parameter types, and line number) is recorded
in the trace log. Thus, testDivide(), at line 10, is determined
to be affected by the refactoring, whereas testAdd() is not
because it does not invoke divide(). If attributes are impacted
by a refactoring, we only identify as impacted test methods
that use those attributes in the execution traces to reduce false
positives.

We apply this approach to the two snapshots before and
after changes because several types of refactoring (e.g., ADD
METHOD ANNOTATION) are recorded only in one of the two
snapshots by RefactoringMiner as they do not modify any
lines in one snapshot. In contrast, the changes caused by other
refactoring types (e.g., INLINE VARIABLE) are recorded by
RefactoringMiner for both snapshots.



We identify them as the same refactoring by using their hash
values given by Refacton'ngMinerE] Thanks to the performed
analysis, we know for each commit the lines in the test
methods affected by the detected refactoring operations.

Once this information is known, we also excluded from our
study test methods affected by multiple refactoring operations,
because we cannot identify the exact refactoring operation
that possibly resulted in a broken test. We keep the cases
in which a single refactoring impacted multiple lines in the
production code, since we can still identify, in these cases, the
specific refactoring operation causing the test to break. This
filter removed 6,314 test methods.

Our data collection process requires considerable computa-
tional resources (about 3 hours per commit). For this reason,
we employed Kubernetes to parallelize the computation. We
deployed Kubernetes on 30 nodes of m5.2xlarge instances (8
vepu and 32GB memory) of Amazon Web Services and 10
nodes on our local servers, running our pipeline for about one
month. The program used for data collection is available on
GitHub (https://github.com/posl/DoesRefactoringBreakTest).

C. Data Analysis

To answer our research questions, we replace the test
directory in ¢; with the one in c¢;_;. Finally, we identify
tests broken (i.e., tests that fail or that exhibit compilation
errors) by the refactoring operation using the previously ex-
tracted information. Then, two of the authors manually and
independently inspected each test method that resulted in test
breaks (i.e., compilation error or test failure) to make sure
they were actually caused by the refactoring. The two authors
classified in the same way 83.6% of the inspected test breaks,
with a Cohen’s kappa coefficient of 0.66, which demonstrates a
substantial agreement [39]]. To solve the disagreements, a third
author inspected the conflicting cases, discussing them with
the first two authors and deciding on the final outcome (i.e.,
the test was or was not broken by the refactoring operation).

Differently from previous studies [8] [21], we also classify
the test breaks into three subcategories:

Compiler-Error: The production code after the refactoring
can be built, but the test code (related test methods)
cannot compile (e.g., new arguments have been added
to the tested method).

Runtime-Error: The test method suddenly terminated during
its running (e.g., NullPointerException).

Failure: The test method received unexpected values from the
production code after refactoring.

For each category of test break, we report the number of
test breaks that are involved in each type of refactoring. In
addition, the rates (i.e., compiler-error rate, runtime-error rate,
and failure rate) are calculated to identify the refactoring types
that are more likely to involve test breaks (if any).

2RefactoringMiner’s Java API provides a hash value for each refactoring
instance to identify each of them, based on the refactoring type name, locations
before and after refactoring, etc. )

For example, the failure rate for test methods involving
refactoring « is calculated as follows:

failures involving refactoring

FailureRate, =
all test methods affected by refactoring &

While the above data analysis is sufficient to answer RQq,
to address RQs we compute the median of changed lines in
broken test methods. For each refactoring type, we calculate
the following metric.

Changed lines: We extract file diffs with the “git diff”
and sum the numbers of added and deleted lines in each
test method impacted by refactoring and other relevant
methods in test code (e.g., util methods). We used the
histogram algorithm to generate diffs because Nugroho
et al. [40] showed that the algorithm can precisely assess
the impacted lines.

IV. RESULTS

Below we detail our following findings with examples:

e No test suites involving refactoring of local variables
failed.

« Refactoring operations changing method signatures and
return types are the most likely to trigger Compiler-
Errors.

o No Runtime-Error caused by refactoring operations could
be identified.

o It is rather rare for refactoring operations to directly
introduce Failures.

o The number of lines needed to fix test breaks triggered
by refactoring varies for different refactoring types, with
CHANGE RETURN TYPE being the most likely to require
demanding fixes.

