
0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

Bridging Semantic Gaps between Natural
Languages and APIs with Word Embedding

Xiaochen Li, He Jiang, Member, IEEE, Yasutaka Kamei, Member, IEEE, and Xin Chen,

Abstract—Developers increasingly rely on text matching tools to analyze the relation between natural language words and APIs.
However, semantic gaps, namely textual mismatches between words and APIs, negatively affect these tools. Previous studies have
transformed words or APIs into low-dimensional vectors for matching; however, inaccurate results were obtained due to the failure of
modeling words and APIs simultaneously. To resolve this problem, two main challenges are to be addressed: the acquisition of massive
words and APIs for mining and the alignment of words and APIs for modeling. Therefore, this study proposes Word2API to effectively
estimate relatedness of words and APIs. Word2API collects millions of commonly used words and APIs from code repositories to
address the acquisition challenge. Then, a shuffling strategy is used to transform related words and APIs into tuples to address the
alignment challenge. Using these tuples, Word2API models words and APIs simultaneously. Word2API outperforms baselines by
10%-49.6% of relatedness estimation in terms of precision and NDCG. Word2API is also effective on solving typical software tasks,
e.g., query expansion and API documents linking. A simple system with Word2API-expanded queries recommends up to 21.4% more
related APIs for developers. Meanwhile, Word2API improves comparison algorithms by 7.9%-17.4% in linking questions in
Question&Answer communities to API documents.

Index Terms—Relatedness Estimation, Word Embedding, Word2Vec, Query Expansion, API Documents Linking

F

1 INTRODUCTION

SOFTWARE developers put considerable efforts to study
APIs (Application Programming Interfaces) [1], [2]. To

facilitate this process, many tools have been developed to re-
trieve information about APIs, e.g., searching API sequences
based on a query [3] or recommending API documents
for answering technical questions [4]. These tools generally
utilize information retrieval models, such as Vector Space
Model (VSM) [4], [5], [6], to transform queries and APIs
into words and conduct text matching to find required APIs
or API documents [7]. Since there is usually a mismatch
between the content of natural languages and APIs, the
performance of these tools is negatively affected [7].

For example, in the task of API sequences recommen-
dation, when a developer searches for APIs implement-
ing ‘generate md5 hash code’, Java APIs of ‘MessageDi-
gest#getInstance’ and ‘MessageDigest#digest’ may be re-
quired [8]. However, neither the word ‘md5’ nor ‘hash
code’ could be matched with these APIs, which misleads
information retrieval models to return the required APIs [7].

Another example is from the task of API documents link-
ing. Developers usually ask technical questions on Question
& Answer communities, e.g., ‘How to (conduct a) sanity
check (on) a date in Java’.1 In their answers, the API ‘Calen-

• X. Li and H. Jiang are with School of Software, Dalian University of
Technology, Dalian, China, and Key Laboratory for Ubiquitous Network
and Service Software of Liaoning Province. H. Jiang is also an adjunct pro-
fessor in Beijing Institute of Technology. E-mail: li1989@mail.dlut.edu.cn,
jianghe@dlut.edu.cn (corresponding email)

• Y. Kamei is with the Principles of Software Languages Group (POSL),
Kyushu University, Japan. Email: kamei@ait.kyushu-u.ac.jp

• X. Chen is with School of Computer Science and Technology, Hangzhou
Dianzi University. E-mail: chenxin4391@mail.dlut.edu.cn

1. https://stackoverflow.com/questions/226910/

dar#setLenient’ is recommended by participants. However,
based on text matching, the relationship between ‘sanity
check (on) a date’ and ‘Calendar#setLenient’ is difficult to be
determined. The question submitter even complained that
‘(it is) not so obvious to use lenient calendar’.

In the above examples, the mismatches between natural
language words and APIs are semantic gaps. The gaps
hinder developers from using APIs [9] and tend to bring
thousands of defects in API documents [10]. They are also
a major obstacle for the effectiveness of many software
engineering tools [7], [11]. Previous studies have shown
that a text-matching based retrieval tool could only return
25.7% to 38.4% useful code snippets in top-10 results for
developers’ queries [7]. To bridge the gaps, a fundamental
solution is to correctly estimate the relatedness or similarity
between a word and an API or a set of words and APIs, e.g.,
generating accurate similarity between words ‘sanity check
(on) a date’ and the API ’Calendar#setLenient’.

Motivated by the aim of achieving such a solution, many
algorithms for relatedness estimation have been proposed,
including latent semantic analysis [12], co-occurrence anal-
ysis [11], WordNet thesaurus [13], etc. Among them, word
embedding has recently shown its advantages [4], [14]; it
constructs low-dimensional vectors of words or APIs for
relatedness estimation. Existing studies tried to train soft-
ware word embedding [4] based on Java/Eclipse tutorials
and user guides, as well as API embedding [14] with API
sequences from different programming languages. These
strategies may still be ineffective to estimate the words-APIs
relatedness, as they only learn the relationships for either
words or APIs.

To improve the performance of existing solutions, it is
necessary to model the words and APIs simultaneously into
the same vector space. However, two main challenges are to

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

be addressed: the acquisition challenge and the alignment
challenge. The acquisition challenge is how to collect a large
number of documents that contain diverse words and APIs.
API tutorials and user guides are usually full of words, but
have few APIs. The alignment challenge is how to align
words and APIs to fully mine their overall relationship in a
fixed window size, since word embedding mines word-API
relationships based on the co-occurrence of words and APIs.

In this study we propose Word2API to address the two
challenges. Word2API first collects large-scale files with
source code and method comments from GitHub2 to ad-
dress the acquisition challenge. Source code and method
comments usually contain diverse words and APIs com-
monly used by developers. Then, Word2API preprocesses
these files. It extracts words in method comments and
APIs in source code with a set of heuristic rules, which
are efficient in identifying semantically related words and
APIs in the files. After that, the extracted words and APIs
regarding the same method are combined as a word-API
tuple. Since the method comment always comes before the
API calls in a method3, the co-occurrence of words and
APIs may be hardly mined in a fixed window. Word2API
leverages a shuffling strategy to address the alignment
challenge. This strategy randomly shuffles words and APIs
in a word-API tuple to form a shuffled tuple for training.
Since there is valuable information among all words and
APIs in the same word-API tuple, this strategy is effective
in increasing the word-API collocations and revealing the
overall relationship between words and APIs in a fixed
window. Finally, Word2API applies word embedding on the
shuffled results to generate word and API vectors.

We trained Word2API with 391 thousand Java projects
consisting of more than 31 million source code files from
GitHub. Word2API generates vectors for 89,422 words and
37,431 APIs. We evaluate Word2API by recommending se-
mantically related APIs for a word. For 31 out of 50 words,
the top-1 recommended API is related, which outperforms
comparison algorithms by 10%-49.6% in terms of precision
and Normalized Discounted Cumulative Gain (NDCG).
Meanwhile, the shuffling strategy significantly improves the
effectiveness of word embedding in constructing semanti-
cally related vectors from word-API tuples.

Besides, we demonstrate two applications of Word2API,
including query expansion for API sequences recommen-
dation [3] and API documents linking [4]. API sequences
recommendation recommends API sequences in source code
for a user query. API documents linking links questions in
Q&A communities to the API documents that may be useful
to answer the questions. For the first task, Word2API ex-
pands a user query into a set of APIs. A simple system with
Word2API-expanded queries can recommend up to 21.4%
more related API sequences than baseline algorithms. For
the second task, Word2API outperforms existing algorithms
by 8.9% and 7.9% in linking useful API documents to ques-
tions in Stack Overflow in terms of Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR) respectively.

To conclude, we make the following contributions.

2. GitHub. https://github.com/
3. In this paper, ‘method’ refers to a function or procedure defined in

a class. We use ‘algorithm’ or ‘approach’ to describe Word2API

1) We propose Word2API to solve the problem of con-
structing low-dimensional representations for both
words and APIs simultaneously. Word2API success-
fully addresses the acquisition challenge and align-
ment challenge in this problem.

2) With Word2API, we generate 126,853 word and API
vectors to bridge the sematic gaps between natural
language words and APIs. We publish the generated
vectors as a dictionary for research.4

3) We show two applications of Word2API. Word2API
improves the performance of two typical software
engineering tasks, i.e., API sequences recommenda-
tion and API documents linking.

Outline. Section 2 presents the background of this study.
Section 3 shows the framework of Word2API. Experimental
settings and results on relatedness estimation are intro-
duced in Sections 4 and 5 respectively. Two applications
of Word2API are shown in Sections 6 and 7. In Section 8,
threats to validity are discussed. We review the related work
in Section 9. Finally, Section 10 concludes this paper.

2 BACKGROUND

2.1 Terminology

This subsection defines the major terms used in this paper.
APIs are pre-defined functions for communication be-

tween software components [15]. They are designed under
the criteria of high readability, reusability, extendibility, etc.
[16]. In this study, an API refers to a method-level API that
consists of the fully qualified name of an API type and a
method name.

A word is a natural language element in a document
or text to express human intentions. We take all the non-
API elements in a document or text as words. In software
engineering, there are many API-like words [4] such as
‘readLine’, ‘IOException’, etc. We also call them words.

In addition, ‘term’ is used to generally indicate either
APIs or natural language words.

We use the word ‘document’ to indicate a text with many
words or APIs. Some special documents in software engi-
neering are API documents [4]. In this study, API documents
refer to the documents in API specifications. Each API
document contains method-level APIs in the same class and
illustrates the class-description, method-description, etc.

2.2 Word Embedding

Word embedding is a fundamental component of
Word2API. It was originally designed to transform words
in word sequences into low-dimensional vectors [17]. Many
models have been proposed to implement word embedding,
e.g., Continuous Bag-of-Words model (CBOW) [18], contin-
uous Skip-gram model (Skip-gram) [17], etc. To facilitate
the use of these models, Google publishes a tool5 that
implements the CBOW and Skip-gram models. We take the
CBOW model as an example to explain word embedding,
as it is the default model in the word embedding tool.

4. The dictionary W2ADIC. https://github.com/softw-lab/word2api
5. Google tool. https://code.google.com/archive/p/word2vec/

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

Word2API Model

/**

* Open a file and output the contents
* @param path
* @return
* @throws IOException

*/
public void readFile(String path) throws IOException {

File file = new File(path);
FileReader fr = new FileReader(file);
BufferedReader br = new BufferedReader(fr);
String line = “”;
while (null != (line = br.readLine())) {

System.out.println(line);
}

}
}

Source code and comments

GitHub Corpus

A
Data acquisition

API Sequence: File#newÆ … Æ
BufferedReader#readLineÆ…

AST for source code

expr

expr term println(“+”)

println(“2”)

2

+

Word-API tuple construction

Word Sequence: openÆfileÆoutput…

/**

* Open a file and output the contents
* @param path
* @return
* @throws IOException

*/

NLP for comments

B

C

Word Embedding
F

Semantic vectors
open: <0.365,0.846,0.025…>

file: <0.585,0.298,0.525…>
BufferedReader#readLine: <0.316,0.003,0.298…>

File#new: <0.337,0.723,0.221…>
 … …

Vector generation

Shuffled Results

<open, File#new, file, BufferedReader#readLine…>

<open, file, File#new, BufferedReader#readLine…>

<file, File#new, open, BufferedReader#readLine…>

<BufferedReader#readLine, file, open, File#new…>

<Word Sequence, API Sequence>

Word-API tuples

D

E

Training set creation

𝑤𝑥−𝑑

𝑤𝑥−1

𝑤𝑥+1

𝑤𝑥+𝑑

𝑤𝑥 SUM

Fig. 2: Framework of Word2API model. (A) crawls the source code and comments from GitHub. (B) and (C) extract the
word sequences and API sequences in the crawled data. (D) combines the sequences as a tuple. (E) shuffles the tuples to
generate an unlabeled training set. (F) applies word embedding on the training set to get the term vectors.

𝑤𝑥−𝑑

𝑤𝑥−1

𝑤𝑥+1

𝑤𝑥+𝑑

Input Hidden layer Output

𝑊𝑉𝑜𝑐×𝑉

𝑤𝑥 SUM
𝑊𝑉×𝑉𝑜𝑐

′

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 =
𝑒𝑥𝑖

σ 𝑒𝑥𝑖𝑖

[2, 1.4, 2.1, 1.6]
𝑊𝑉𝑜𝑐×𝑉

′
[1.99, 3.68, 2.6, 4.23, 3.03, 1.46]

actual

target

[0.05, 0.26, 0.09, 0.45, 0.13, 0.03]

[0.00, 0.00, 1.10, 0.00, 0.00, 0.00]
for

𝑊𝑉𝑜𝑐×𝑉 =

ۏ
ێ
ێ
ێ
ێ
ۍ
0.1 0.3
0.2 0.3
0.5 0.5

0.5 0.2
0.6 1
0.2 0.3

1 0.2
0.7 0.6
0.3 0.2

0.7 0.3
0.3 0.1
0.2 ے0.1

ۑ
ۑ
ۑ
ۑ
ې

[1, 0, 0, 0, 0, 0] an

[0, 1, 0, 0, 0, 0] example

[0, 0, 0, 1, 0, 0] the

[0, 0, 0, 0, 1, 0] CBOW

(a) CBOW Model

(b) CBOW Example

Training on
the term sequence

“an example for the
CBOW model”

an

example

for

the

CBOW

model

Fig. 1: CBOW model for word embedding.

CBOW is a neural network model to learn word rep-
resentations from an unlabeled training set [18]. Fig. 1(a)
presents the framework of CBOW. CBOW consists of an
input layer, an output layer, and a hidden layer. The hidden
layer h is a 1 ⇥ V vector to represent words in a low-
dimensional space. V is pre-defined by users. CBOW uses
a matrix W

V oc⇥V to propagate information between layers,
where V oc is the vocabulary of the training set.

Initially, we randomly initialize the values of W

V oc⇥V
and represent each word x in V oc with a one-hot vector w

x

.
The one-hot vector is a zero vector with the exception of a
single 1 to uniquely identify the word (Fig. 1(b)). The vector
length is the same as the vocabulary size |V oc|.

With these one-hot vectors, CBOW tries to predict the
center word with its surrounding context in a fixed window
size d. Specifically, CBOW takes in the vectors of the sur-
rounding words W

d

x

= {w
x�d

, . . . , w

x�1

, w

x+1

, . . . , w

x+d

} in a
2d sized window as the input and the vector of the center

word w

x

as the target output. For example, if d = 2, V = 4
and ‘for’ is the center word, then the input includes the
vectors of ‘an’, ‘example’, ‘the’, ‘CBOW’. Based on W

V oc⇥V ,
CBOW propagates the input to the hidden layer h

h=

1

2d

(w

x�d

+. . .+w

x�1+w

x+1

+. . .+w

x+d

)·W
V oc⇥V (1)

Then, the vector in h continues forward propagating
according to the parameter matrices W 0

V oc⇥V :

w

1⇥V oc

= softmax(h ·W 0
V oc⇥V), (2)

where w1⇥V oc

is the actual output of the center word. For
example, the network outputs a vector [0.05, 0.26, 0.09, 0.45,
0.13, 0.03] in Fig. 1(b). Since w1⇥V oc

is far different from the
target output w

x

=[0, 0, 1, 0, 0, 0], CBOW aims to maximize
the average probability that the actual output is w

x

:

L

M

=

1

X

XX

x=1

log p(w

x

|W d

x

) (3)

CBOW optimizes the output by tuning the parameter
matrix W

V oc⇥V

with back propagation. After training, we
get the values of the final parameter matrix. For a word x,
the low-dimensional vector is calculated as w

x

·W
V oc⇥V .

3 THE WORD2API MODEL

Word2API represents natural language words and APIs
with low-dimensional vectors. As depicted in Fig. 2,
Word2API consists of four steps, including data acquisition,
word-API tuple construction, training set creation, and vec-
tor generation. We detail these steps in this section.

3.1 Data Acquisition
To train the vectors for words and APIs, we construct a
large-scale corpus with source code and method comments.
The corpus (referred as GitHub corpus) is constructed from
the Java projects created from 2008 to 2016 on GitHub.
We analyze Java projects as they have a broad impact on

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

software development. However, Word2API is independent
of programming languages. We download the zip snapshots
in July 2017 of these projects with GitHub APIs.6 We exclude
the projects with zero stars, since they are usually toy
or experimental projects [8]. For each project, all the Java
files are extracted. Each file consists of several methods
and their comments (Fig. 2(A)). In total, we collect 391,690
Java projects with 31,211,030 source code files. It should
be noted that, in GitHub, a project may have many forks
or third-party source code [19], leading to duplicate code
snippets. We keep these duplications in the data set, as
forking projects is a basic characteristic of GitHub.

3.2 Word-API Tuple Construction
With the GitHub corpus, we construct word-API tuples. A
word-API tuple is a combination of a set of words and the
corresponding APIs. We construct the tuples by analyzing
the source code of these Java projects.

Specifically, we construct an AST (Abstract Syntax Tree)
for each method in the source code by Eclipse’s JDT Core
Component.7 In the AST, we extract the method comment
(Fig. 2(B)) and its corresponding API types and method
calls in the method body (Fig. 2(C)) to construct a word-
API tuple. The word-API tuple consists of a word sequence
extracted from the method comment and an API sequence
obtained from API types and method calls in the method
body.

For the method comment, we remove the HTML tags
that match the regular expression ‘<.*?>’, and split the
sentences in the method comment by ‘. ’. In Java language,
sentences in a method comment are typically enclosed be-
tween ‘/**’ and ‘*/’ above the method body. We extract the
words in the first sentence to make up the word sequence
portion of a word-API tuple, since this sentence is usually a
semantically related high-level summary of a method [8].