A. RQ1: What types of refactoring break test suites?

Table [l shows the number of test methods involved in our
study for each type of refactoring and the frequency with
which each refactoring operation type results in passed or
broken tests. The refactoring types are grouped into three
categories — “Local Variable”, “Method”, and “Class” — based
on the entity on which a refactoring operation is performed.
Since, as any automated procedure, our data extraction pipeline
can result in false positives, all data in our study has been
manually validated. In particular, the manual inspection aimed
at removing cases in which the breaking test change was
not the refactoring operation. The manual validation was
performed by three authors: Each instance was independently
inspected by two authors and a third one was in charge of
solving conflicts (16.4% of cases). The manual validation
resulted in the exclusion of seven false positives, one related
to Compiler-Errors and six to Failures. These false positives
are already excluded from Table [[I} In addition to that, ten test
methods encountered Runtime-Errors for which we could not
identify the root cause of the error. We also removed them
from our analysis, leading to no remaining Compiler-Error.
We also exclude the errors that are caused by other factors
(e.g., errors due to runtime-environments, invalid dependen-
cies, flakiness [41]]).


https://github.com/posl/DoesRefactoringBreakTest

TABLE 11
RQ1: THE NUMBER OF TEST METHODS THAT ARE INVOLVED IN REFACTORING AND RESULT IN EACH TYPE OF TEST BREAKS.
THE REFACTORING OPERATIONS THAT APPEAR LESS THAN 10 TIMES ARE NOT SHOWN DUE TO SPACE LIMITATIONS. THE LAST ROW INCLUDES THOSE
INSTANCES OMITTED IN THE TABLE, THUS DOES NOT EQUAL THE SUM OF PREVIOUS ROWS.

Category | Refactoring Type #methods #PASS #COMPILER ERROR | #FAILURE
Local EXTRACT VARIABLE 1,068 1,068 0 (0.0%) 0 (0.0%)
Variable REPLACE VARIABLE WITH ATTRIBUTION 608 608 0 (0.0%) 0 (0.0%)
RENAME VARIABLE 458 458 0 (0.0%) 0 (0.0%)

CHANGE VARIABLE TYPE 145 145 0 (0.0%) 0 (0.0%)

Method CHANGE RETURN TYPE 498 490 7 (1.4%) 1 (0.2%)
EXTRACT METHOD 318 318 0 (0.0%) 0 (0.0%)

EXTRACT AND MOVE METHOD 312 312 0 (0.0%) 0 (0.0%)

CHANGE PARAMETER TYPE 301 300 1 (0.3%) 0 (0.0%)

RENAME METHOD 276 251 25 (9.1%) 0 (0.0%)

ADD PARAMETER 195 180 13 (6.7%) 2 (1.0%)

RENAME PARAMETER 114 114 0 (0.0%) 0 (0.0%)

ADD METHOD ANNOTATION 75 75 0 (0.0%) 0 (0.0%)

MOVE CLASS 567 526 41 (7.2%) 0 (0.0%)

Class ADD CLASS ANNOTATION 171 171 0 (0.0%) 0 (0.0%)
RENAME ATTRIBUTE 125 92 33 (26.4%) 0 (0.0%)

EXTRACT ATTRIBUTE 99 99 0 (0.0%) 0 (0.0%)

CHANGE ATTRIBUTE TYPE 57 57 0 (0.0%) 0 (0.0%)

RENAME CLASS 32 22 10 31.2%) 0 (0.0%)

All 5,478 5,343 132 (2.4%) 3 (0.1%)

Finding I} No test suites involving refactoring of local
variables failed. From Table [[Il we can see that while over
2,000 test methods involving refactoring were performed on
local variables, none of them led to any error or failure. This
finding is partially in contrast with what has been reported in
previous work [8]], in which refactoring operations involving
local variables were reported as likely to introduce bugs.
Clearly, a bug could still be introduced without breaking
changes in the test suite (e.g., in cases in which the test suite,
despite exercising the lines of code involving the variable, is
particularly weak in terms of asserted behavior). However, a
possible explanation for such a different finding is also the
lack of manual inspection and the use of changes between
releases in the previous work, which may classify a refactoring
as responsible for introducing a bug despite that other changes
tangled to the refactoring might be the bug-triggering event.

Finding 2} Refactoring operations changing method
signatures and return types are the most likely to trig-
ger Compiler-Errors. Seven types of refactoring operations,
including CHANGE RETURN TYPE, CHANGE PARAMETER
TYPE, RENAME METHOD, ADD PARAMETER, MOVE CLASS,
RENAME ATTRIBUTE, and RENAME CLASS, resulted in
Compiler-Errors. Most of them, except CHANGE RETURN
TYPE and RENAME ATTRIBUTE, change method signatures
(i.e., package name, file name, class name, method name,
and/or parameter types) [42]]. Changing the method signature
is indeed an obvious breaking change when it comes to
locations of the code (such as tests) invoking the refactored
method. Moreover, changes of return types can also lead to
type inconsistency, while not impacting method signatures. An
example of test broken by CHANGE RETURN TYPE can be
seen in Snippet [T} A developer changed the return type of the
method “removeSdchEncoding” from “HttpHeaders”
to “void”, while no other changes were made.

As the original test method still expected to re-
ceive an instance of “HttpHeaders”, a Compiler-
Error occurred. Therefore, the developer had to perform
“removeSdchEncoding” outside of the assertion statement
and use the “headers” in the assertion instead (Snippet [2).

Snippet 1. “Change Return Type” refactoring causing a compiler error

— public static HttpHeaders removeSdchEncoding (

= HttpHeaders headers) {
+ public static woid removeSdchEncoding (

+ HttpHeaders headers) {

B =

Snippet 2. Fix for compile errors due to “Change Return Type” in test code

1 - ...

2 - assertEquals (expectedEncodings,

3 - ProxyUtils.removeSdchEncoding (headers)

4 - .get (HttpHeaders.Names .ACCEPT_ENCODING) ) ;
5+ ...

6 + ProxyUtils.removeSdchEncoding (headers) ;

7 + assertEquals (expectedEncodings,

8 + headers.getAll (HttpHeaders.Names.ACCEPT_ENCODING) ) ;
9

Finding No Runtime-Error caused by refactoring
operations could be identified. Throughout our study, only
ten Runtime-Errors occurred and we could not identify the
cause of the error. Other than that, we did not find any
Runtime-Errors related to refactoring. The reason might be that
Runtime-Errors were resolved by developers when modifying
production code. After developers modified the production
code, they might ran the test suites. If any Runtime-Error was
spotted during the exercise of test methods, they might tend
to further modify the production code until no Runtime-
Error occurred before committing the changes. However, such
cases could only be identified through a more fine-grained
analysis capturing code editing in the IDE. The commit-level
granularity of our study does not allow to unveil them.



Finding [ It is rather rare for refactoring operations to
directly introduce Failures. Failures were observed in only
three test methods, with all of the corresponding to refactoring
operations at the method level (i.e., CHANGE RETURN TYPE
and ADD PARAMETER). An example of test failure caused by
CHANGE RETURN TYPE can be found in Snippet [3]

Snippet 3. Example of changes causing failures

1 - public List<Element> previousElementSiblings () {
2 + public Elements previousElementSiblings () {

Snippet 4. Example of test methods detecting failures

1 @Test

2 public void testPreviousElementSiblings () {

3 Document doc = Jsoup.parse (

4 "<ul id='ul’>" +

5 "<1li id='a’>a</1li>" +

6 "<li id='b’>b</1li>" +

7 500

8 - List<Element> elementSiblings =

9 - element.previousElementSiblings () ;
10 + Elements elementSiblings =

11 + element .previousElementSiblings () ;
12

13 assertEquals ("a", elementSiblings2.get (0).id());
)i

14 assertEquals ("b", elementSiblings2.get (1) .1id()

A developer changed the return type of the
method “previousElementSiblings ()” from
“List<Element>" to “Elements”. As “Elements”

extends “List <Element>" and it was already implemented
before the refactoring, no Compiler-Error was raised.
However, for an instance of the type “Elements”, the
method “previousElementSiblings ()” will produce
a list where siblings are ordered by its distance from the
current node, while “List<Element>" will generate a
list of siblings keeping their original order as child nodes
of their common parent. Therefore, the different behavior
of the method “previousElementSiblings ()” after
refactoring resulted in the Failure. Interestingly, developers
only fixed this issue in a later commit after the refactoring
got merged into the codebase.

R@:: While a previous study [8] showed that many
refactoring-related commits break tests, our manual inspec-
tion indicates that refactoring operations only account for
2.5% of the real cause of test breaks. Refactoring op-
erations changing method signatures are more likely to
cause Compiler-Errors in test code, and most of the time
refactoring does not directly trigger Failures.