For the method body, we extract Java Standard Edition
(SE) API types and method calls to make up the API
sequence portion of the word-API tuple. We note that a
method is usually implemented with many syntactic units
[14], including APIs, variables/identifiers, literals, etc. Java
SE APIs may not fully reveal the intents of a method
comment. However, they are still semantically related to the
comment [8]. We extract Java SE APIs as follows:

• We traverse the AST of a method to collect the
APIs for class instance creation and method call-
s. We represent these APIs with their fully qual-
ified names by resolving the method binding. If
an API is the argument of another API, we repre-
sent the API in the argument list first. For exam-
ple, ‘BufferedReader br = new BufferedReader(new
FileReader()); br.readLine())’ is represented as ‘ja-
va.io.FileReader#new, java.io.BufferedReader#new,
and java.io.BufferedReader#readLine’. We omit the
return type and argument types in this representa-
tion, since the overloaded APIs of different return
types or argument types usually convey the same
semantic meaning [20].

6. GitHub APIs. https://developer.github.com/v3/
7. Eclipse JDT Core Component. http://www.eclipse.org/jdt/core/

• We extract Java SE APIs from the collected APIs
by matching their package names with the ones in
the Java SE API specification8 (also called API refer-
ences). We delete the tuples without Java SE APIs.

After the above process, a set of word-API tuples are
achieved. We assume that the word sequence in each tuple
summarizes the behaviors or purposes of the corresponding
APIs. However, besides summarizing APIs, developers may
also add TODO lists, notes, etc. in the method comments
[21], which are noises in our scenario. Therefore, we filter
out these tuples, if the word sequence in a tuple:

• starts with ‘TODO’, ‘FIXME’, ‘HACK’, ‘REVISIT’,
‘DOCUMENTME’, ‘XXX’; these tags are commonly
used for task annotations instead of summarizing
APIs [22], e.g., ‘TODO remove this’;

• starts with words like ‘note’, ‘test’; developers use
these words to write an explanatory or auxiliary
comments [8], [23], e.g., ‘testing purpose only’;

• is a single word instead of a meaningful sentence.

For the remaining word sequences, we perform tok-
enization [24], stop words removal9 and stemming [25]. We
remove words that are numbers or single letters. If a word
is an API-like word, we split it according to its camel style,
e.g., splitting ‘nextInt’ into ‘next’ and ‘int’. Finally, 13,883,230
tuples are constructed (Fig. 2(D)).

3.3 Training Set Creation
This step creates an unlabeled training set with the con-
structed word-API tuples for word embedding. Word em-
bedding is a co-occurrence based method that analyzes the
relationship of terms in a fixed window size. Word embed-
ding works well in a monolingual scenario, e.g., sequential
natural language words [4], source code identifiers [26],
and API sequences [14], since words or APIs nearby have
strong semantic relatedness. In contrast, it may be hard
for word embedding to capture the co-occurrences between
words and APIs in a bilingual scenario such as comments
and their corresponding APIs. In this scenario, words and
APIs usually do not appear within each other’s window,
e.g., words in the method comments always come before
the APIs. The problem mainly comes from the word-API
tuples we collected. However, to the best of our knowledge,
no training set could be directly used for effectively mining
word embedding for both words and APIs like in a monolin-
gual scenario. An ideal training set should both have a large
number of words and APIs and properly align semantic
relatedness collocations of words and APIs. Since word-API
tuples consist of diverse words and APIs frequently used by
developers, the remaining challenge is, how to align words
and APIs into a fixed window for relationship mining.

To resolve this problem, we merge words and APIs in the
same tuple together and randomly shuffle them to create
the training set. The shuffling step is to break the fixed
location of words and APIs. It tries to obtain enough col-
locations between each word/API and other APIs/words.
To increase semantically related collocations, we repeat the

8. Java SE API Spec. http://docs.oracle.com/javase/8/docs/api/
9. Default English stop words. http://www.ranks.nl/stopwords

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

shuffling step ten times to generate ten shuffled copies of
an original word-API tuple. Fig. 2(E) is the shuffled results
of the word-API tuple created from Fig. 2(B) and Fig. 2(C).
After shuffling, words and APIs tend to co-occur in a small
window. We take these shuffled results as the training set
for word embedding. The training set contains 138,832,300
shuffled results. Its size is more than 30 gigabyte.

The implementation of the shuffling step can be under-
stood from two perspectives. From a training set perspec-
tive, this step transforms the original word-API tuples into
shuffled tuples and uses a classical CBOW model to learn
word embedding. From a model perspective, the shuffling
step is equivalent to a modified CBOW model, where the
surrounding words for recovering a center word are not
selected based on the window but are randomly sampled
from the entire word-API tuple.

The underlying reason of the above procedure is that
words and APIs in the same word-API tuple tend to contain
valuable semantic information (relatedness) for mining. The
shuffling strategy increases the information interaction and
helps word embedding learn the knowledge of collocations
between words and APIs in a tuple. After shuffling, the
collocations of words and APIs increase, i.e., words and
APIs have higher chances to appear within each other’s
window. Hence, word embedding could learn the overall
knowledge of each tuple. Since the shuffling is random,
we repeat the shuffling step to increase related word-API
collocations. We evaluate the shuffling step in Section 5.3.

3.4 Vector Generation
The last step of Word2API is to train a word embedding
model with the training set for vector generation. We utilize
the word embedding tool for unsupervised training. Word
embedding models have many parameters, e.g., ‘window
size’, ‘vector dimension’, etc. Although previous studies
show that task-specific parameter optimization influences
algorithm performance [27], such optimization may threaten
the generalization of an algorithm. Hence, in this study,
all the parameters in the tool are set to the default ones
except the ‘-min-count’ (the threshold to discard a word or
API). Since we generate ten shuffled results for a tuple, the
parameter ‘-min-count’ is set to 50 instead of the default
value of 5. It means that we discard all the words and APIs
that appear less than 50 times in the training set. For some
important parameters, we train word embedding with the
default model CBOW, a more efficient model compared to
the Skip-gram model in the word embedding tool10. The
default window size is 5 and the dimension of the generated
vectors is 100. The window size determines how many
words or APIs nearby are considered as co-occurred and
the vector dimension reflects the dimension of the generated
vector for each word or API. The other parameters are listed
as follows:

- ‘sample’ is 1e-3: the threshold to down-sample a high-
frequency term. The word embedding tool down-samples a
term t

i

in the training set by P (t
i

) = (
p
z(t

i

)/sample+1)⇥
sample/z(t

i

)11, where z(t
i

) is the probability that term i ap-

10. We compare CBOW and Skip-gram in Sec. S1 of the supplement.
11. https://github.com/dav/word2vec/blob/master/src/

word2vec.c

pears in the training set and P (t
i

) is the probability to keep
this term in the training set. When a term appears frequently,
P (t

i

) tends to be small, which means the probability to keep
this term in the training set is low.

- ‘hs’ is 0: hierarchical softmax is not used for training.
- ‘negative’ is 5: the number of random-selected negative

samples in a window.
- ‘iter’ is 5: the number of times to iterate the training set.
- ‘alpha’ is 0.05: the starting learning rate.
- ‘thread’ is 32: the number of threads for training.
After running the word embedding tool, 89,422 word

vectors and 37,431 API vectors are generated eventually.
These vectors are important to bridge the semantic gaps be-
tween natural language words and APIs. For this purpose,
we define word-API similarity and words-APIs similarity:

Word-API Similarity is the similarity between a word w

and an API a. It is the cosine similarity of vectors
�!
V

w

and
�!
V

a

:

sim(w, a) =

�!
V

w

·�!V
a

|�!V
w

||�!V
a

|
. (4)

Words-APIs Similarity extends Word-API Similarity to a
set of words W and a set of APIs A [28]:

sim(W,A)=
1

2

✓P
(sim

max

(w,A)⇥idf(w))
P

idf(w)
+

P
(sim

max

(a,W)⇥idf(a))
P

idf(a)

◆
,

(5)
where sim

max

(w,A) returns the highest similarity between
w and each API a 2 A, and idf(w) is calculated as the
number of documents (word sequences in word-API tuples)
divided by the number of documents that contain w. Simi-
larly, sim

max

(a,W) and idf(a) can be defined.

4 EVALUATION SETTING

In this section, we detail the settings for evaluating
Word2API, including Research Questions (RQs), baseline
algorithms, the evaluation strategy, and evaluation metrics.

4.1 Research Questions

RQ1: How does Word2API perform against the baselines
in relatedness estimation between a word and an API?

To estimate term relatedness, many algorithms have
been proposed. We compare Word2API with these algo-
rithms to show the effectiveness of Word2API.

RQ2: How does Word2API perform under different
settings?

For generalization, Word2API utilizes the default set-
tings of the word embedding tool for vector generation. This
RQ evaluates Word2API under different parameter settings.

RQ3: Does the shuffling step in training set creation
contribute to the performance of Word2API?

We investigate whether the shuffling strategy can better
train word and API vectors.

4.2 Baseline Algorithms for relatedness estimation

This part explains the main algorithms for relatedness esti-
mation [11] and shows the baselines in this study.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

4.2.1 Latent Semantic Analysis (LSA)

LSA (also called Latent Semantic Indexing) [12] first repre-
sents the documents in a corpus with an m⇥n matrix. In the
matrix, each row denotes a term in the corpus, each column
denotes a document, and the value of a cell is the term
weight in a document. Then, LSA applies Singular Value
Decomposition to transform and reduce the matrix into an
m⇥ n

0 matrix. Each row of the matrix is an n

0-dimensional
vector that can be used to estimate the relatedness of differ-
ent terms.

In this study, the inputs of LSA are word-API tuples.
We take each tuple as a document. The value of a cell in
the matrix is the frequency of a term in the document. Due
to the large number of tuples (> 10 million), we randomly
sample 20% tuples for training to resolve the computational
problems in calculating high-dimensional matrices. n0 is set
to 200, since it achieves acceptable results on relatedness
estimation [11]. We implement LSA with Matlab.

4.2.2 Co-occurrence based Methods

Co-occurrence based methods assume that terms are seman-
tically related if they tend to co-occur in the same document
or a fixed window size of the document. In this experiment,
a document means a word-API tuple. Word2API belongs to
this category. Besides, we highlight several other represen-
tative algorithms, including Pointwise Mutual Information
(PMI), Normalized Software Distance (NSD), and Hyper-
space Analogue to Language (HAL).

PMI measures term relatedness by comparing the prob-
ability of co-occurrence of two terms and the probability
of occurrence of each term [29]. Co-occurrence means two
terms co-occur in the same document regardless of the
position and occurrence means a term occurs in a document.
PMI of a word w and an API a is defined as:

PMI(w, a) = log

p(w, a)

p(w)p(a)

⇡ log

f(w, a)

(f(w))⇥ (f(a))

, (6)

where p(w, a) is the probability that w and a co-occur in a
word-API tuple. It can be estimated by f(w, a), namely the
number of tuples that contain both w and a divided by the
total tuples’ number. p(w) or p(a) is the probability that w
or a occurs in a tuple respectively, which can be estimated
by f(w) or f(a) similarly.

NSD [11] calculates the similarity between a word w and
an API a with the following formula [30]:

NSD(w, a)=

max {log(f(w)), log(f(a))}�log(|f(w)

T
f(a)|)

log(N)�min {log(f(w)), log(f(a))}
, (7)

where f(w) and f(a) are the same definitions as those in
formula (6) and N is the number of tuples.

HAL [31] constructs a high dimensional n ⇤ n matrix to
represent the co-occurrences of all the n terms in the word-
API tuples. Each cell (row

i

, column
j

) in the matrix is the
weight between term

i

and term
j

, which is formalized as the
Positive PMI (PPMI) between the corresponding terms [32]:

PPMI =

⇢
PMI(term

i

, term
j

), PMI(term
i

, term
j

) > 0

0 otherwise

(8)

TABLE 1: Selected words for evaluation

Word # Word # Word # Word # Word

1 agent 11 delete 21 key 31 random 41 tail
2 average 12 display 22 length 32 remote 42 thread
3 begin 13 environment 23 mp3 33 request 43 timeout
4 buffer 14 file 24 next 34 reserve 44 transaction
5 capital 15 filter 25 node 35 scale 45 uuid
6 check 16 graphics 26 object 36 select 46 validity
7 classname 17 http 27 open 37 session 47 word
8 client 18 input 28 parse 38 startup 48 xml
9 current 19 interrupt 29 port 39 string 49 xpath
10 day 20 iter 30 post 40 system 50 year

4.2.3 Thesaurus-based Methods

This line of methods uses linguistic dictionaries, e.g., Word-
Net, for relatedness estimation. However, such methods
may be ineffective in software engineering areas [11], [33],
due to the lack or mistaken definition of software-specific
terms in the dictionaries, e.g., program reserved identifiers
and APIs. We do not take them as baselines.

4.3 Evaluation Strategy

As to our knowledge, no dataset is publicly available for
word-API relatedness estimation, as most evaluations de-
pend on human judgements [11], [34]. We follow the widely
accepted methodology of TREC12 for evaluation [35], [36], a
popular Text REtrieval Conference of over 25 years’ history.

Given a corpus, TREC selects a set of queries for different
algorithms to retrieve texts, e.g., web pages or documents.
The results are ranked in a descending order. The top-k
(usually, k=100 [35]) results are submitted to TREC. TREC
merges the results from different algorithms and asks vol-
unteers to judge the relatedness of the query-result pairs
subjectively in a binary manner (related or unrelated). Sim-
ilar to TREC, we conduct the evaluation as follows.

4.3.1 Word selection

This step selects a set of words as queries. Initially, we
randomly select 50 words from the GitHub corpus. Among
these words, nouns and verbs are selected as queries as they
are more descriptive [23]. The other words are removed. The
removed words are replaced by other randomly selected
nouns or verbs until the number of words reaches 50 (in
Table 1). This number is comparable to TREC [36] and other
experiments in software engineering [8], [11].

This experiment selects 50 words for evaluation. It is
a direct way to evaluate the semantic relatedness between
words and APIs as suggested by previous studies [11], [37].
Since human usually have some intuitive understandings
to APIs, the evaluation helps us understand whether the
results returned by each algorithm are in accordance with
the human intuition.

4.3.2 API collection

We run Word2API and the baseline algorithms with the
selected words. For each word, we collect and merge the
top-100 recommended APIs for evaluation.

12. Text REtrieval Conference TREC. http://trec.nist.gov/

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

4.3.3 Human judgement
Theoretically, there are 25,000 word-API pairs for judge-
ments (50 words⇥5 algorithms⇥100 recommendations). S-
ince some APIs may be recommended by more than one
algorithm, there are 19,298 judgements eventually. Due to
the large number of word-API pairs, we follow TREC to
randomly split them into three non-overlapping partitions
and assign the partitions to three volunteers for evaluation
(related or unrelated). Each volunteer evaluates about 6,433
word-API pairs. The volunteers are graduate students, who
have 3-5 years’ experience in Java. We take them as junior
developers. Since Junior developers (less than 5 years’ ex-
perience) inhabit over 50% of all developers according to a
survey13 of 49,521 developers in Stack Overflow, the evalua-
tion may be representative to the view of many developers.

The definition of relatedness is open [11]. Volunteers
could consider the linguistic definition of a word, the us-
age scenarios of an API, etc. We ask volunteers to record
how they understand each word during evaluation, i.e., the
definition that they evaluate the word-API pairs. The judge-
ments take 2 weeks. On average, 86 APIs are considered to
be related to a word.

To evaluate the validity of human judgements, we
randomly select a statistically significant sample for re-
evaluation based on the total number of 19,298 word-API
pairs with a confidence level of 99% and a confidence inter-
val of 5% [38], resulting in a sample of 644 word-API pairs.
We send the sample to a new volunteer for judgements. The
Cohen’s Kappa coefficient [39] between the first and second
round of judgements is 0.636, which means that volunteers
substantially agree on the judgements.

4.4 Evaluation Metrics
Based on the human judgements, we evaluate each algo-
rithm from two aspects, namely, given a word, how many
related APIs can be correctly recommended and whether the
related APIs are ranked higher than the unrelated ones. For
these aspects, precision and NDCG are employed [1], [40].

Precision@k =

of relevant APIs to word
i

in top-k
k

,

(9)

NDCG@k =

DCG@k

IDCG@k

(DCG@k =

kX

i=1

r

i

log

2

i+ 1

), (10)

where r

i

= 1 if the ith API is related to the given word, and
r

i

= 0 otherwise. IDCG is the ideal result of DCG, which all
related APIs in a ranking list rank higher than the unrelated
ones. For example, if an algorithm recommends five APIs in
which the 2nd, 4th APIs are related, we can represent the
results as {0,1,0,1,0}. Then the ideal result is {1,1,0,0,0}.

5 EVALUATION RESULTS

5.1 Answer to RQ1: Baseline Comparison
5.1.1 Precision and NDCG
Fig. 3(a) and Fig. 3(b) are the averaged precision and NDCG
for different algorithms over the selected 50 words respec-
tively. The x-axis is the ranking list size k from 1 to 100 and
y-axis is precision and NDCG on varied k.

13. https://insights.stackoverflow.com/survey/2016

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 11 21 31 41 51 61 71 81 91

Pr
ec
is
io
n

k

LSA NSD
PMI HAL
Word2API

(a) Evaluation on precision

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 11 21 31 41 51 61 71 81 91

N
D
C
G

k

LSA NSD
PMI HAL
Word2API

(b) Evaluation on NDCG

Fig. 3: Precision and NDCG on 50 selected words.

In Fig. 3(a), Precision@1 of Word2API is 62%, which
means that Word2API can find a semantically related API
in the top-1 recommendation for 31 out of 50 query words.
This result outperforms the best baseline algorithm by 10%.
When recommending 20 APIs by Word2API, half of the
APIs are semantically related. If we recommend 100 APIs,
the precision of Word2API is still nearly 40%. Since there
are about 86 related APIs for a selected word, the result
means that Word2API finds nearly half of the related APIs.
For NDCG, Word2API is superior to the other algorithms.
NDCG@1, NDCG@2 and NDCG@6 of Word2API are 0.620,
0.726 and 0.803 respectively, which outperform the baselines
by 0.102 to 0.496. We explore the statistical significance of the
results with the paired Wilcoxon signed rank test over the
entire ranking list, i.e., Precision@100 and NDCG@100.

H0: There is no significant difference between the performance
of two algorithms over an evaluation metric.

H1: There is significant difference between the performance of
two algorithms over an evaluation metric.

Since there are four baseline algorithms, the signifi-
cance level is set to 0.05/4 = 1.25 ⇥ 10

�2 after Bonfer-
roni correction [41]. The p-values on Precision@100 are
5.17⇥ 10

�9

, 7.52⇥ 10

�9

, 4.63⇥ 10

�7

, 7.53⇥ 10

�5 when com-
paring Word2API with LSA, PMI, NSD, HAL respectively.
H0 is rejected. Word2API significantly outperforms all the
baseline algorithms. We also achieve the same conclusion for
NDCG@100. The p-values are 1.77⇥10

�8

, 2.99⇥10

�9

, 8.76⇥
10

�6

, 5.20⇥ 10

�4 for LSA, PMI, NSD, and HAL respectively.
For the baseline algorithms, HAL and NSD are the

best, followed by LSA and PMI. Both HAL and NSD have
been applied on software engineering tasks in previous
studies [11], [32]. The two algorithms conduct relatedness
estimation with high-dimensional vectors [32] or predefined
functions [11]. The drawback of HAL and NSD is that they
cannot refine the relatedness of two terms with other terms
in the same context. In contrast, Word2API recovers a term
based on the vectors of nearby terms. The recovering step is
to mine and refine a term with the knowledge of its context.
Hence, Word2API performs better over different metrics.

5.1.2 Examples of recommended APIs
Table 2 presents examples of the recommended APIs for
words ‘capital’ and ‘uuid’.14 We omit the API package
names for brevity. An API in bold is a related API by
human judgements. Volunteers think the word ‘capital’ is

14. Other recommended APIs are at https://github.com/softw-
lab/word2api

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

TABLE 2: Examples of top-10 recommended APIs for different algorithms.

LSI PMI NSD HAL Word2API

capital

Character#getType NSMException1#fillInStackTrace Character#toUpperCase Character#toTitleCase Character#toUpperCase
StringBuilder#insert Character#toTitleCase Character#toTitleCase Character#isTitleCase Character#toTitleCase
Pattern#normalizeSlice Character#offsetByCodePoints Character#isUpperCase String#getValue Character#isUpperCase
Pattern#normalizeClazz Character#toUpperCase Character#isLetter Character#isUpperCase Character#toLowerCase
Character#toUpperCase Character#isUpperCase Character#isLowerCase Character#isTitleCaseImpl Character#isLowerCase
StringBuilder#reverse ToLongBiFunction<T>#applyAsLong Character#toLowerCase Character#isLowerCase Character#isTitleCase
StringBuilder#appendCP2 LongStream#sum Character#offsetByCodePoints CharacterData#toTitleCase IndexedPropertyDescriptor#setReadMethod
StringBuilder#setLength Vector<T>#subList StringBuilder#setCharAt IAVException3#printStackTrace StringBuilder#setCharAt
StringBuilder#setCharAt Character#isLetter NSMException#fillInStackTrace ITException4#fillInStackTrace PropertyDescriptor#setName
Character#isAlphabetic Character#isLowerCase String#codePointAt Character#toUpperCase String#toUpperCase

uuid

Objects#requireNonNull UUID#.new JAXBException#fillInStackTrace UUID#toString UUID#randomUUID
Charset#newEncoder UUID#toString UUID#padHex UUID#.new UUID#toString
CharSequence#equals UUID#randomUUID UUID#md5 UUID#randomUUID UUID#fromString
AssertionError#.new UUID#version UUID#makeUuid UUID#nameUUIDFromBytes UUID#getLeastSignificantBits
UUID#toString UUID#getMostSignificantBits UUID#generateUUIDString ThreadLocalRandom#nextBytes UUID#getMostSignificantBits
Supplier<T>#get UUID#getLeastSignificantBits UUID#digits Random#nextLong UUID#digits
Scanner#hasNextShort UUID#fromString UUID#version UUID#equals UUID#nameUUIDFromBytes
CharSequence#charAt Long#intValue UUID#.new IIOMetadataNode#setNodeValue SOAPEnvelope#createQName
NullPointerException#.new UUID#nameUUIDFromBytes UUID#timestamp Base64#getUrlEncoder UUID#makeUuid
TAccessor5#isSupported UUID#digits UUID#nameUUIDFromBytes TemporalAdjusters#previousOrSame UUID#equals

Note: 1NSMException: NoSuchMethodException 2appendCP: appendCodePoint 3IAVException: InvalidAttributeValueException 4ITException: InvocationTargetException
5TAccessor: TemporalAccessor

semantically related with APIs that perform operations on
the capital letters or first words. It is a concept that may be
related to different API packages, e.g., ‘String#toUpperCase’
or ‘Character#toUpperCase’. ‘uuid’ is considered to be relat-
ed to APIs in the java.util.UUID package and some APIs for
random number generation. It is a concept mainly related to
a concrete package.

As shown in Table 2, the results of Word2API
show similar understandings with volunteers. It associates
‘capital’ with APIs of ‘Character#toUpperCase’, ‘Char-
acter#toLowerCase’, and ‘String#toUpperCase’. Although
some related APIs are also detected by HAL, NSD and PMI,
these algorithms still find some unrelated APIs in the top-
5 results, e.g., ‘String#getValue’. For the word ‘uuid’, many
algorithms associate this concept with the UUID package.
Word2API is among the best of these algorithms. In contrast,
HAL fails to analyze this concept. Only half of the top-10
APIs are related to ‘uuid’. The reason may be that HAL
represents terms with high-dimensional vectors. The dimen-
sion equals to the vocabulary size. The high-dimensional
representation increases the computation complexity which
makes HAL unprecise [4], e.g., introducing noises and being
dominated by dimensions with large entry values.

Conclusion. Word2API outperforms the baseline algo-
rithms in capturing the word-API semantic relatedness.

5.2 Answer to RQ2: Parameter Influence

There are two main parameters for vector generation, name-
ly the window size w and the vector dimension v.15 This RQ
generates variants of Word2API to evaluate the parameter
influence. For the variants (in RQ2 and RQ3), additional hu-
man judgements are conducted on the new recommended
APIs that have not been judged before.

15. We analyze the influence of the shuffling times, the number of
iterations, the tuple length, etc. in Sec. S3 to S6 of the supplement.

5.2.1 Window Size

Fig. 4(a) shows precision and NDCG with respect to differ-
ent window sizes. We choose the window size varied from
5 to 100, including 5, 10, 15, 20, 50 and 100. In the figures,
the x-axis is the ranking list size k and the y-axis is the
corresponding precision or NDCG. For simplicity, we only
show the results of every ten ranking list size.

In Fig. 4(a), the precision of Word2API is stable when
the window size is small. The performance is nearly the
same for w = 5 and w = 10. For example, Precision@100 is
0.376 at w = 5 and 0.370 at w = 10. If we increase w to 50,
the performance drops significantly. The reason may be that,
Word2API constructs term vectors by maximizing the possi-
bility to recover the current term vector with the co-occurred
term vectors. As the window size increases, the difficulty of
the training process also increases. For the CBOW model,
the difficulty is caused by the averaging of the surrounding
words, which dilutes most of the information in the training
set. For the Skip-n model, the difficulty is caused by the
need to find the relationship between the center word and
every surrounding word in the increased window size.

Similarly, NDCG also tends to be stable when the win-
dow size is small. We find that NDCG at w = 10 is
consistently better than that at w = 5, which means we can
further improve Word2API by tuning the parameters.

5.2.2 Vector Dimension

We evaluate the influence of vector dimensions in Fig. 4(b).
The dimension is varied from 100 to 1000. For the top-
1 result, the maximum margin of different dimensions is
0.100 on both precision and NDCG, which happens between
v = 100 and v = 300. When Word2API recommends 100
APIs for a word, the variation becomes small. Precision@100
is 0.375 at v = 100 and 0.340 at v = 1000. NDCG@100 is
0.817 at v = 100 and 0.797 at v = 1000. We also average
the differences between v = 100 and v = 1000 for the
ranking list from 1 to 100. The average difference between
v = 100 and v = 1000 is 0.050 for precision and 0.018

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

k
w5 w10 w15 w20 w50 w100

0.5

0.6

0.7

0.8

0.9

1 10 20 30 40 50 60 70 80 90 100

N
D

C
G

k
v100 v300 v500 v1000

0.3

0.4

0.5

0.6

0.7

0.8

1 10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

k
v100 v300 v500 v1000

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 10 20 30 40 50 60 70 80 90 100

N
D

C
G

k
w5 w10 w15 w20 w50 w100

0.2

0.3

0.4

0.5

0.6

0.7

1 10 20 30 40 50 60 70 80 90 100

Pr
ec

is
io

n

k
Word2API Sequence-w5 Sequence-w10 Sequence-w50

0.2

0.4

0.6

0.8

1

1 10 20 30 40 50 60 70 80 90 100

N
D

C
G

k
Word2API Sequence-w5 Sequence-w10 Sequence-w50

(a) window size w (c) sequence strategies (b) vector dimension v

Fig. 4: Precision and NDCG between Word2API and its variants. We tune the window size in (a). The vector dimension is
evaluated in (b). We compare the shuffling strategy in Word2API with a sequence strategy in (c).

for NDCG. Hence, Word2API is relatively insensitive to the
vector dimension overall.

The vector dimension determines the granularity to rep-
resent a term. A small vector dimension means to represent
a term with some abstract entries, while a large vector
dimension may generate more fine-grained vector repre-
sentations. Although a large vector dimension may better
represent words and APIs, it requires more data for training
which slightly reduces Word2API’s performance. Hence, the
overall ability of Word2API is not significantly affected.

Conclusion. Word2API is stable at small window size
and relatively insensitive to the vector dimension. We can
improve Word2API by setting different parameters.

5.3 Answer to RQ3: The Shuffling Strategy
5.3.1 Comparison with the sequence strategy
Word2API constructs word-API tuples from method com-
ments and API calls to train word embedding. It uses a
shuffling strategy to obtain enough collocations between
words and APIs in a word-API tuple. In this subsection, we
compare the shuffling strategy against a sequence strategy.
The sequence strategy combines the word sequence and the
API sequence in a word-API tuple according to their original
order, i.e., words come before the APIs. Then, it trains
vectors on these combined data with the word embedding
tool by the default parameters, namely w = 5, v = 100, and
-min-count= 5. We refer it as ‘Sequence-w5’.

We compare Word2API and Sequence-w5 in Fig. 4(c).
Sequence-w5 performs rather poor in estimating word-API
relatedness. Both Precision@1 and NCDG@1 are 0.360. For
top-100 recommended APIs, the precision and NDCG are
0.234 and 0.676 respectively, In contrast, Word2API signif-
icantly outperforms Sequence-w5 by up to 26% for both
precision and NDCG. The results demonstrate that the shuf-
fling strategy improves the ability of Word2API to construct
vectors for semantically related words and APIs.

In addition, we increase the window size of Sequence-
w5 to w = 10 and w = 50, denoted as ‘Sequence-w10’

and ‘Sequence-w50’. The two variants investigate whether
we can improve Sequence-w5 by increasing the window
size. As shown in Fig. 4(c), Sequence-w10 and Sequence-
w50 perform similar to Sequence-w5. For example, Preci-
sion@100 are 0.2344 and 0.2248, and NDCG@100 are 0.6755
and 0.6761 for Sequence-w5 and Sequence-w50 respectively.
The differences are less than 0.01. The reason may be that,
although a large window size increases the number of co-
occurred words and APIs for training word embedding, it at
the same time increases the difficulty of the training process
as discussed in Section 5.2. These two factors result in a
stable performance of the sequence strategy.

5.3.2 Comparison with the frequent itemset strategy

This subsection compares the shuffling strategy with an
alternative strategy, namely the Frequent ItemSet (FIS) s-
trategy, to generate a training set. FIS takes each word-API
tuple as a document and mines frequent itemsets with the
Apriori algorithm. To analyze the word-API relationship, we
collect the frequent 2-itemsets that contain a word and an
API. These word-API itemsets are considered to be highly
related. We calculate the confidence value from the word
to the API in the frequent 2-itemsets. After calculation,
we traverse the 13,883,230 word-API tuples. For an API in
a word-API tuple, we search its highly related words in
the same tuple and put the API near the word with the
largest word-to-API confidence value (on the right side of
the word). If the highly related words are not found, we
leave the API at its original position. We use these reordered
word-API tuples to train word embedding.

There are two parameters for Apriori, i.e., the support
value and the confidence value. The support value is set to
0.0001. We find each term in the word-API tuples appears
in 1,491 tuples on average. We consider an itemset to be
frequent when all the terms in the itemset appear more
frequently than the average value, which attributes to a
support value of 1,491/13,883,230, approximating to 0.0001.
At last, 48,961 frequent 2-itemsets are mined. These itemsets

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

0.2

0.3

0.4

0.5

0.6

0.7

1 11 21 31 41 51 61 71 81 91

Pr
ec
is
io
n

k

Word2API

FIS

FIS+Shuffle

(a) Evaluation on precision

0.5

0.6

0.7

0.8

0.9

1 11 21 31 41 51 61 71 81 91

N
D
C
G

k

Word2API

FIS

FIS+Shuffle

(b) Evaluation on NDCG

Fig. 5: Comparison on Shuffling and FIS strategies.

contain 1,233 words. Each word is related to 40 APIs on av-
erage. We do not set a confidence value to further filter these
itemsets, because when the number of frequent itemsets is
small, most word-API tuples are kept as their original order.

As shown in Fig. 5, Word2API outperforms FIS by 0.02
to 0.102 in terms of precision and by 0.02 to 0.061 in terms
of NDCG. Although FIS is useful to generate the training
set, the shuffling strategy seems better than FIS. The reason
is that there are valuable information among all words and
APIs in the same tuple. When generating the training set
with FIS, the word embedding algorithm mainly mines
the information among the highly related words and APIs
instead of the overall information.

To prove this assumption, we propose another strategy
named FIS+Shuffle. This strategy first puts the highly re-
lated APIs near the word, and then shuffles the remaining
words and APIs. In Fig. 5, FIS+Shuffle improves FIS. It
means the shuffling strategy helps word embedding to ana-
lyze the overall information in a word-API tuple. However,
Word2API still outperforms FIS+Shuffle. The reason may be
that, for a word in frequent itemsets, word embedding can
hardly find the relationship between this word and every
API, as most surrounding APIs are limited to a few highly
related ones.

Conclusion. The shuffling strategy improves the ability
of Word2API to learn word-API relationships.

6 WORD2API FOR API SEQUENCES RECOMMEN-
DATION

In Section 5, we evaluate Word2API on relatedness estima-
tion at the word-API level. In the following parts, we further
evaluate Word2API at the words-APIs level. We show two
typical applications of Word2API, including API sequences
recommendation and API documents linking.

6.1 Overview
The first application is API sequences recommendation.
It helps developers find APIs related to a short natural
language query. For example, if a developer searches for
APIs implementing ‘generate random number’, APIs of
‘Random#new, Random#nextInt’ may be recommended.

For a recommendation system, recent studies show that
API based query expansion is effective to search related
APIs [3], [7]. Given a query, API based query expansion
expands the query into an API vector. Each entry of the
vector is the probability or similarity that an API is related to

the query. The recommendation system uses the expanded
API vector to search API sequences from a code base.

6.2 Approach: API based Query Expansion
We explain and compare the main algorithms for API
based query expansion in this subsection, including word
alignment expansion (Align

Exp

), API description expansion
(Des

Exp

) and Word2API expansion (Word2API
Exp

).

6.2.1 Word Alignment Expansion
Align

Exp

[3] uses a statistical word alignment model [42]
to calculate the probability between an API and a query.
The model is trained on alignment documents that consist
of a set of words and related APIs [3]. We construct the
alignment documents with word-API tuples [8]. We use
GIZA++16 to implement the word alignment model and
transform the query into a vector based on the probabilities.

6.2.2 API Description Expansion
Lv et al. expand a user query by analyzing the API de-
scriptions [7]. Given a query, Des

Exp

collects all APIs and
their descriptions in the Java SE API specification. It calcu-
lates the similarity between the query and an API with a
combined score of text similarity and name similarity. Text
similarity measures the similarity between the query and an
API description by cosine similarity in the Term Frequency
and Inverted Document Frequency (TF-IDF) space. Name
similarity splits an API into words by its camel style and
measures the similarity between the query and the words.
Des

Exp

transforms the query into an API vector by the
combined score.

6.2.3 Word2API Expansion
Given a user query (a set of words) and an API, we apply
the Words-APIs Similarity (formula 5) to calculate their
similarity. For each API, formula 5 calculates the similarity
between this API and each word in the query and then
selects the largest value as the similarity between this API
and the query. In this way, we can get similarity values
between the query and every API in the Java SE APIs. Based
on the similarities with all APIs, we follow the previous
study [7] to select the top-10 APIs to expand the user query
into an API vector. The length of the vector is 10. Each
dimension of the vector represents an API. The value of the
dimension is the similarity between this API and the query.