B. RQ: What is the magnitude of the fix triggered by different
types of refactoring on test methods?

Figure [3] depicts, for each refactoring type for which we
observed broken tests, the distribution of the numbers of
changed lines in each test method as a consequence of
refactoring operations in relevant production code. In these
violin plots, the thickness of the outer layer represents the
probability density of the plotted values. In the center of each
violin plot, the white dot represents the median, while the thick
black bar represents the interquartile range.
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Fig. 3. Distribution of changed lines in test suites to fix test breaks introduced
by refactoring operations. We do not show CHANGE PARAMETER TYPE here
as it only occurred once in our study.

Finding 5} The number of lines needed to fix test
breaks triggered by refactoring varies for different refac-
toring types, with CHANGE RETURN TYPE being the most
likely to require demanding fixes. As it can be seen from
Figure 3] most of the issues caused by refactoring can be
fixed within 15 changed lines in a test method. The median
number of changed lines needed for CHANGE RETURN TYPE
is 7, which is the highest among all types of refactoring.
CHANGE RETURN TYPE often requires developers to modify
the lines around the refactored methods, which is illustrated
in Snippet [6] In this case, similarly to the one previously
discussed, developers changed the return type of the method
“nextElementSiblings” from “List<Element>" to
“Elements” (Snippet[3), thus a different approach is needed
to verify if the element has any next sibling.

Snippet 5. Example of Change Return Type refactoring

1 - public List<Element> previousElementSiblings () {
2 + public Elements previousElementSiblings () {

Snippet 6. Example of fixes required by Change Return Type, modifying the
approach to assert values

1 List<Element> elementSiblings4 = div.
nextElementSiblings () ;

- try {

= Element elementSibling = elementSiblings4.get (0);

fail ("This element should has no next siblings");

- } catch (IndexOutOfBoundsException e) {

-}

+ assertEquals (0, elementSiblings4.size());

NN R W
|

Most test breaks caused by ADD PARAMETER can be fixed
by modifying around five lines of code in test methods. When
manually inspecting how these broken tests were resolved, we
found that 73.3% (11/15) of them were fixed by adding null
values to the parameter list, while for the remaining 26.7% of
cases, developers had to manually select the correct argument
to pass. The majority of the test breaks caused by RENAME
METHOD requires less than five changed lines for the fix.



As test methods usually invoke the renamed methods several
times, during our manual inspection, we noticed in almost
all cases (~96%) the lines changes in the test methods just
required to rename the method to invoke.

MoVE CLASS and RENAME CLASS are least likely to
require changes in test code: the medians of changed lines are
0 for these two types of refactoring. However, in some rare
cases, significant changes are needed for MOVE CLASS. To
better understand how the impact of different refactoring types
differs from each other, we applied the Mann-Whitney U-test
with a Bonferroni correction to all the pairs of distributions of
changed lines. We also measured effect size r from the z-score
of the U-test. As a result, statistically significant differences (p-
value < 0.01/10) can be found between the pairs of CHANGE
RETURN TYPE and RENAME METHOD with a large effect size
(r=0.63), as well as between RENAME METHOD and MOVE
CLASS with a medium effect size (r=0.43). The result is in
line with our findings from Figure [3]

RQ>: ADD PARAMETER and CHANGE RETURN TYPE sel-
dom break tests but can have a substantial impact on the test
code, requiring 4-12 lines of changes to fix the test suite.

V. DISCUSSION

In the following we detail, complemented by examples, the
following findings:

« IDEs do not help to avoid test breaks when the methods in
production code are subject to ADD PARAMETER refactor-
ing, since an additional input is required by the refactored
method, triggering changes in the test code that must be
manually implemented.

o When CHANGE RETURN TYPE or CHANGE PARAMETER TYPE
is performed, the IDEs are unable to examine whether
the impacted instance still has valid callees or has a
compatible data type as a parameter, thus not helping
to avoid test breaks.

A. Discussion: Can IDEs help in reducing the chances of
breaking tests during refactoring activities?

Modern IDEs provide great support for refactoring source
code. While they are not meant to recommend refactoring
operations, IDEs such as IntelliJ] and Eclipse can help for
example in consistently updating the code base when a rename
method/class/variable refactoring is performed, thus lower-
ing the chances of introducing bugs and/or breaking tests.
Given the results of our study, showing that some of these
refactorings can indeed break tests, we investigate whether
those breaks could have been avoided by performing these
refactorings through the IDE.