After query expansion, we employ a uniform framework
to recommend API sequences [3]. This framework searches
the word-API tuples to recommend APIs. It transforms the
APIs in each word-API tuple into a 10-dimensional vector,
in which each entry determines whether or not a selected
top-10 API occurs in the current word-API tuple (0 or 1).
Then, it ranks the word-API tuples according to the cosine
similarity between the expanded API vector and every 0-1
vector. The framework finally returns the top-ranked word-
API tuples. Each tuple contains a set of APIs. The order of
these APIs is the same as that of in the word-API tuple. The
framework is efficient and naive to highlight the effect of
different expansion approaches.

16. GIZA++. http://www.statmt.org/moses/giza/GIZA++.html

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

For this application, the role of word2API is to calcu-
late the similarity (relatedness) between a query and each
API. The similarities are used to expand a query into an
API vector for searching word-API tuples. We name this
application as ‘API sequences recommendation’, because
each word-API tuple corresponds to an API sequence. We
find that word-API tuples not only have the APIs to imple-
ment a query, but also introduce the context or examples
on using the APIs, as all word-API tuples are extracted
from real-world source code. For example, for the API
‘JFileChooser#showOpenDialog’ which implements ‘open
file dialog’, the word-API tuples usually contain APIs of
‘JFileChooser#new’ or ‘JFileChooser#getSelectedFile’. These
APIs provide examples on what to do before or after using
‘JFileChooser#showOpenDialog’. Hence, comparing with
other frameworks, e.g., deep neural network [8], a retrieval
based framework recommends valid and real-world API
sequences, that can be directly linked to diverse source
code for understanding. We compare Word2API with a deep
neural network framework in Sec. S7 of the supplement.

6.3 Evaluation: Query Expansion Algorithms
6.3.1 Motivation
We compare Word2API

Exp

with Align
Exp

and Des
Exp

in
recommending Java SE API sequences.

6.3.2 Evaluation Method
First, we evaluate these algorithms with 30 human written
queries [3], [8] listed in the first two columns of Table
3. The evaluation is quantified with First Rank (FR) and
Precision@k [3]. FR is the position of the first related API se-
quence to a query and Precision@k is the ratio of related API
sequences in the top-k results. Similar to the previous study
[7], two authors examined the results. An API sequence is
related if it contains the main API to implement a query and
receives related feedback from both authors.

Second, we conduct an automatic evaluation [8] with
10,000 randomly selected tuples from all the word-API tu-
ples. We treat the word sequences in these tuples as queries
and the API sequences as the oracles. The queries are used
for an algorithm to search API sequences in the remaining
tuples. We compare sequence closeness between a recom-
mended API sequence Seq

rec

and the oracle sequence Seq

orc

by BLEU score [43]:

BLEU=BP ·exp

NX

n=1

w

n

log

#n-grams in Seq

rec

and Seq

orc

+1
#n-grams in Seq

rec

+1

!

BP =

⇢
1 if |Seq

rec

| > |Seq
orc

|
e

1�|Seq

orc

|/|Seq

rec

| if |Seq
rec

|  |Seq
orc

|
(11)

where | · | is the length of a sequence, N is the maximum
gram number and w

n

is the weight of each type of gram.
According to previous studies [8], [44], N is set to 4 and
w

n

= 1/N . It means that we calculate the overlaps of n-
grams of Seq

rec

and Seq

orc

from 1 to 4 with equal weights.
For a ranking list of k API sequences, the BLEU score

of the list is the maximum BLEU score between Seq

rec

and
Seq

orc

[8]. Since 10,000 tuples are used for evaluation, we
remove these tuples and their duplicate copies from the
word-API tuples to re-train Word2API for fair comparison.

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5 6 7 8 9 10

BL
EU

 S
co

re

k
WordAlign APIDes Word2API
Luce-api Luce-com

DesExp AlignExp Word2APIExp
LuceneAPI LuceneAPI+Comment

Fig. 6: BLEU score for different expansion algorithms.

6.3.3 Result

Table 3 shows the results for 30 human written queries. ‘NF’
means Not Found related APIs in the top 10 results. We treat
the FR value of ‘NF’ as 11 to calculate the average FR [8]. For
9 out of the 30 queries, all the query expansion algorithms
can recommend related API sequences at top-1. However,
Align

Exp

fails to recommend APIs for many queries. The
reason is that, when Align

Exp

expands the query into an
API vector, the top ranked APIs in the vector are unrelated
to the correct APIs.

The average FR of Word2API
Exp

is 1.933. A related result
is ranked at top-1 for 20 out of the 30 queries. For precision,
the average top-5 and top-10 precision by Word2API

Exp

is 0.680 and 0.677 respectively. The results are superior
to those of Align

Exp

and Des
Exp

, whose average top-10
precision values are 0.463 and 0.533 respectively. Hence, by
expanding queries with Word2API

Exp

, the recommendation
framework achieves more related results on average than
Align

Exp

and Des
Exp

. We conduct the paired Wilcoxon
signed rank test on the 30 queries in the last row of Table 3.
When comparing Word2API against Align

Exp

and Des
Exp

,
the p-values of FR, Precision@5 and Precision@10 are 0.0023,
0.1462, 0.0408, and 0.0117, 0.1347, 0.0675 respectively.

We report the results under 10,000 constructed queries in
Fig. 6. For the expansion approaches, Word2API

Exp

shows
the best ability to transform queries into API vectors. The
BLEU scores are between 0.326 and 0.481, which outperform
Align

Exp

and Des
Exp

by up to 0.140 in terms of BLEU@1
and 0.189 in terms of BLEU@10. The results pass the Wilcox-
on test with p-value<0.025 after Bonferroni correction. S-
ince we take the same naive framework to retrieve API
sequences, it demonstrates that Word2API

Exp

makes the
key contribution to the results.

Table 4 shows the top-5 expanded APIs by Word2API
corresponding to each human written query. In contrast
to Table 2, this table reflects the ability of Word2API in
understanding a set of words instead of a single one. Among
the top ranked APIs, most APIs are directly related to
the queries. For example, Word2API finds APIs of ‘Pat-
tern#compile, Pattern#pattern, Pattern#matcher’ for query
Q10 ‘match regular expressions’. APIs of ‘Random#nextInt,
Random#nextDouble, Random#nextBytes’ are ranked high
for query Q12 ‘generate random number’. With these APIs,
the naive framework can find more related API sequences
on average and rank the first related API sequence (FR)
higher than the comparison algorithms.

Besides, we find that Word2API can interpret a
query with APIs from multiple classes. For example, in

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

TABLE 3: Performance over 30 human written queries. P is short for Precision.

ID Query
Query Expansion Search Engine

Align
Exp

[3] Des
Exp

[7] Word2APIExp GoogleGitHub LuceneAPI LuceneAPI+Comment
FR P@5 P@10 FR P@5 P@10 FR P@5 P@10 FR P@5 P@10 FR P@5 P@10 FR P@5 P@10

Q1 convert int to string NF 0 0 NF 0 0 3 0.2 0.1 6 0 0.1 NF 0 0 1 0.4 0.2
Q2 convert string to int 1 1 0.5 NF 0 0 1 0.8 0.8 1 0.8 0.7 NF 0 0 8 0 0.3
Q3 append string 1 1 1 1 1 1 1 1 1 7 0 0.2 1 1 1 1 1 1
Q4 get current time NF 0 0 NF 0 0 1 1 1 1 0.8 0.5 1 1 1 1 1 0.8
Q5 parse datetime from string 10 0 0.1 NF 0 0 1 1 0.7 1 1 1 NF 0 0 NF 0 0
Q6 test file exists 1 1 1 1 1 1 1 0.8 0.8 2 0.8 0.9 NF 0 0 NF 0.2 0.1
Q7 open a url 1 1 1 1 1 1 1 0.8 0.8 1 0.2 0.3 1 1 1 1 1 1
Q8 open file dialog NF 0 0 1 0.8 0.7 1 0.4 0.7 1 0.6 0.5 1 1 1 3 0.2 0.3
Q9 get files in folder NF 0 0 1 0.8 0.9 1 1 0.9 1 0.6 0.5 NF 0 0 NF 0 0
Q10 match regular expressions 1 1 0.8 1 0.6 0.7 1 1 1 2 0.2 0.5 NF 0 0 1 1 0.9
Q11 generate md5 hash code NF 0 0 NF 0 0 1 1 1 1 0.8 0.6 NF 0 0 8 0 0.2
Q12 generate random number 1 0.4 0.2 1 1 1 1 1 1 1 0.8 0.6 1 0.6 0.6 1 1 0.9
Q13 round a decimal value NF 0 0 2 0.2 0.1 1 0.8 0.8 10 0 0.1 5 0.2 0.6 1 0.8 0.8
Q14 execute sql statement NF 0 0 NF 0 0 2 0.6 0.5 1 1 0.8 1 0.8 0.9 1 0.8 0.7
Q15 connect to database 1 1 1 NF 0 0 1 1 1 1 0.8 0.6 NF 0 0 NF 0 0
Q16 create file 1 1 1 1 1 1 1 1 1 1 0.6 0.7 NF 0 0 1 0.4 0.2
Q17 copy file 1 1 1 1 1 1 1 0.6 0.5 1 0.8 0.6 NF 0 0 4 0.2 0.1
Q18 copy a file and save it to your

destination path
1 1 1 2 0.2 0.3 1 0.8 0.9 7 0 0.2 NF 0 0 10 0 0.1

Q19 delete files and folders in a
directory

1 1 1 3 0.6 0.4 4 0.4 0.4 4 0.4 0.5 NF 0 0 1 0.8 0.4

Q20 reverse a string NF 0 0 NF 0 0 NF 0 0 1 1 1 NF 0 0 5 0.2 0.1
Q21 create socket NF 0 0 1 0.6 0.4 1 1 0.9 4 0.2 0.3 1 1 0.7 NF 0 0
Q22 rename a file NF 0 0 NF 0 0 4 0.4 0.5 1 0.6 0.3 NF 0 0 NF 0 0
Q23 download file from url 1 1 0.7 1 1 1 5 0.2 0.3 1 1 0.7 9 0 0.2 5 0.2 0.5
Q24 serialize an object 1 1 1 1 1 1 1 1 1 3 0.2 0.3 4 0.4 0.2 1 0.6 0.3
Q25 read binary file 1 1 0.6 1 1 1 1 0.8 0.8 2 0.4 0.4 7 0 0.1 2 0.6 0.7
Q26 save an image to a file 1 1 1 1 1 1 5 0.2 0.4 1 0.4 0.4 1 1 1 4 0.2 0.6
Q27 write an image to a file 1 1 1 1 0.8 0.6 2 0.4 0.3 1 0.8 0.8 1 1 1 1 1 1
Q28 parse xml NF 0 0 NF 0 0 1 0.2 0.3 1 0.6 0.6 5 0.2 0.1 1 0.2 0.1
Q29 play audio NF 0 0 1 0.8 0.9 1 0.4 0.5 1 0.6 0.6 6 0 0.2 1 0.2 0.2
Q30 play the audio clip at the

specified absolute URL
NF 0 0 1 1 1 1 0.6 0.4 1 1 0.8 4 0.4 0.7 2 0.8 0.9

Avg. 5.633 0.513 0.463 4.467 0.547 0.533 1.933 0.68 0.677 2.233 0.567 0.537 6.767 0.32 0.343 4.367 0.427 0.413
p 0.002 0.146 0.04 0.01 0.135 0.068 * * * 0.568 0.109 0.02 <0.001 0.002 0.003 0.014 0.009 0.006

TABLE 4: Top-5 expanded APIs ranked by Word2API over 30 human written queries.

Ranked APIs Ranked APIs Ranked APIs Ranked APIs Ranked APIs

Q1 Q2 Q3 Q4 Q5
NFException1#toString NFException1#toString StringBuffer#append System#currentTimeMillis SimpleDateFormat#parse
Integer#parseInt Integer#parseInt StringBuilder#append Date#getTime DateFormat#parse
Object#toString Object#toString StringBuffer#toString Clock#millis GCalendar2#toZonedDateTime
Byte#parseByte Byte#parseByte StringBuilder#toString Calendar#getTimeInMillis Date#getField
Integer#byteValue Integer#byteValue StringBuffer#length BeanContext#isDesignTime Calendar#clear
Q6 Q7 Q8 Q9 Q10
File#exists URL#toString JFileChooser#getSelectedFile File#getName Pattern#flags
File#isFile URL#openStream JFileChooser#showOpenDialog File#getParentFile Pattern#compile
File#canRead URL#openConnection JFileChooser#setDialogTitle File#getPath Pattern#pattern
File#isDirectory URLConnection#getInputStream JFileChooser#setCurrentDirectory File#isFile Matcher#toMatchResult
File#getPath URL#toExternalForm JFChooser3#setFileSelectionMode File#getAbsoluteFile Pattern#matcher
Q11 Q12 Q13 Q14 Q15
MessageDigest#digest SecureRandom#nextInt Math#round Statement#close DataSource#getConnection
MessageDigest#getInstance Random#nextInt BigDecimal#toPlainString Connection#createStatement Connection#close
TreeMap#hashCode Random#nextDouble BigDecimal#movePointRight SQLException#getMessage Connection#isClosed
InvocationHandler#hashCode Random#nextBytes BigDecimal#compactLong Connection#close DriverManager#getConnection
NSAException4#printStackTrace SecureRandom#nextBytes Math#floor Connection#prepareStatement Connection#getNetworkTimeout
Q16 Q17 Q18 Q19 Q20
File#exists File#toPath File#getParentFile File#isDirectory StringBuilder#reverse
File#toPath Files#copy File#mkdirs File#exists Collections#reverse
File#getAbsoluteFile File#mkdirs File#toPath File#isFile StringBuffer#reverse
File#getParentFile Arrays#copyOf File#getPath File#getParentFile Collections#sort
Path#toFile PFPermissions5#asFileAttribute Files#copy File#getPath Collections#reverseOrder
Q21 Q22 Q23 Q24 Q25
SocketFactory#getClass File#renameTo URL#toURI OutputStream#hashCode DataInputStream#close
SSLSocket#connect File#delete URL#toString OOStream6#dumpElementln BufferedInputStream#read
ServerSocket#getChannel File#getParentFile URL#getFile Component#doSwingSerialization File#length
SSLSocketFactory#getDefault File#exists URLConnection#getContentLength Externalizable#getClass FileInputStream#close
ServerSocketChannel#setOption File#getName URL#getPath ObjectOutputStream#writeObject File#canRead
Q26 Q27 Q28 Q29 Q30
ImageIO#write ImageIO#write DocumentBuilder#parse AudioSystem#getLine AudioSystem#getAudioInputStream
File#exists FileOutputStream#close DBFactory7#newDocumentBuilder LUException8#printStackTrace Clip#start
FileOutputStream#close File#createTempFile DBFactory7#newInstance SourceDataLine#start Clip#open
File#getPath File#mkdirs Document#getDocumentElement Clip#start AudioSystem#getClip
ImageIO#read OutputStream#close Element#getAttribute AudioSystem#getAudioInputStream Clip#stop

1NFException: NumberFormatException 2GCalendar: GregorianCalendar 3JFChooser: JFileChooser 4NSAException: NoSuchAlgorithmException
5PFPermissions: PosixFilePermissions 6OOStream: ObjectOutputStream 7DBFactory: DocumentBuilderFactory 8LUException: LineUnavailableException

query Q4 ‘get current time’, the top ranked APIs are
‘System#currentTimeMillis’, ‘Date#getTime’, and ‘Calen-
dar#getTimeInMillis’. These APIs belong to different class-
es, including ‘java.lang.System’, ‘java.util.Date’, and ‘ja-
va.time.Clock’. The same phenomenon can also be found
in other queries, e.g., Q3 ‘append string’, Q15 ‘connect to
database’, etc. It means that Word2API may help developers
understand a query by providing diverse APIs.

6.3.4 Conclusion

With the Word2API-expanded query, a system for API
sequences recommendation significantly outperforms the
comparison ones in terms of FR and BLEU score.

6.4 Evaluation: General-purpose Search Engines

6.4.1 Motivation

This section evaluates the performance of general-purpose
search engines on recommending query-related APIs.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

6.4.2 Evaluation Method
We propose three search engine based methods

GoogleGitHub. This method searches a user query with
Google search engine and collects the APIs in the top-10
web pages as results. Since this study uses Java projects on
GitHub to evaluate the ability of algorithms to match user
queries with APIs, for fair comparison, we limit GoogleGitHub
to search the resources on GitHub by rewriting a query as
‘java query site:github.com’.

LuceneAPI. The second method uses Lucene to search
API sequences. Lucene is a widely used open-source search
engine that uses text matching on words in queries and
target documents to find related documents [45]. LuceneAPI
takes the API sequences in word-API tuples as documents.
We first split each API in a word-API tuple into a set of
words by its camel style. Then, stop words removal and
stemming are performed on the split words. After that, we
index these words as a document for search.

LuceneAPI+Comment. The third method provides more
knowledge to Lucene for accurate search. Besides the words
in API sequences, LuceneAPI+Comment also indexes the words
in the word sequence of a word-API tuple. Since Word2API
also uses API calls and method comments to mine word-
API relationships, this method helps us understand whether
general-purpose search engines can better mine the seman-
tic relatedness when provided with the same amount of
information.

We use the 30 human queries and 10,000 automatical-
ly constructed queries for evaluation. We do not evalu-
ate GoogleGitHub with the 10,000 queries due to the net-
work problem of automatically sending 10,000 queries to
Google. Since GoogleGitHub only returns web pages instead
of Java APIs, we use the following principle to evaluate
GoogleGitHub. We label a web page as correct, if the web page:

• contains APIs related to the query, even though the
APIs are from non-core Java APIs or other program-
ming languages, e.g., Groovy and Scala;

• does not contain related APIs, but it implements a
new method related to the query;

• does not contain source code, e.g., issue reports, but
it contains API-like words related to the query.

6.4.3 Result
In Table 3, the average FR, P@5 and P@10 of Word2API

Exp

are superior to those of GoogleGitHub. When considering
the p-values, Word2API performs similar to GoogleGitHub
in terms of FR and P@5, but significantly outperforms
GoogleGitHub in terms of P@10 (p<0.05). We find that even
though GoogleGitHub is limited to search GitHub resources,
the correct APIs for some queries can still be easily obtained
by matching a query with web page titles. Hence, the results
of GoogleGitHub may be attributed to both understanding
the word-API relationships and leveraging the tremendous
knowledge on the Internet. Since Word2API

Exp

does not
aim to recommend APIs with all the knowledge on the
Internet, we conclude that Word2API

Exp

achieves similar
or better results compared to GoogleGitHub by only analyzing
word-API relatedness.

For Lucene based methods, Word2API
Exp

significantly
outperforms LuceneAPI in terms of FR, P@5 and P@10. It

means the semantic gaps between words and APIs hin-
der the performance of general-purpose search engines in
searching APIs by words. When we provide more knowl-
edge for Lucene, i.e., both API calls and method comments,
the performance of LuceneAPI+Comment improves. Howev-
er, Word2API

Exp

still outperforms LuceneAPI+Comment. Since
Word2API

Exp

and LuceneAPI+Comment use the same informa-
tion to mine word-API relationships, it means Word2API
can better mine the semantic relatedness compared to a
general-purpose search engine Lucene in this case, when
provided with the same amount of knowledge.

6.4.4 Conclusion
The semantic gaps hinder the performance of search en-
gines in understanding APIs. Word2API analyzes word-API
relationships better than the search engine Lucene when
provided with the same amount of knowledge.

7 WORD2API FOR API DOCUMENTS LINKING

7.1 Overview
The second application is API documents linking [4] which
analyzes the relationships between API documents and the
questions in Q&A (Question & Answer) communities, e.g.,
Stack Overflow. This application is more complex, since it
needs to estimate semantic relatedness between a set of
words and APIs, instead of a single API each time.

In Q&A communities, participators discuss technical
questions by replying and scoring to each other. Given a
newly submitted question, participators usually discuss and
comprehend it with some APIs. A statistic shows that more
than one third (38%) answers in Stack Overflow have at
least one API [46]. Hence, linking API documents to newly
submitted questions may save participators’ time to answer
the questions [4]. In this part, we link questions in Stack
Overflow to the documents in Java SE API specification [4].

7.2 Approach: API Documents Linking
Give a newly submitted question, we introduce four typical
algorithms to recommend related API documents.

7.2.1 Vector Space Model (VSM)
VSM transforms the question and API documents into vec-
tors, in which each entry is a word weighted by the TF-
IDF strategy. Then it ranks API documents by calculating
the cosine similarity between the question vector and API
document vectors. We split the APIs and API-like words
in these texts by the camel style to increase the number of
matched words.

7.2.2 Standard Word Embedding (WE)
Ye et al. train word vectors for relatedness estimation with
a standard word embedding model [4]. The vectors are
generated by analyzing the words in Java and Eclipse API
specifications, user/developer guides, and tutorials. To link
a question with API documents, they transform the question
and each API document into two words sets. Then, they
calculate the similarities of the word sets with the word vec-
tors in a similar way as Formula 5 (Words-APIs Similarity),
which replaces the word set and API set in Formula 5 with

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

two word sets. For fair comparison, we also add the word
sequences in word-API tuples for training. WE is trained by
the default parameters of the word embedding tool.

7.2.3 Word2API Approach (Word2API)

Word2API first extracts the words from the question and the
method level APIs of an API type from each API document.
Then, it calculate the relatedness between the word set and
API set by the Words-APIs Similarity.

7.2.4 Integrated Approaches

Previous studies also integrate VSM and WE to generate
an integrate approach [4]. Given a question and an API
document, we denote the similarity calculated by VSM,
WE and Word2API as Sim

VSM

, Sim

WE

, and Sim

Word2API

respectively. We rank API documents by two types of
integrations, namely VSM-WE (Sim

VSM-WE

) [4] and VSM-
Word2API (Sim

VSM-Word2API

).

Sim

VSM-WE

=↵⇥Sim
VSM

+(1�↵)⇥Sim
WE

, (12)

Sim

VSM-Word2API

=↵⇥Sim
VSM

+(1�↵)⇥Sim
Word2API

, (13)

where ↵ is the weight of different approaches. The values
are 0.18 and 0.36 for Sim

VSM-WE

and Sim

VSM-Word2API

re-
spectively as we will discuss later.

7.3 Evaluation
7.3.1 Motivation

We evaluate the effectiveness of Word2API against the com-
parison algorithms on API documents linking.

7.3.2 Evaluation Method

We follow Ye et al. [4] to construct a benchmark for evalua-
tion. We download Java tagged questions in Stack Overflow
between August 2008 and March 2014, since these questions
have stabilized, i.e., no more edits are likely to be done. Then
we select a question, if the score of the question exceeds 20,
the score of its ‘best/accepted’ answer exceeds 10, and the
‘best/accepted’ answer has at least one link to the Java SE
API specification [4]. According to the criteria, 555 questions
are collected. We partition these questions into two parts.
The first 277 questions form a training set and the latter
part is a testing set. The size of the testing set is similar to
the previous study [4]. We use the training set to tune the
parameter ↵ of the integrated approaches. For an approach,
we traverse ↵ from 0.01 to 1.0 with a stepwise 0.01 and
take the value that maximizes MAP in Equ. 14 as the final
parameter value. We take the API documents linked in the
best/accepted answer as the oracle for evaluation.

For the testing set, we compare the oracle API doc-
uments and the top-10 recommended API documents by
MAP and MRR [4]. MAP is the mean of the average preci-
sion for each question.

MAP =

1

|Q|

QX

i=1

AvgP

i

AvgP =

NX

k=1

r

k

⇤ Precision@k

(14)

TABLE 5: MAP and MRR comparison.

Algorithms MAP MRR

VSM 0.232 0.259
WE [4] 0.313 0.354
Word2API 0.402 0.433
VSM+WE [4] 0.340 0.380
VSM+Word2API 0.436 0.469

where N is the number of recommended API documents for
a question, Precision@k is the ratio of correctly recommend-
ed API documents in the top-k results, and r is a flag that
r

k

= 1 if the kth result is correct and r

k

= 0 otherwise.
MRR is the mean reciprocal rank of the first correctly

recommended API document for each question.

MRR =

1

|Q|

QX

i=1

1

FR

i

,

(15)

where |Q| is the number of questions in the testing set and
FR

i

is the position of the first related API document for Q
i

.

7.3.3 Result
Table 5 presents MAP and MRR of different algorithms.
Among the three atomic algorithms, the embedding based
algorithms (WE and Word2API) are superior to VSM. They
improve VSM by up to 0.170 and 0.174 over MAP and
MRR respectively. The results show that sematic relatedness
calculated by word embedding based algorithms are better
than simple text matching (VSM) for this task. For the two
embedding based algorithms, Word2API performs better.
The results of MAP and MRR for Word2API are 0.402 and
0.433 over the testing set, which outperform WE by 0.089
and 0.079 respectively. It means that Word2API is more
effective in mining semantic relatedness between words and
APIs than WE, which treats APIs as words.

We also find that text matching based algorithm VSM
and embedding based algorithms can reinforce each other,
since they measure documents from different perspectives.
When we integrate the two types of algorithms, the results
have an improvement by around 3%, e.g., VSM+Word2API
reaches 0.436 on MAP and 0.469 on MRR.

Additionally, we note that some fine-grained text analy-
sis techniques may further improve API documents linking,
e.g., deducing the APIs in source code snippets of the
questions [34], [47]. We discuss this observation in Sec. S9 of
the supplement. The fine-grained analysis further improves
API documents linking by nearly 5%.

7.3.4 Conclusion
Word2API is superior to VSM and WE on relatedness esti-
mation for API documents linking.

8 THREATS TO VALIDITY

Construction Validity. Word2API may require a large num-
ber of word-API tuples to construct a model. As a machine
learning algorithm, Word2API is trained on the historical
knowledge of word-API relationships. When there are only
a few word-API tuples containing an API, Word2API may
not well learn the relationship between words and this API.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

TABLE 6: Overview of the related work.

Type Paper Knowledge
Se

m
an

tic
R

el
.E

st
im

at
io

n Application
Gu et al. [8] API sequences recommendation
Ye et al. [4] API documents linking
Corley et al. [48] Feature location

Rule-based
Beyer et al. [49] Heuristic rules
Howard et al. [23] Part-Of-Speech
Yang et al. [50] Term Morphology

Corpus-based

Mahmoud et al. [11] LSA, PMI, NSD (RQ1)
Tian et al. [32], [51] HAL (RQ1)
Chen et al. [33] Word embedding (APP2)
Ye et al. [4] Word embedding (APP2)
Nguyen et al. [14] API embedding (Section S2 of the

supplement)

Q
ue

ry
Ex

pa
ns

io
n

Word-based

Wang et al. [52] Relevance feedback
Hill et al. [53], [54] Co-occurred words
Lu et al. [55] WordNet
Nie et al. [1] Stack Overflow
Campbell et al. [56] Stack Overflow

API-based Lv et al. [7] Similarity with API des. (APP1)
Raghothaman et al. [3] Word alignment (APP1)

A deep analysis is conducted in Sec. S8 of the supplement.
However, as the prevalence of open source, we can easily
download thousands of source code containing specific
APIs from code repositories, e.g., GitHub, Google Code, etc.
As our preliminary statistic on GitHub, more than 583,779
and 388,300 projects contains at least one Android API
and C# API respectively. These projects may facilitate the
training of Word2API for such target APIs.

In addition, there are also threats in the two applica-
tions of Word2API. We automatically select 10,000 word se-
quences to evaluate API sequences recommendation. Since
word sequences in the comments are not exactly the same
with human queries, we also evaluate Word2API with 30
human written queries.
External Validity. The first threat comes from the human
judgement processes. To evaluate the semantic relatedness
between query words and APIs, several human judgements
are conducted. The selected query words may be vague
for evaluation or unrealistic in real scenarios. Meanwhile,
the judgements are subjective and may bring biases. We
have observed some mislabeled APIs in this process. To
alleviate biases, we follow the TREC strategy for human
judgements. A re-evaluation shows a substantially agree-
ment on the judgements with the Kappa score of 0.636.
In addition, we share the human judgement results at
https://github.com/softw-lab/word2api for research.

The second threat is the generality of Word2API. In this
study, we evaluate Word2API at the word-API level with
50 query words and at the words-APIs level with two ap-
plications. More applications need to be investigated in the
future. For generality, we only use the default parameters to
train Word2API. Experiments show that Word2API works
well without a fine-grained parameter optimization.

9 RELATED WORK
We summarize the related work in Table 6, including se-
mantic relatedness estimation and query expansion. For the
highly related works, we also mark the RQ or APPlication
that we compare these algorithms.

9.1 Semantic Relatedness Estimation
Semantic gaps between words and APIs negatively affec-
t many software engineering tasks, e.g., API sequences

recommendation [8], API documents linking [4], feature
location [48], etc. In this study, we propose Word2API to
analyze the relatedness between words and APIs in a fine-
grained, task-independent way. Such analysis is useful for
developers to understand the APIs and source code.

In the field of fine-grained relatedness estimation, Beyer
et al. [49] propose nine heuristic rules to suggest synonyms
for Stack Overflow tags. Howard et al. [23] and Yang et
al. [50] infer software-based semantically-similar words by
comparing the part-of-speech (verbs and nouns) and com-
mon words in API names and comments. These techniques
rely on specific rules without analyzing word relationships.

Hence corpus-based methods are proposed. Mahmoud
et al. [11] find that corpus-based methods outperform other
methods on relatedness estimation. Tian et al. [32], [51]
leverage Hyperspace Analogue to Language (HAL) to con-
struct word vectors. Chen et al. [33] utilize word embedding
to infer software-specific morphological forms, e.g., Visual
C++ and VC++. Similar vectors are also constructed on
Java/Eclipse tutorials and user guides [4]. Besides, Nguyen
et al. propose API embedding to represent APIs of different
languages [14].

Word2API is a corpus-based method. It outperforms
previous algorithms in word-API relatedness estimation.

9.2 Query Expansion

We take code search and API sequences recommendation
as representative examples to enumerate the work in query
expansion. Code search aims to return code snippets for a
user query [57]. These snippets are usually more domain
specific than API sequences [8]. In this study, we classify
query expansion into word-based expansion and API-based
expansion.

Word-based expansion transforms a natural language
query into more meaningful words. Wang et al. [52] leverage
relevance feedback to expand queries with words in manu-
ally selected documents. Hill et al. [53], [54] expand a query
with frequently co-occurred words in code snippets. Beside,
external knowledge is also important for query expansion.
Lu et al. [55] reformulate a user query with synonyms gen-
erated from WordNet. Code snippets from Stack Overflow
are also used for expanding queries [1], [56]. However, only
a small part of Stack Overflow questions contains complete
code snippets [46]. In addition, word-based expansion aims
at enhancing poor or simple queries. Yet, the gaps between
natural languages and APIs still exist.

Therefore, recent studies propose API-based expansion
to transform a user query into related APIs. Lv et al. [7] ex-
pand a query by the text similarity and the name similarity
between the query and API descriptions. The effectiveness
of this algorithms largely depends on the quality of API
descriptions. Hence, Raghothaman et al. [3] utilize statistical
word alignment models to expand queries into APIs.

Word2API belongs to API-based expansion. A compari-
son with previous studies shows that Word2API is effective
in expanding queries into API vectors. In the future, we plan
to conduct a comprehensive comparison and investigate the
synergy of different types of expansion algorithms.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

10 CONCLUSION AND FUTURE WORK

In this study, we present our attempt towards constructing
low-dimensional representations for both words and APIs.
Our algorithm Word2API leverages method comments and
API calls to analyze semantic relatedness between words
and APIs. Experiments show that Word2API is effective
in estimating semantically related APIs for a given word.
We present two applications of Word2API. Word2API is a
promising approach for expanding user queries into APIs
and link API documents to Stack Overflow questions. In the
future, we plan to employ Word2API for other program-
ming languages and applications, and investigate different
functions to measure similarity in addition to Words-APIs
Similarity used in this paper.

ACKNOWLEDGMENT

We thank the volunteers for their contributions to the ex-
hausted human judgements processes. We thank the re-
viewers for their insightful comments to improve this pa-
per. Their comments help us look deep into Word2API.
This work is supported by the National Key Research
and Development Program of China under Grants 2018YF-
B1003900, and supported in part by the National Natural
Science Foundation of China under Grants No. 61722202
and the JSPS KAKENHI Grant Number JP15H05306 and
JP18H03222.

REFERENCES

[1] L. Nie, H. Jiang, Z. Ren, Z. Sun, and X. Li, “Query expansion based
on crowd knowledge for code search,” IEEE Trans. on Services
Computing, vol. 9, no. 5, pp. 771–783, 2016.

[2] M. P. Robillard and R. Deline, “A field study of API learning
obstacles,” Empirical Software Engineering, vol. 16, no. 6, pp. 703–
732, 2011.

[3] M. Raghothaman, Y. Wei, and Y. Hamadi, “SWIM: synthesizing
what I mean - code search and idiomatic snippet synthesis,” in
Proc. of the 38th Int’l Conf. on Softw. Eng. ACM, 2016, pp. 357–367.

[4] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word
embeddings to document similarities for improved information
retrieval in software engineering,” in Proc. of the 38th Int’l Conf. on
Softw. Eng. ACM, 2016, pp. 404–415.

[5] R. A. Baeza-Yates and B. A. Ribeiro-Neto, Modern Information
Retrieval the Concepts and Technology Behind Search. ACM Press
Books, 2011.

[6] H. Jiang, X. Li, Z. Yang, and J. Xuan, “What causes my test alarm?
automatic cause analysis for test alarms in system and integration
testing,” in Proc. of the 39th Int’l. Conf. on Softw. Eng. IEEE, 2017,
pp. 712–723.

[7] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, and J. Zhao,
“Codehow: Effective code search based on API understanding
and extended boolean model,” in 30th IEEE/ACM Int’l Conf. on
Automated Softw. Eng. IEEE, 2015, pp. 260–270.

[8] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
Proc. of the 2016 24th ACM SIGSOFT Int’l Symposium on Foundations
of Softw. Eng. ACM, 2016, pp. 631–642.

[9] M. Piccioni, C. A. Furia, and B. Meyer, “An empirical study of API
usability,” in ACM / IEEE Int’l Symposium on Empirical Softw. Eng.
and Measurement, 2013, pp. 5–14.

[10] Y. Zhou, R. Gu, T. Chen, Z. Huang, S. Panichella, and H. Gall,
“Analyzing APIs documentation and code to detect directive
defects,” in Proc. of the 39th Int’l Conf. on Softw. Eng., 2017, pp.
27–37.

[11] A. Mahmoud and G. Bradshaw, “Estimating semantic relatedness
in source code,” ACM Trans. on Softw. Eng. and Methodology, vol. 25,
no. 1, p. 10, 2015.

[12] T. K. Landauer and S. T. Dumais, “A solution to plato’s problem:
The latent semantic analysis theory of acquisition, induction, and
representation of knowledge.” Psychological Review, vol. 104, no. 2,
p. 211, 1997.