Approach. We selected two popular IDEs, InteliJ and
Eclipseﬂ which account for 89% of the market share as of
2020 [43]]. Next, we selected 135 test methods in which test
breaks happened in R(Q);. Then, we cloned the repositories
in which these refactorings have been performed and checked
out the revision right before the refactoring implementation.

3We used InteliJ 2021.1 and Eclipse 2021-03.

We reproduced the refactoring in the production code by au-
tomating the process using the two IDEs. Finally, we evaluated
whether test suites were correctly modified in consequence of
the refactoring by comparing with the obtained tests with those
that have been fixed by developers.

Results. Table shows what percentage of test breaks
prevented by IDEs.

TABLE III

PERCENTAGE OF THE TEST BREAKS PREVENTED BY IDES
Refactoring Type COMPILER ERROR FAILURE
MOVE CLASS 100% (41/41) -
RENAME ATTRIBUTE 100% (33/33) -
RENAME METHOD 100% (25/25) -
ADD PARAMETER 0% ( 0/13) 0% (0/2)
RENAME CLASS 100% (10/10) -
CHANGE RETURN TYPE 0% ( 0/ 7) 0% (0/1)
MOVE AND RENAME CLASS 100% ( 2/ 2) -
CHANGE PARAMETER TYPE 0% ( 0/ 1) -

The two selected IDEs can support all the refactoring oper-
ations that resulted in breaks in R();. Both IDEs managed to
avoid all the test breaks triggered by refactoring that involves
the renaming or moving of code entities. Instead, all the test
breaks caused by ADD PARAMETER, CHANGE RETURN TYPE
and CHANGE PARAMETER TYPE refactoring are still observed
even by automating the refactoring with the IDEs.

Finding [6} IDEs do not help to avoid test breaks
when the methods in production code are subject to
ADD PARAMETER refactoring, since an additional input is
required by the refactored method, triggering changes
in the test code that must be manually implemented.
When an ADD PARAMETER is performed on a method, the
two IDEs ask the user to provide as input the type and
name of the new parameter. The user can assign a default
value for the new parameter so that IDEs insert them in the
invocations to the refactored method. However, all the test
breaks (i.e., 13 Compiler-Errors and 2 Failures) triggered by
ADD PARAMETER were still observed in our study. One major
reason for such a finding is that different values for the added
parameter are often required by different locations of code
invoking the refactored method. Even the same test method
invoking multiple times a method in the production code may
require different parameters’ values for the multiple invoca-
tions. However, both IDEs only allow to input one predefined
value. Snippets [/| and |8 show the difference between changes
required in the production and test code as a consequence of
an ADD PARAMETER.

Snippet 7. Changes triggered by Add Parameter in the production code

1 public FileVisitResult visitFile(final Path file, final
BasicFileAttributes attributes) throws IOException {

2 - if (Files.exists(file) &&

3 - pathFilter.accept (file)

4 — == FileVisitResult.CONTINUE) ({
5+ if (Files.exists(file) &&

6 + pathFilter.accept (file, attributes)
7 + == FileVisitResult.CONTINUE) ({




Snippet 8. Example of changes triggered by Add Parameter in the test code

1 @Test

2 public void testDeprecatedWildcard() throws Exception {
3 ...

4 - assertEquals (FileVisitResult.CONTINUE,

5 - listFilter.accept (txtPath));

6 + assertEquals(FileVisitResult.CONTINUE,

7 + listFilter.accept (txtPath, null));

In this example, we applied ADD PARAMETER refactoring
on the method accept and set the default value of the
newly added parameter to the variable “attributes”. Con-
sequently, the IDE appended the value “attributes” to the
parameter list of all the occurrences of accept. However, as
this variable was never declared in the test case (Snippet (), an
error occurred. Therefore, we had to manually inspect this case
and choose an appropriate value. If we wanted to automate
this process, the IDE should consider the context of each
refactoring. Modern IDEs are still incapable of performing
such a task and more efforts can be devoted into this direction.

Finding [7, When CHANGE RETURN TYPE or CHANGE
PARAMETER TYPE is performed, the IDEs are unable to
examine whether the impacted instance still has valid
callees or has a compatible data type as a parameter, thus
not helping to avoid test breaks. While the two IDEs support
the CHANGE RETURN TYPE refactoring, seven Compiler-
Errors and one Failure have been observed when we re-
produced the refactorings causing breaking tests in RQ);.
Although the IDEs modified some of the lines that include the
caller or callee of the refactored method, some lines had to
be manually modified to solve Compiler-Errors and Failures.
Snippet [9] shows the test code immediately after a CHANGE
RETURN TYPE is performed with the IDE.