[13] G. A. Miller, “WordNet: a lexical database for English,” Communi-
cations of the ACM, vol. 38, no. 11, pp. 39–41, 1995.

[14] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen,
“Exploring API embedding for API usages and applications,” in
Proc. of the 39th Int’l. Conf. on Softw. Eng. IEEE Press, 2017, pp.
438–449.

[15] Wikipedia, “Application programming interface,” https://en.
wikipedia.org/wiki/Application programming interface, 2017.

[16] J. Bloch, “How to design a good API and why it matters,”
in Companion to the ACM Sigplan Symposium on Object-Oriented
Programming Systems, Languages, and Applications, 2006, pp. 506–
507.

[17] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean,
“Distributed representations of words and phrases and their com-
positionality,” Advances in Neural Information Processing Systems,
vol. 26, pp. 3111–3119, 2013.

[18] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation
of word representations in vector space,” CoRR, abs/1301.3781,
2013.

[19] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of
mining github,” Empirical Software Engineering, vol. 21, no. 5, pp.
2035–2071, 2016.

[20] Oracle, “Overriding and hiding methods,” http://docs.oracle.
com/javase/tutorial/java/IandI/override.html, 2017.

[21] L. Pascarella and A. Bacchelli, “Classifying code comments in Java
open-source software systems,” in Proc. of the 14th Int’l Conf. on
Mining Software Repositories. IEEE Press, 2017, pp. 227–237.

[22] S. Margaret-Anne, J. Ryall, R. I. Bull, D. Myers, and J. Singer,
“ToDo or to bug: Exploring how task annotations play a role in
the work practices of software developers,” in Proc. of the 30th
Int’l. Conf. on Softw. Eng., pp. 251–260.

[23] M. J. Howard, S. Gupta, L. Pollock, and K. Vijay-Shanker, “Auto-
matically mining software-based, semantically-similar words from
comment-code mappings,” in Proc. of the 10th Working Conf. on
Mining Software Repositories. IEEE Press, 2013, pp. 377–386.

[24] R. Lotufo, Z. Malik, and K. Czarnecki, “Modelling the ‘hurried’
bug report reading process to summarize bug reports,” Empirical
Software Engineering, vol. 20, no. 2, pp. 516–548, 2015.

[25] M. F. Porter, “An algorithm for suffix stripping,” Program, vol. 14,
no. 3, pp. 130–137, 1980.

[26] M. Allamanis, E. T. Barr, C. Bird, and C. Sutton, “Suggesting
accurate method and class names,” in Proc. of the 2015 10th Joint
Meeting on Foundations of Softw. Eng. ACM, 2015, pp. 38–49.

[27] C. Tantithamthavorn, S. McIntosh, A. E. Hassan, and K. Matsumo-
to, “Automated parameter optimization of classification tech-
niques for defect prediction models,” in Proc. of the 38th Int’l Conf.
on Softw. Eng. IEEE, 2016, pp. 321–332.

[28] R. Mihalcea, C. Corley, and C. Strapparava, “Corpus-based and
knowledge-based measures of text semantic similarity,” in Na-
tional Conf. on Artificial Intelligence and the 18th Innovative App. of
Artificial Intelligence Conf., 2006, pp. 775–780.

[29] K. W. Church and P. Hanks, “Word association norms, mutual
information, and lexicography,” Computational Linguistics, vol. 16,
no. 1, pp. 22–29, 1990.

[30] R. L. Cilibrasi and P. M. Vitanyi, “The Google similarity distance,”
IEEE Trans. on Knowledge and Data Eng., vol. 19, no. 3, 2007.

[31] K. Lund and C. Burgess, “Producing high-dimensional semantic
spaces from lexical co-occurrence,” Behavior Research Methods, In-
struments, & Computers, vol. 28, no. 2, pp. 203–208, 1996.

[32] Y. Tian, D. Lo, and J. Lawall, “Automated construction of a
software-specific word similarity database,” in Conf. on the 2014
IEEE Softw. Maintenance, Reengineering and Reverse Eng., 2014, pp.
44–53.

[33] C. Chen, Z. Xing, and X. Wang, “Unsupervised software-specific
morphological forms inference from informal discussions,” in
Proc. of the 39th Int’l Conf. on Softw. Eng. IEEE Press, 2017, pp.
450–461.

[34] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API doc-
umentation,” in Proc. of the 36th Int’l. Conf. on Softw. Eng. ACM,
2014, pp. 643–652.

[35] E. M. Voorhees and D. Harman, “Overview of TREC 2001.” in
TREC, 2001.

0098-5589 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSE.2018.2876006, IEEE
Transactions on Software Engineering

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

[36] E. Yilmaz, M. Verma, R. Mehrotra, E. Kanoulas, B. Carterette, and
N. Craswell, “Overview of TREC 2015 tasks track.” in TREC, 2015.

[37] J. Gracia and E. Mena, “Web-based measure of semantic relat-
edness,” in Int’l Conf. on Web Information Systems Engineering.
Springer, 2008, pp. 136–150.

[38] E. D. S. Maldonado, E. Shihab, and N. Tsantalis, “Using natural
language processing to automatically detect self-admitted techni-
cal debt,” IEEE Trans. on Softw. Eng., vol. PP, no. 99, pp. 1–1, 2017.

[39] J. Cohen, “A coefficient of agreement for nominal scales,” Educa-
tional and Psychological Measurement, vol. 20, no. 1, pp. 37–46, 1960.

[40] C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: finding relevant functions and their usage,” in Proc. of
the 33rd Int’l. Conf. on Softw. Eng. ACM, 2011, pp. 111–120.

[41] E. W. Weisstein, “Bonferroni correction,” Wolfram Research, Inc.,
2004.

[42] P. F. Brown, V. J. D. Pietra, S. A. D. Pietra, and R. L. Mercer,
“The mathematics of statistical machine translation: Parameter
estimation,” Computational Linguistics, vol. 19, no. 2, pp. 263–311,
1993.

[43] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “BLEU: a method
for automatic evaluation of machine translation,” in Proc. of the
40th Annual Meeting on Association for Computational Linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[44] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” vol. 4, pp. 3104–3112, 2014.

[45] Apache, “Apache lucene,” http://lucene.apache.org/, 2018.
[46] C. Parnin, C. Treude, L. Grammel, and M. A. Storey, “Crowd

documentation: Exploring the coverage and the dynamics of API
discussions on Stack Overflow,” Georgia Institute of Technology,
Tech. Rep, 2012.

[47] C. Treude and M. P. Robillard, “Augmenting API documentation
with insights from Stack Overflow,” pp. 392–403, 2016.

[48] C. S. Corley, K. Damevski, and N. A. Kraft, “Exploring the use
of deep learning for feature location,” in 2015 IEEE Int’l Conf. on
Softw. Maintenance and Evolution. IEEE, 2015, pp. 556–560.

[49] S. Beyer and M. Pinzger, “Synonym suggestion for tags on Stack
Overflow,” in IEEE Int’l Conf. on Program Comprehension, 2015, pp.
94–103.

[50] J. Yang and L. Tan, “SWordNet: Inferring semantically related
words from software context,” Empirical Software Engineering,
vol. 19, no. 6, pp. 1856–1886, 2014.

[51] Y. Tian, D. Lo, and J. Lawall, “SEWordSim: software-specific word
similarity database,” in Companion Proc. of the 36th Int’l Conf. on
Softw. Eng., 2014.

[52] S. Wang, D. Lo, and L. Jiang, “Active code search: incorporating
user feedback to improve code search relevance,” in ACM/IEEE
Int’l Conf. on Automated Softw. Eng., 2014, pp. 677–682.

[53] E. Hill, M. Roldanvega, J. A. Fails, and G. Mallet, “NL-based query
refinement and contextualized code search results: A user study,”
in Softw. Maintenance, Reengineering and Reverse Eng., 2014, pp. 34–
43.

[54] M. Roldan-Vega, G. Mallet, E. Hill, and J. A. Fails, “CONQUER:
A tool for NL-based query refinement and contextualizing code
search results,” in IEEE Int’l Conf. on Softw. Maintenance, 2013, pp.
512–515.

[55] M. Lu, X. Sun, S. Wang, D. Lo, and Y. Duan, “Query expansion via
WordNet for effective code search,” in IEEE Int’l Conf. on Software
Analysis, Evolution and Reengineering, 2015, pp. 545–549.

[56] B. A. Campbell and C. Treude, “NLP2Code: Code snippet content
assist via natural language tasks,” in Tool Demo of 2017 IEEE Int’l
Conf. on Softw. Maintenance and Evolution, 2017.

[57] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code exam-
ples,” in Proc. of the 36th Int’l Conf. on Softw. Eng. ACM, 2014, pp.
664–675.

Xiaochen Li received the BS degree in software
engineering from the Dalian University of Tech-
nology, China in 2015. He is currently a PhD
candidate in Dalian University of Technology. He
is a student member of the China Computer
Federation (CCF). His current research interests
are Mining Software Repositories (MSR) and log
analysis in software engineering. He has pub-
lished several papers, including at some premier
conferences in software engineering like ICSE
and ICPC. More information about him is avail-

able online at http://oscar-lab.org/people/%7excli/.

He Jiang received the PhD degree in comput-
er science from the University of Science and
Technology of China, China. He is currently a
Professor in Dalian University of Technology,
China. He is also a member of the ACM and
the CCF (China Computer Federation). He is
one of the ten supervisors for the Outstanding
Doctoral Dissertation of the CCF in 2014. His
current research interests include Search-Based
Software Engineering (SBSE) and Mining Soft-
ware Repositories (MSR). His work has been

published at premier venues like ICSE, SANER, and GECCO, as well as
in major IEEE transactions like TSE, TKDE, TSMCB, TCYB, and TSC.

Yasutaka Kamei is an associate professor at
Kyushu University in Japan. He has been a re-
search fellow of the JSPS (PD) from July 2009
to March 2010. From April 2010 to March 2011,
he was a postdoctoral fellow at Queens Univer-
sity in Canada. He received his B.E. degree in
Informatics from Kansai University, and the M.E.
degree and Ph.D. degree in Information Science
from Nara Institute of Science and Technology.
His research interests include empirical software
engineering, open source software engineering

and Mining Software Repositories (MSR). His work has been published
at premier venues like ICSE, FSE, ESEM, MSR and ICSM, as well as
in major journals like TSE, EMSE, and IST. He will be a program com-
mittee co-chair of the 15th International Conference on Mining Software
Repositories (MSR 2018). More information about him is available online
at http://posl.ait.kyushu-u.ac.jp/%7ekamei/.

Xin Chen was born in 1987. He is currently
a faculty at School of Computer Science and
Technology, Hangzhou Dianzi University, China.
His research interests include software testing
and Mining Software Repositories (MSR). He is
a member of the China Computer Federation
(CCF).

1

Supplemental Material
Bridging Semantic Gaps between Natural

Languages and APIs with Word Embedding
Xiaochen Li, He Jiang, Member, IEEE, Yasutaka Kamei, Member, IEEE, and Xin Chen,

Abstract—This is a supplement material for the paper “Bridging Semantic Gaps between Natural Languages and APIs with Word
Embedding”. This material includes additional discussions and experiments in different aspects of our approach Word2API. we use
Section 1, Section 2 to denote the sections in the main paper and use Section S1, Section S2 to denote the sections in this material.
Part 1. In Section S1, we discuss the selection of the kernel models for Word2API. It is a supplement for Section 3.
Part 2. From Section S2 to S6, we analyze Word2API in relatedness estimation between a word and an API. This part is a supplement
for the experiments in Section 5. Specifically, Section S2 compares Word2API with a similar model API2Vec. Then, we discuss the
influence of the shuffling times (Section S3), the number of iterations (Section S4), and the tuple length (Section S5) on Word2API. In
Section S6, we present the robustness of these experiments by evaluating Word2API over more evaluation metrics. In this part, some
additional human judgements for word-API relatedness are conducted.
Part 3. We analyze Word2API in API sequences recommendation. This part provides additional discussions for Section 6. A new
strong baseline, namely a deep learning approach DeepAPI, is compared in Section S7. We discuss the ability of Word2API in
recommending project-specific APIs in Section S8.
Part 4. We analyze Word2API in API documents linking. This is the task introduced in Section 7. We integrate Word2API into a
state-of-the-art approach JBaker for more accurate API documents linking in Section S9.

F

S1 MODEL SELECTION: CBOW VS. SKIP-GRAM

In the existing studies, two typical models are widely used
for word embedding, i.e., CBOW and Skip-gram [1]. In this
study, we use CBOW to generate word and API vectors. This
section compares the two models, including the efficiency in
model training and the effectiveness in performance.

Efficiency. CBOW is more efficient in training than Skip-
gram. In this study, we train word embedding with a
training set of 138,832,300 word-API tuples. As shown in
Table 1, CBOW takes 62 minutes for training. The training
speed is 518.91 words per thread·second. The training time
is about three times shorter than Skip-gram, which takes
191 minutes for training with a speed of 156.64 words per
thread·second. Skip-gram is slower, as it tries to recover
every surrounding word with the center word. The model
complexity is directly proportional to the number of words
in a window [1]. In contrast, CBOW takes the surrounding
words as a whole to infer to center word. The window
size has fewer influence on its complexity [1]. A faster
model is useful in real scenarios [2], especially for parameter
optimization in designing a task-specific Word2API model.

Effectiveness. We find the two models yield similar perfor-
mance in this study. For example, Table 1 compares CBOW

• X. Li and H. Jiang are with School of Software, Dalian University of
Technology, Dalian, China, and Key Laboratory for Ubiquitous Network
and Service Software of Liaoning Province. H. Jiang is also an adjunct pro-
fessor in Beijing Institute of Technology. E-mail: li1989@mail.dlut.edu.cn,
jianghe@dlut.edu.cn

• Y. Kamei is with the Principles of Software Languages Group (POSL),
Kyushu University, Japan. Email: kamei@ait.kyushu-u.ac.jp

• X. Chen is with School of Computer Science and Technology, Hangzhou
Dianzi University. E-mail: chenxin4391@mail.dlut.edu.cn

TABLE 1: Comparison on CBOW and Skip-gram.

Model Training Performance
Time Speed MAP MMR

CBOW 62 min 518.94 words/thread/sec 0.402 0.433
Skip-gram 191 min 156.64 words/thread/sec 0.385 0.405

and Skip-gram on the task of API documents linking. For
this task, MAP and MMR of CBOW are 0.402 and 0.433,
which slightly outperform Skip-gram by 0.017 and 0.028 re-
spectively. Although existing studies have compared CBOW
and Skip-gram on diverse tasks [1], [3], it is still an open
question on which model is more effective.

Based on above observations, we select the default mod-
el CBOW, which achieves similar performance in less time.

S2 COMPARISON OF WORD2API AND API2VEC

In this section, we introduce API2Vec and its differences
from Word2API. We also design an experiment to compare
the two approaches.

S2.1 Intrinsic Comparison
Tien et al. [4] propose API2Vec to convert APIs into vectors.
It is useful to mine API relationships of different program-
ming languages. A typical application of API2Vec is code
migration, e.g., migrating APIs from Java to C#.

API2Vec constructs API vectors for different program-
ming languages, e.g., Java and C#, as follows. It first sep-
arately trains Java and C# API embedding (vectors) with
large-scale Java and C# source code respectively. Then, it

2

manually labels a set of API mappings between Java and
C# that implement the same function, e.g., FileReader#close
in Java is the same as StreamReader#Close in C#. With the
vectors of the mapping APIs, API2Vec trains a transforma-
tion matrix between Java and C# vectors. This matrix can
transform unlabeled Java API vectors into the C# vector
space, thus the vectors of Java and C# APIs are in the same
space. We can use these transformed Java API vectors to
calculate the similarity between Java and C# APIs.

Word2API and API2Vec are different in the target and
the learning strategy. For the target, Word2API targets at
mining relationships between words and APIs instead of
APIs and APIs. For the learning strategy, API2Vec is su-
pervised. API2Vec needs to manually label a set of API
mappings for training. However, as to our knowledge, no
public data set is available to map words with their seman-
tically related APIs. To address this issue, Word2API uses
an unsupervised way to analyze word-API relationships.

S2.2 Performance Comparison

Motivation. In addition to the intrinsic comparison, we ex-
perimentally compare API2Vec with Word2API by adapting
API2Vec to analyze word-API relationships.

Method. Following the process of API2Vec, we train
API2Vec on the word sequences and API sequences with
the word-API tuples constructed in Section 3.2. We generate
a set of word vectors from the word sequences with the
default parameters of the word embedding tool. Similarly,
a set of API vectors can be generated according to the API
sequences. To transform word vectors to API vectors, we
consider two types of word-API mappings to train the trans-
formation matrix, including API2Vecmanual and API2Vecfreqent

API2Vecmanual uses manually labeled word-API map-
pings to calculate the transform matrix. In this paper, we
compare Word2API with LSA, PMI, NSD and HAL by
recommending APIs to a query word. We manually label the
relatedness between 50 query words and the recommended
APIs in Section 4.3.3 for evaluation. We use these manually
labeled relationships as the training set. We partition the
query words into ten folds. Each time, we use 45 words and
their related APIs to calculate the transformation matrix,
and then transform the remaining 5 words into the API
space with the matrix to find their related APIs. On average,
the transformation matrix is trained with 3,800 manually
labeled word-API mappings.

API2Vecfreqent uses the frequent 2-itemsets that contain
a word and an API as the labeled word-API mappings
to calculate the transformation matrix. The detail to mine
frequent itemsets is presented in Section 5.3.2. After training,
we transform all the 50 query words into the API space with
the matrix to find their related APIs. For this method, the
training set has 48,961 word-API mappings. We calculate
the transformation matrix with Matlab.

Result. As shown in Fig. 1, API2Vecfreqent is superior to
API2Vecmanual. The small number of manually labeled word-
API mappings may limit the training of API2Vecmanual. For
Word2API, it significantly outperforms the two variants of
API2Vec by up to 0.36 in terms of Precision@1 and ND-
CG@1. We analyze the reason as follows. APIs in different

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 11 21 31 41 51 61 71 81 91

Pr
ec

is
io

n

k

Word2API
API2Vec-manual
API2Vec-frequent
API2VecManual
API2VecFrequent

(a) Evaluation on precision

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 11 21 31 41 51 61 71 81 91

N
D

C
G

k

Word2API
API2Vec-manual
API2Vec-frequentAPI2VecFrequent

API2VecManual

(b) Evaluation on NDCG

Fig. 1: Comparison with API2Vec.

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 11 21 31 41 51 61 71 81 91

Pr
ec
is
io
n

k

Shuffle-1
Shuffle-5
Shuffle-10
Shuffle-20

(a) Precision on large corpus

0.6

0.65

0.7

0.75

0.8

0.85

1 11 21 31 41 51 61 71 81 91

N
D
C
G

k

Shuffle-1
Shuffle-5
Shuffle-10
Shuffle-20

(b) NDCG on large corpus

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

1 11 21 31 41 51 61 71 81 91

Pr
ec
is
io
n

k

Shuffle-1-NonDup

Shuffle-5-NonDup

Shuffle-10-NonDup

Shuffle-20-NonDup

(c) Precision on small corpus

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 11 21 31 41 51 61 71 81 91

N
D
C
G

k

Shuffle-1-NonDup
Shuffle-5-NonDup
Shuffle-10-NonDup
Shuffle-20-NonDup

(d) NDCG on small corpus

Fig. 2: Influence on shuffling times.

languages are usually one-to-one mappings, i.e., an API in
the source language is corresponding to a specific API in
the target language. In contrast, the relationship between
words and APIs are many-to-many. In the manually labeled
training set, each word is considered to be related to 86 APIs
on average. Such complex relationship may not be captured
by the two-dimensional transformation matrix in API2Vec.

Conclusion. In the setting of mining word-API relationship-
s, Word2API can better capture the many-to-many map-
pings between words and APIs compare to API2Vec.

S3 INFLUENCE OF SHUFFLING TIMES

S3.1 Shuffling on Large Corpus

Motivation. To increase semantically related collocations,
Word2API repeats the shuffling step ten times to generate
ten shuffled copies of a word-API tuple. This section inves-
tigates the influence of the shuffling times on Word2API.

Method. Initially, we collect 13,883,230 word-API tuples
from the GitHub corpus. For each word-API tuple, we
control the shuffling time from 1 to 20 times, including 1,
5, 10, and 20 times. For example, when the shuffling time is
20, it means we generate 20 shuffled copies of an original

3

TABLE 2: Shuffling times for API docu-
ments linking.

Strategy MAP MRR

Shuffle-1 0.368 0.380
Shuffle-5 0.406 0.422
Shuffle-10 0.402 0.433
Shuffle-20 0.416 0.432
Shuffle-1-NonDup 0.354 0.362
Shuffle-5-NonDup 0.393 0.406
Shuffle-10-NonDup 0.402 0.423
Shuffle-20-NonDup 0.410 0.427

word-API tuple. We name this strategy as “Shuffle-20”. It
generates 277,664,600 results for training.

Result. The influence of shuffling times on recommending
APIs for 50 selected query words is shown in Fig. 2(a) and
Fig. 2(b). Clearly, the performance of Shuffle-1 drops from
Precision@5 to Precision@30. When we increase the shuf-
fling times, the performance tends to be similar. Similarly,
Shuffle-1 also slightly drops in terms of NDCG. However,
the differences of different shuffling times are small. The
average difference from NDCG@1 to NDCG@100 between
Shuffle-1 and Shuffle-20 is 0.018. The small differences be-
tween different shuffling times can be also verified on the
task of API documents linking (in Table 2). We use this
task for re-verification, because the oracle of this task is
automatically generated with fewer human biases. Since
“Shuffle-20” significantly increases the training time, we
shuffle each tuple ten times in this study.

Conclusion. Word2API can be improved by shuffling each
word-API tuple multiple times. The performance tends to
be stable when the shuffling times vary from 5 to 20.

S3.2 Shuffling on Small Corpus
Motivation. As a basic characteristic of GitHub, a project
may have many forks or third-party source code [5], leading
to many duplicate code snippets. To better analyze the
influence of shuffling times, in this subsection, we generate
a small corpus by removing the duplications in the large
corpus and analyze the influence of shuffling times on the
small corpus.

Method. We calculate the MD5 value of each word-API
tuple in the large corpus. We remove the duplicate copies of
word-API tuples that have the same MD5 value. In this way,
we obtain 5,488,201 non-duplicate word-API tuples, i.e., the
duplicate rate is 0.605. Then, we train Word2API on the non-
duplicate word-API tuples by shuffling each tuple 1, 5, 10,
20 times, denoted as Shuffle-1-NonDup, Shuffle-5-NonDup,
Shuffle-10-NonDup and Shuffle-20-Nondup respectively.

Result. As shown in Fig. 2(c) and Fig. 2(d), when increasing
the shuffling times, the performance of Word2API slightly
improves, and then reaches a ceiling. When we apply the
vectors generated by these variants on the task of API
documents linking, we can observe similar trends (in Table
2). In addition, by comparing the performance of Word2API
on the large and small corpora in Table 2, we find that the
absence of code duplication negatively affects the Word2API
performance on API documents linking.

0.1

0.3

0.5

0.7

1 2 3 4 5 6 7 8 9 10 11

Pr
ec
is
io
n

k
w5-i5 w5-i10 w5-i20 w5-i50
w50-i5 w50-i10 w50-i20 w50-i50

(a) Precision on the number of iterations

0.1

0.3

0.5

0.7

0.9

1 2 3 4 5 6 7 8 9 10 11

N
D
C
G

k
w5-i5 w5-i10 w5-i20 w5-i50
w50-i5 w50-i10 w50-i20 w50-i50

(b) NDCG on the number of iterations

Fig. 3: Influence on the number of iterations.

TABLE 3: The number of iterations for API
documents linking.

Strategy MAP MRR

Word2API-w5-i5 0.402 0.433
Word2API-w5-i10 0.413 0.430
Word2API-w5-i20 0.405 0.420
Word2API-w5-i50 0.412 0.427
Word2API-w50-i5 0.205 0.214
Word2API-w50-i10 0.205 0.211
Word2API-w50-i20 0.194 0.200
Word2API-w50-i50 0.205 0.209

Conclusion. As a machine learning approach, the cor-
pus size influences Word2API in learning word-API re-
lationships. When training Word2API on a small corpus
(5,488,201 non-duplicate word-API tuples), the performance
of Word2API for solving the API documents linking prob-
lem slightly drops.

S4 INFLUENCE ON THE NUMBER OF ITERATIONS

Motivation. This section investigates how the number of
iterations influences Word2API.

Method. By default, the number of iterations of Word2API
is 5. We increase the number of iterations (denoted as i)
by 5, 10, 20, 50 and observe the performance of Word2API
on recommending APIs according to query words. In this
experiment, the default window size (denoted as w) is 5.
Hence, the algorithms include Word2API-w5-i5, Word2API-
w5-i10, Word2API-w5-i20, and Word2API-w5-i50.

Besides, we also set the window size to 50, since the
performance of Word2API sharply drops when the window
size increases from 5 to 50 (see Section 5.2.1). We observe the
influence of the number of iterations on this larger window
size.

4

0

0.2

0.4

0.6

0.8

1

0

20

40

60

80

100

120
tra

ns
ac

tio
n

se
ss

io
n

ch
ec

k
re

se
rv

e
av

er
ag

e
uu

id
re

m
ot

e
cl

as
sn

am
e

st
ar

tu
p

bu
ffe

r
ag

en
t

be
gi

n
va

lid
in

te
rru

pt
xp

at
h

po
rt

th
re

ad
po

st
cl

ie
nt

in
pu

t
ht

tp ta
il

cu
rre

nt
tim

eo
ut

ob
je

ct
re

qu
es

t
de

le
te

xm
l

en
vi

ro
nm

en
t

ca
pi

ta
l

da
y

sy
st

em ye
ar fil
e

ra
nd

om
w

or
d

di
sp

la
y

op
en ite

r
gr

ap
hi

cs
fil

te
r

ke
y

le
ng

th
no

de
st

rin
g

sc
al

e
m

p3
ne

xt
se

le
ct

pa
rs

e

V
al

ue
 o

f e
va

lu
at

io
n

m
et

ric
s

A
vg

. L
en

. o
f w

or
d-

A
PI

 tu
pl

es

query word

Avg Precision@100 NDCG@100

Fig. 4: The average tuple length and the performance.

Result. As shown in Fig. 3(a) and Fig. 3(b), the number
of iterations has little influence on Word2API when the
window size is 5. If we average the differences between
Word2API-w5-i5 and Word2API-w5-i50 for the ranking list
from 1 to 100, the average difference between i = 5 and i =
50 is 0.006 for precision and 0.003 for NDCG. Conversely,
when the window size is set to 50, increasing the number
of iterations decreases the performance of Word2API. How-
ever, such differences do not affect the overall applicability
of Word2API for solving software engineering tasks. When
these variants of Word2API are applied to API documents
linking, the performance of Word2API is stable as the num-
ber of iterations is tuned, as shown in Table 3.

Conclusion. WordAPI is robust to the number of iterations
for software engineering tasks.

S5 INFLUENCE ON THE TUPLE LENGTH

Motivation. This section investigates how the length of
word-API tuples influences Word2API.

Method. Given a query word in the 50 selected ones,
we collect all the word-API tuples containing this word.
We calculate the average length (number of terms) of the
collected word-API tuples, as well as the performance of
Word2API on recommending related APIs for this word.
Then, we observe the correlation between the two variables.

Result. The results are presented in Fig. 4. The x-axis is
the query word. We rank the query words according to the
average tuple length containing each word. The left y-axis
is the value of the average length of tuples. The right y-axis
shows the values of Precision@100 and NDCG@100 with
respect to each query word. We find these query words
are trained on tuples with diverse lengths. The average
length of tuples containing the word “transaction” is 18.98.
In contrast, the word “parse” is trained by many long
tuples. The average length is 105.52. Despite the diverse
lengths, we could not observe a correlation between the
tuple length and the performance. The Spearman correlation
coefficient is -0.022 between the average tuple length and
Precision@100 and 0.026 between the average tuple length
and NDCG@100.

Conclusion. The length of tuples may not be a core factor to
influence the performance of Word2API.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 11 21 31 41 51 61 71 81 91

Pr
ec
is
io
n

k

LSA NSD
PMI HAL
Word2API

(a) Precision on Rel. estimation

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 11 21 31 41 51 61 71 81 91

N
D
C
G

k

LSA NSD
PMI HAL
Word2API

(b) NDCG on Rel. estimation

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 2 3 4 5 6 7 8 9 10

Pr
ec
is
io
n

k

VSM WE

Word2API VSM+WE

VSM+Word2API

(c) Precision on Doc. linking

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

1 2 3 4 5 6 7 8 9 10

N
D
C
G

k

VSM WE
Word2API VSM+WE
VSM+Word2API

(d) NDCG on Doc. linking

Fig. 5: Precision and NDCG for API relatedness estimation
and API documents linking.

TABLE 4: MAP and MRR for API relatedness estimation
and API documents linking.

Task Algorithms MAP MRR

API Rel. estimation

LSA 0.210 0.242
PMI 0.259 0.396
NSD 0.293 0.491
HAL 0.301 0.488
Word2API 0.362 0.528

API Doc. linking

VSM 0.232 0.259
WE [6] 0.313 0.354
Word2API 0.402 0.433
VSM+WE [6] 0.340 0.380
VSM+Word2API 0.436 0.469

S6 EVALUATION OVER MORE METRICS

Motivation. To show the robustness of Word2API, we use
precision, NDCG, MAP, and MRR to conduct a thorough
evaluation on the tasks of word-API relatedness estimation
(Section 5) and API documents linking (Section 7).

Method. For word-API relatedness estimation, we select 50
query words to compare Word2API against the baselines,
including LSI, PMI, NSD, and HAL. These algorithms are
evaluated by recommending 100 APIs corresponding to
a query word. For API documents linking, we compare
Word2API against VSM and WE. The algorithms are evalu-
ated by recommending 10 API documents to a question in
Stack Overflow. We show the performance of both the two
tasks on precision, NDCG, MAP, and MRR.

Result. Fig. 5(a) and Fig. 5(b) are the averaged precision
and NDCG for different algorithms on API relatedness
estimation. We show MAP and MRR for this task in Table 4.
Clearly, Word2API outperforms the baselines in terms of all
the evaluation metrics. These metrics evaluate Word2API in
different aspects. Precision and MAP count the percentage
of related APIs in a ranking list. MRR focuses on the position
of the related APIs and NDCG compares the position of the
related APIs with the unrelated ones.

We observe similar results for the task of API documents
linking. We present the performance of different algorithms
for API documents linking in Fig. 5(c), Fig. 5(d) and Table 4.

5

In this task, Word2API is superior to VSM and WE over all
the evaluation metrics.

Conclusion. The effectiveness of Word2API in capturing the
semantic relatedness can be verified over diverse evaluation
metrics.

S7 COMPARISON WITH DEEP API LEARNING

In this section, we compare Word2API with the state-of-
the-art algorithm for API sequences recommendation and
discuss the differences between the two algorithms to justify
the application scenario of Word2API.

S7.1 Quantified Comparison
Motivation. Word2API is a component for sematic estima-
tion. We integrate Word2API into a LuceneAPI (Section 6.4.2)
based search framework to show how Word2API works for
practical API recommendation. This method is denoted as
Word2APISearch. We compare Word2APISearch with DeepAPI
[7], an attention-based RNN Encoder-Decoder algorithm for
API sequences recommendation.

Method. DeepAPI learns word-API relationships from word-
API tuples constructed from the GitHub corpus. For a word-
API tuple, DeepAPI takes the words in the word sequence
as input. It encodes and decodes these words with an
RNN network and outputs a set of vectors representing
the related API sequences regarding these words. To train
the RNN network, DeepAPI optimizes the parameters of
RNN by minimizing the differences between the output
API sequence and the actual API sequence in this word-
API tuple. Finally, DeepAPI achieves a set of optimized
parameters. In evaluation, DeepAPI encodes and decodes
the vector of a user query with the optimized RNN and
directly generates API sequences for the query. Gu et al. [7]
published an on-line demo of DeepAPI1 for evaluation.

Word2APISearch integrates Word2API into the widely used
search engine Lucene for practical API sequences recom-
mendation. Word2APISearch first expands a user query into
a combined query with both words and related APIs. It
uses this combined query to search candidate API sequences
from the word-API tuples. Then, Word2APISearch re-ranks the
candidate API sequences by both sematic similarity and text
similarity, and recommends the top ranked API sequences.

Specifically, we use Word2API to calculate the similarity
between a user query and each API

i

in Java SE APIs,
denoted as sim

API

i

. We combine a user query and the
top-10 APIs with the largest sim

API

i

to form a combined
query q

com

. The top-10 APIs are selected as suggested by the
previous study [8]. We search q

com

with Lucene to get top
1,000 candidate API sequences in word-API tuples. This step
uses the text information of q

com

, i.e., Term Frequency and
Inverted Document Frequency (IDF), to filter low-quality
and noisy API sequences. The words in q

com

are used to
match the words split from the API sequences. The APIs in
q

com

are used to directly match the APIs in API sequences.
Then, we re-rank the candidate API sequences with the

assistance of the sematic information, i.e., sim

API

i

. This
process is inspired by Lv. et al. [8]. We do not directly use

1. https://guxd.github.io/deepapi/. Last check June, 2018.

TABLE 5: Performance of DeepAPI and Word2APISearch

ID DeepAPI [7] LuceneAPI Word2APISearch
FR P@5 P@10 FR P@5 P@10 FR P@5 P@10

Q1 2 0.4 0.9 NF 0 0 NF 0 0
Q2 1 1 1 NF 0 0 2 0.8 0.9
Q3 1 1 1 1 1 1 1 1 1
Q4 10 0.1 0.1 1 1 1 1 1 1
Q5 1 1 0.8 NF 0 0 1 1 1
Q6 1 1 1 NF 0 0 1 1 1
Q7 1 1 1 1 1 1 1 1 1
Q8 1 1 0.8 1 1 1 1 1 1
Q9 3 0.4 0.5 NF 0 0 1 0.6 0.4
Q10 1 0.8 0.9 NF 0 0 1 1 0.7
Q11 1 1 1 NF 0 0 1 0.6 0.8
Q12 1 1 0.7 1 0.6 0.6 1 1 1
Q13 1 1 1 5 0.2 0.6 1 1 1
Q14 1 0.8 0.6 1 0.8 0.9 1 1 1
Q15 1 1 0.9 NF 0 0 1 1 1
Q16 3 0.4 0.2 NF 0 0 1 1 0.6
Q17 2 0.2 0.1 NF 0 0 1 1 1
Q18 1 1 1 NF 0 0 1 1 1
Q19 1 1 1 NF 0 0 1 1 1
Q20 2 0.6 0.7 NF 0 0 1 1 0.7
Q21 1 0.6 0.8 1 1 0.7 1 0.6 0.6
Q22 1 1 1 NF 0 0 1 1 1
Q23 1 1 0.8 9 0 0.2 7 0 0.2
Q24 3 0.6 0.7 4 0.4 0.2 1 1 1
Q25 1 1 0.8 7 0 0.1 1 0.4 0.4
Q26 1 0.8 0.8 1 1 1 1 1 1
Q27 1 1 0.9 1 1 1 1 1 1
Q28 1 0.8 0.6 5 0.2 0.1 1 1 1
Q29 1 0.6 0.8 6 0 0.2 1 1 1
Q30 1 1 0.9 4 0.4 0.7 NF 0 0
Avg. 1.6 0.8 0.78 6.767 0.320 0.343 1.9 0.833 0.81

p 1.0 0.65 0.453 <0.01 <0.01 <0.01 * * *

their model, as the original model has several parameters,
which needs to be carefully optimized on different tasks.