Snippet 9. Test method after a CHANGE RETURN TYPE applied with IDE

final PathCounts pathCounts =
PathUtils.deleteFile (tempDirectory.resolve (fileName)) ;
final Counters.PathCounters pathCounts =
PathUtils.deleteFile (tempDirectory.resolve (fileName)) ;
Assertions.assertEquals (0,
pathCounts.getDirectoryCount () ) ;
Assertions.assertEquals (1, pathCounts.getFileCount());
Assertions.assertEquals (0, pathCounts.getByteCount ());

+ + ||

OB W —

Snippet 10. Example of refactoring CHANGE PARAMETER TYPE

1 - public String asString(Document doc,
properties) {

2 + public static String asString(Document doc,
, String> properties) {

Properties

Map<String

transformer.setOutputProperties (properties);

AW

The IDE modifies the lines in the test code (i.e., line 1 and
2). However, the test code has compilation errors in line 5-
8 because the class after refactoring (i.e., PathCounters)
does not implement the three methods that PathCount s has.

As for the other cases, the IDEs do not help to avoid test
breaks involving CHANGE RETURN TYPE from specific types
to void, and any return type using generics.

While the IDEs might avoid test breaks involving several
class types that can be applied by autoboxing (e.g., int to
Integer), we found none of these cases in our study.

Similar scenarios also apply to CHANGE PARAMETER TYPE
refactoring, which is illustrated in Snippet In this
example, we applied CHANGE PARAMETER TYPE refac-
toring on the method asString to modify the type
of parameter “properties” from “Properties” to
“Map<String, String>”, which is incompatible with the
method “setOutputProperties”. As the IDEs are not
able to detect or fix this issue, a Compiler-Error occurred.

Our analysis indicates that IDEs can help to avoid test
breaks caused by specific refactoring operations. For our future
work, we plan to assess whether these test breaks can be solved
through automatic test-suite repair techniques [44][45].

Additional Analysis: IDEs are helpful to avoid test breaks
triggered by refactoring involving rename or move, but they
do not prevent test breaks triggered by CHANGE RETURN
TYPE, CHANGE PARAMETER TYPE, or ADD PARAMETER.

B. Summary and Implications

This study examined the impact of refactoring on test suites,
measuring the broken tests and fixed lines in consequence
of refactoring. Additionally, this study investigated whether
modern IDEs can prevent test breaks caused by different
refactoring types. In this section, we map the findings across
R@Q1, RQ2, and the additional analysis performed with IDEs,
and then discuss which refactoring requires more effort to fix
test suites when developers refactor production code.

RQ; and RQ@, showed that RENAME METHOD, MOVE
METHOD and RENAME CLASS are likely to induce Compiler-
Errors (Finding 2). Also, RENAME METHOD is the third in
terms of magnitude of the requried fix in the test code (Find-
ing [5). However, our additional analysis showed that refac-
toring tools in the IDE can prevent breaking test code by
modifying the test code according to the change in the pro-
duction code. Still, many developers conduct such refactorings
manually [1][3][46], being more prone to break tests.

Take away for practitioners: When possible, the auto-
mated refactoring feature in the IDE must be exploited
to minimize the chance of introducing breaking changes
(and possibly bugs). This is especially true when per-
forming refactorings such as RENAME METHOD, MOVE
METHOD or RENAME CLASS, for which modern IDEs
provide an excellent support.

As for ADD PARAMETER, CHANGE PARAMETER TYPE,
and CHANGE RETURN TYPE, these refactoring types change
the “communication interface” of the impacted methods (i.e.,
their input/output), which often induces Compiler-Errors but
rarely Failures (Findings [2] and [)). In addition, IDEs are of
little help in avoiding breaking changes when it comes to the
automation of these refactoring types (Findings [6] and [7)).

Thus, developers must manually select the correct argument
or properly handle the new return type and fix the code loca-
tion invoking the refactored method since compilers tell only
the locations of the errors. Again, previous studies show that
these refactorings are mostly conducted manually [[L][3[][46].



In addition, these refactoring types require relatively larger
fixes than the other types (Finding [5) and these fixes are
not trivial to perform since, for example, the developer has
to select the appropriate values for the additional argument
in the different locations in which the method is invoked.
Thus, these types of refactoring requires a high effort for
developers to fix the broken tests. Researchers could explore
approaches to avoid test breaks when these types of refac-
toring are performed. For example, it could be helpful for
developers to recommend the most appropriate input values in
the invocations of the refactored method. This could be done,
by comparing trace logs generated by various inputs for the
method refactored with ADD PARAMETERS with the original
trace logs (i.e., before refactoring).

Take away for researchers: Researchers and IDE de-
velopers should improve the support provided when im-
plementing ADD PARAMETER, CHANGE PARAMETER
TYPE, and CHANGE RETURN TYPE refactoring, espe-
cially when these refactoring impact multiple locations
in the test/production code.

C. Threats to Validity

Internal Validity. Internal validity threats concern factors
internal to our study that could influence our results. To
investigate the inherent impact of refactoring, we decided to
exclude from our study test methods that were affected by
multiple refactoring edits. For example, in one commit we
found a single test method that exercised the production code
locations impacted by 19 refactoring edits. Our choice was
driven by the will of isolating to the extent possible the impact
of the different refactoring types. However, we acknowledge
that our analysis may miss interesting test breaking cases
resulting from combinations of refactoring.

Construct Threats. Construct validity threats concern the
relationship between theory and observation, and are mainly
related to sources of imprecision in our analyses. We employed
dynamic analysis in an effort to establish precise links between
production and test code.

Compared with FaultTracer [47] used in the previous
work [8l], our approach can detect line-level refactoring.
However, it might produce more false positives. Thus, we
manually validated the data used in our study to increase the
confidence in our findings. As for manual inspection, to avoid
subjectiveness bias, all the manual analyses we performed
were run by two authors, and a third author was involved
in case of conflicts. Still, we cannot exclude imprecisions in
such a process.

External Threats. External validity threats concern the
generalizability of our findings. We selected eight projects
for our quantitative study, paying attention to select projects
having a different size and belonging to different application
domains. The number of projects is comparable with that of
similar previous studies [8]][21].

Still, there are many factors negatively impacting the gen-
eralizability of our findings. First, we only focused on Java
systems using Maven. Second, we only employed projects
that do not include in their repository any sub-project to avoid
dependency issues. Third, the number of projects (8) is clearly
too low to claim any generalizability of our findings. However,
we want to highlight the costly analysis performed to collect
the data used in our experiments.

VI. CONCLUSIONS AND FUTURE WORK

This study measured the impact of refactoring on test
suites. We conducted a large-scale and fine-grained study using
dynamic analysis and manual inspection of the collected data.
We employed RefactoringMiner, the state-of-the-art refactor-
ing detection tool to identify refactoring edits performed in
eight open source projects. We checked whether test methods
exercise location in the production code subject to refactoring-
related edits. This was done by collecting and parsing execu-
tion log traces. Although collecting this data on every commit
requires a formidable amount of time, we overcame this issue
by expoloiting Kubernetes and numerous docker instances.

Throughout our empirical study we ran more than
615,196 test methods, and we observed that most types of
refactoring operations do not break test suites and, even in
the rare occasions when they do, small fixes are required to
the related tests. A few refactoring operations are more likely
to break test suites. For example, ADD PARAMETER results
in compilation errors for 6.7% of test methods and failures
for 1.0% of them. Also, several lines of code must usually be
fixed in test methods as a result of this refactoring. Finally,
we observed that for refactoring renaming and moving code
entities, exploiting the automated support of IDEs can help in
avoiding test breaks. Instead, this is not the case for ADD
PARAMETER, CHANGE PARAMETER TYPE, and CHANGE
RETURN TYPE refactoring.

Overall, based on the evidence we found through our study,
the question of whether refactoring breaks tests is to be an-
swered with a sound “no, it does not, and it should not”. It does
not, as by definition refactoring is a behavior-preserving code
transformation process, thus contradicting previous findings
by Rachatasumrit and Kim [8], who however did not heed the
issue of tangled commits. We phrased this finding as a take-
away for practitioners. However, for refactoring operations that
modify the method signatures and do induce test breaks we
also found a gap in terms of IDE support, which we phrased
as a take-away for researchers.

Our future work fill focus on (i) the research challenges
we listed in Section [V} and (ii) corroborating our findings by
running our study on a larger set of systems.
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