We simplify their model as follows. This model ranks a
candidate API sequence by the sum of its sematic similarity
and text similarity to the query [8]. The sematic similarity is
the sum of sim

API

i

of all the APIs that appear in both the
combined query q

com

and the candidate API sequence seq.

simsemantic =

kX

i=1

sim

API

i

, API

i

appears in q

com

and seq. (1)

For the text similarity, the weight of word
i

in q

com

is
defined as:

sim

word

i

= log(IDF

word

i

)/

nX

j=1

log(IDF

word

j

), (2)

where n is the number of words in q

com

and IDF

word

i

is the
IDF of word

i

. Similar to simsemantic, the text similarity is the
sum of sim

word

i

of all words that appear in both q

com

and
seq. We split seq into words according to their camel style.

simtext =

kX

i=1

sim

word

i

, word

i

appears in q

com

and seq. (3)

The final similarity between the user query q and seq is:

sim(q, seq) =

(simsemantic + simtext) ⇤Num

matched

Len

seq

, (4)

where Num

matched

is the number of matched terms (APIs
and words) in seq and Len

seq

is the length of seq.
Num

matched

is used to improve the influence of word-API
sequences that can match more terms, as the previous study
[8] assumes APIs that are retrieved by multiple terms more
important. Len

seq

is used to lessen the influence of long API
sequences, which can always match more terms.

Result. Table 5 presents the performance of DeepAPI,
LuceneAPI, and Word2APISearch over the human written

6

queries. LuceneAPI is the algorithm evaluated in Sec-
tion 6.4.2. Word2APISearch improves the performance of
LuceneAPI by 0.513 and 0.467 in terms of P@5 and P@10
respectively. Hence, it is promising to integrate the semantic
information analyzed by Word2API into a general-purpose
search engine. When comparing Word2APISearch with Deep-
API, we could not observe statistical differences between
the two algorithms. They both achieve the state-of-the-art
results for API sequences recommendation over the real-
world queries. We did not evaluate these algorithms with
the 10,000 automatically constructed queries, as the DeepA-
PI demo was down when we sent our constructed queries.

Conclusion. Word2APISearch performs similar with the state-
of-the-art algorithm DeepAPI.

S7.2 Qualitative Comparison
Motivation. Since Word2APISearch and DeepAPI perform
similar over the real-world queries, we conduct a qualitative
comparison of the two algorithms to provide some insights
on utilizing Word2APISearch.

Method. We analyze the failure cases of Word2APISearch
in recommending APIs, and then discuss the application
scenario of Word2APISearch.

Result. We analyze Word2APISearch in three aspects.
First, Word2APISearch takes a query as bag-of-words. It

misses the knowledge of the order of words in a query.
Hence, Word2APISearch fails to distinguish the query Q1
“convert int to string” from Q2 “convert string to int”. This
is a common problem of bag-of-words based models [8].

Second, Word2APISearch may not well handle some
queries with multiple requirements. For example, the query
Q30 “play the audio clip at the specified absolute URL” has
two requirements, including “play the audio clip” and “at
the specified absolute URL”. When searching this query,
Word2APISearch lowers down the weight (IDF) of the sec-
ond requirement, as “URL” is a common word to describe
“java.net” packages. As a result, Word2APISearch only recom-
mends APIs related to “play the (local) audio clip” instead
of the “on-line” ones.

Third, as a retrieval task, Word2APISearch may suffer from
poor-quality queries, that are far from the human intention.

Despite the above shortcomings, Word2APISearch is still
competitive to used. We discuss the potential advantages of
Word2APISearch by comparing Word2APISearch with DeepAPI.

First, DeepAPI is a deep neural network based method.
The reasons for generating an API sequence is usually
opaque to developers [9]. In contrast, Word2APISearch rec-
ommends API sequences by ranking word-API tuples. Most
parts of Word2APISearch are explainable. Developers could
understand the recommendation results and optimize the
model in different scenarios more easily.

Second, DeepAPI generates API sequences by network
parameters. On the one hand, the generative model DeepA-
PI can infer new API sequences after training on historical
API sequences. This is useful for developers seeking to
learn the new usages of APIs. In this respect, DeepAPI is
superior to Word2API, which only recommends existing
historical API sequences. On the other hand, after manually
examining the generated API sequences by DeepAPI, we

find that some API sequences may not be valid, which
may be a burden in understanding and debugging these
sequences. In this respect, Word2APISearch can retrieve valid
and real-world API sequences. These sequences can be
directly linked to the source code for better understanding.

Conclusion. Compared to DeepAPI, Word2API is useful
in finding real-world API sequences. The recommendation
results are more explainable.

S8 LEARNING ON PROJECT-SPECIFIC APIS
Motivation. This study trains Word2API on Java SE APIs.
Since searching for Java SE APIs has been well studies
by general-purpose search engines, this section investigates
Word2API on learning project-specific words and APIs.

Method. We take the core Lucene APIs as a representative
example of project-specific APIs. On the one hand, Lucene is
widely known to developers. Recommending Lucene APIs
is helpful to set up a general-purpose search engine. On the
other hand, compared to Java SE APIs, core Lucene APIs are
not used in all the Java projects. Searching for Lucene APIs
is more similar to a project-specific search.

In the experiment, we collect the code snippets con-
taining Lucene APIs from the GitHub corpus. Similar to
the process of constructing Java SE word-API tuples, we
construct word-API tuples for core Lucene APIs. In this
process, we collect 94,571 word-API tuples. We generate a
training set by creating ten copies of each word-API tuple
with the shuffling strategy. After running Word2API on the
training set, 3,088 word vectors and 8,279 API vectors are
generated eventually.

In the evaluation, we first evaluate Word2API with 30
human written queries listed in the first three columns of
Table 6. The typical APIs for each query are listed in the
forth column. The first five queries are the general steps to
deploy a Lucene search engine in the Lucene tutorial2. The
remaining queries are selected from the title of top voted
questions in Stack Overflow with the tag “Lucene”. We
select queries according to the following criteria [10]: (1) The
question is a programming task that can be implemented
with core Lucene APIs. (2) The answer to the question
contains Lucene APIs. (3) The title of the question is not the
same with the already selected queries. Then, we expand
the selected queries into API vectors and search word-API
tuples based on the naive framework presented in Section
6.2.3 (Word2API

Exp

) to highlight the affect of Word2API.
The top-10 results are evaluated by FR, Precision@5, and
Precision@10.

Second, we randomly select 1,000 word-API tuples from
all the 94,571 word-API tuples. We only select 1,000 word-
API tuples, due to the small number of entire Lucene related
tuples. We take the word sequences in the word-API tuples
as queries to search API sequences in the remaining 93,571
word-API tuples. The recommended API sequences are
evaluated based on the BLEU score.

We compare Word2API
Exp

with LuceneAPI+Comment pro-
posed in Section 6.4.2. LuceneAPI+Comment in this section only
searches Lucene word-API tuples. It matches the queries

2. https://www.tutorialspoint.com/lucene/lucene overview.htm

7

TABLE 6: Performance on project-specific search over 30 human written queries. P is short for precision

ID Query (How to/Is there a way for) Question Typical APIs LuceneAPI+Comment Word2API
Exp

ID FR P@5 P@10 FR P@5 P@10

L1 analyze the document tutorial StandardAnalyzer#new, Analyzer#tokenstream 1 1 1 1 0.8 0.8
L2 indexing the document tutorial IndexWriterConfig#new, IndexWriter#new,

IndexWriter#addDocument
1 0.8 0.7 1 1 1

L3 build query tutorial BooleanClause#getQuery, QueryParser#parse 1 0.8 0.8 1 0.4 0.6
L4 search query tutorial IndexSearcher#search 1 1 0.8 1 0.8 0.7
L5 render results tutorial Explanation#getSummary, Explanation#getDetails 5 0.2 0.4 1 1 0.8
L6 get a token from a lucene TokenStream 2638200 TokenStream#incrementToken, TermAttribute#term 3 0.4 0.5 1 1 1
L7 keep the whole index in RAM 1293368 RAMDirectory#new NF 0 0 NF 0 0
L8 stem English words with lucene 5391840 EnglishAnalyzer#new, PorterStemmer#stem 3 0.4 0.6 4 0.2 0.5
L9 ignore the special characters 263081 QueryParser#escape 3 0.2 0.1 4 0.4 0.2
L10 incorporate multiple fields in QueryParser 468405 TermQuery#new, BooleanQuery#add,

MultiFieldQueryParser#new
1 0.4 0.4 1 1 1

L11 tokenize a string 6334692 Analyzer#tokenStream 1 0.8 0.9 NF 0 0
L12 (use) different analyzers for each field 2843124 PerFieldAnalyzerWrapper#new NF 0 0 NF 0 0
L13 load default list of stopwords 17527741 StanardAnalyzer#loadStopwordSet 5 0.2 0.4 1 0.8 0.5
L14 sort lucene results by field value 497609 Search#sort, Sort#getSort 2 0.4 0.5 1 0.8 0.5
L15 extract tf-idf vector in lucene 9189179 IndexReader#docFreq, IndexReader#getTermVector,

TFIDFSimilarity#idf
3 0.4 0.4 2 0.8 0.9

L16 backup lucene index 5897784 FSDirectory#copy 3 0.2 0.1 NF 0 0
L17 find all lucene documents having a certain field 3710089 QueryParser#SetAllowLeadingWildcard NF 0 0 NF 0 0
L18 (calculate) precision/recall in lucene 7170854 ConfusionMatrixGenerator#getPrecision,

ConfusionMatrixGenerator#getRecall
1 0.8 0.5 1 0.8 0.4

L19 search across all the fields 15170097 TermQuery#new, BooleanQuery#add,
MultiFieldQueryParser#new

NF 0 0 5 0.2 0.4

L20 multi-thread with lucene 9317981 MultiReader#new, MultiSearcherThread#start 3 0.4 0.3 1 0.4 0.2
L21 get all terms for a lucene field in 15290980 Fields#terms, Term#text 7 0 0.1 1 1 1
L22 update a lucene index 476231 Document#add, IndexWriter#addDocument 2 0.6 0.6 2 0.8 0.9
L23 adding tokens to a TokenStream 17476674 TokenStream#incrementToken,

PositionIncrementAttribute#setPositionIncrement
1 1 0.8 1 0.8 0.8

L24 finding the num of documents in a lucene index 442463 IndexReader#numDocs 1 0.8 0.9 1 0.8 0.9
L25 make lucene be case-insensitive 5512803 StringUtil#startsWithIgnoreCase, LowerCaseFilter#new 3 0.4 0.4 2 0.4 0.4
L26 boost factor (of) MultiFieldQueryParser 551724 MultiFieldQueryParser#new, Query#setBoost 3 0.2 0.2 1 0.4 0.3
L27 list unique terms from a specific field 654155 Term#iterator, TermsEnum#next 8 0 0.1 1 1 0.8
L28 index token bigrams in lucene 8910008 NGramTokenizer#new NF 0 0 NF 0 0
L29 delete or update a doc 2634873 IndexWriter#update, IndexReader#removeDocument 3 0.4 0.5 1 0.8 0.7
L30 query lucene with like operator 3307890 WildcardQuery#new, PrefixQuery#new NF 0 0 2 0.4 0.4
Avg. 4.367 0.393 0.4 3.467 0.56 0.523
p 0.067 0.029 0.041 * * *

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10

BL
EU

 S
co

re

k
Word2API Lucene_{API+Comment}LuceneAPI+Comment

Fig. 6: BLEU score on project-specific search.

with the words in the word sequence and API sequence
of each word-API tuple.

Result. Table 6 shows the results on human written queries.
For FR, the average position of the first related API se-
quence recommended by Word2API

Exp

ranks 0.9 higher
than LuceneAPI+Comment. For precision, Word2API

Exp

out-
performs LuceneAPI+Comment by 0.16 and 0.123 in terms of
Precision@5 and Precision@10 respectively. The results on
precision pass the Wilconox signed rank test with p-values
< 0.05. Similarly, we can also observe a significant improve-
ment in Fig. 6 in terms of the BLEU score over the 1,000 auto-
matically constructed queries. Hence, Word2API

Exp

outper-
forms LuceneAPI+Comment in recommending project-specific
APIs over precision and the BLEU score.

Despite the promising results, we analyze the failure
cases of Word2API

Exp

to provide some insights in using
Word2API

Exp

. The first failure reason is the small size of
vocabulary in the training set. Word2API generates 3,088
word vectors. We find some words in the query never occur
in the training set. For example, for the query L11 “tokenize

a string”, Word2API cannot generate a vector for “tokenize”,
leading to a failure result. One direction to solve this prob-
lem is to infer the software-specific morphological forms of
the non-existence words [11], e.g., “token” and “tokenize”
come from the same root. We may use the vector of “to-
ken” to calculate similarity. Another direction is to combine
LuceneAPI+Comment with Word2API, as LuceneAPI+Comment finds
the right APIs for this query.

The second failure reason is the lack of the diversity
of word-API usages. The training set is 100 times smaller
than the Java SE training set. Some usages between words
and APIs may not exist in the method comments and API
calls. For example, we could not observe obvious usages
of the word “RAM” to describe “RAMDirectory#new” re-
lated APIs (query L7) in the word-API tuples. Although as
discussed in Section S3, the shuffling strategy improves the
ability of Word2API in learning existing word-API tuples,
the non-existence word-API usages may lead to a failure.

Conclusion. Word2API can learn word-API relationships
for project-specific APIs. A searching framework with the
Word2API-generated queries can provide more precise re-
sults than a general-purpose search engine.

S9 API DOCUMENTS LINKING WITH JBAKER

Motivation. Word2API is useful for API documents linking,
e.g. linking the questions in Stack Overflow to their relat-
ed API documents. This section compares Word2API with
JBaker on this task, one of the state-of-the-art algorithms of
linking on-line resources (e.g., Stack Overflow questions) to
API documents. JBaker represents a set of algorithms that
trace the exact type (the fully qualified name) of ambiguous

8

TABLE 7: Performance of JBaker and baselines.

#Exp Algorithms MAP MRR

Group 1 JBaker [12] 0.337 0.344
JBaker-code 0.448 0.458

Group 2
VSM 0.195 0.195
WE [6] 0.190 0.187
Word2API 0.338 0.350

Group 3 JBaker+Word2API 0.501 0.514
GoogleSpecification 0.501 0.509

APIs in code snippets. For example, JBaker can deduce
whether the ambiguous API “Data#getHours” in a code
snippet refers to “java.util.Data” or “java.sql.Data”. Since
each API document is usually illustrating an unique API
type, JBaker is able to link every ambiguous API in the code
snippet to its related API documents.

Method. We use JBaker for API documents linking. For a
question in Stack Overflow, we extract the code snippet
in the question. We input the code snippet to JBaker for
identifying the exact API type of every ambiguous API in
the snippet. JBaker analyzes ambiguous APIs based on an
oracle. The oracle is a database containing a large number
of API sequences used in practice. When JBaker encounters
an ambiguous API, it matches the ambiguous API with
the API sequences in the oracle to deduce its possible API
types. JBaker assumes that APIs in the same code snippet
usually belong to the same API type. Hence, it can find the
exact type of an ambiguous API by identifying the common
API types of all ambiguous APIs. Based on the deduced
API type, we link ambiguous APIs to API documents. If
JBaker cannot find the exact type of an ambiguous API,
it recommends more than one results. Thus, we link this
ambiguous API to more than one API document. In this
study, we use the API sequences in the word-API tuples as
the oracle. We reproduce JBaker by ourselves.

After linking every ambiguous API with API documents,
we rank these API documents for the task of API documents
linking. We define the score of an API document to a
question as the score of all the APIs in the question that
are linked to this API document.

score

doc

=

nX

i=1

score

doc

API

i

, (5)

where n is the number of APIs that are linked to this API
document by JBaker. Since JBaker may link an API to more
than one API document, the score of an API is defined as:

score

doc

API

i

= 1/k

i

, (6)

where k

i

is the number of API documents that JBaker links
API

i

to. Based on score

doc

, we recommend API documents
for a question in Stack Overflow.

Result. As described in Section 7.3.2, we collect 278 ques-
tions from Stack Overflow as a testing set for evaluation.
Table 7 is the performance of the algorithms.

For the first group of experiments, we evaluate JBaker on
the 278 questions. The performance of JBaker is 0.337 and
0.344 in terms of MAP and MRR respectively. Recalling that
Word2API achieves MAP of 0.402 and MRR of 0.433 on the
same testing set, Word2API outperforms JBaker over the 278

questions. We reason the JBaker’s performance as follows.
On the one hand, despite JBaker can correctly link APIs
in code snippets to API documents, these API documents
may not be the correct ones to solve the problems, as the
submitters may already read these API documents before
submitting the question. On the other hand, not all the
questions in Stack Overflow contains code snippets. As a
statistic of the 278 questions, 70 (25.2%) of them have no
code snippets. JBaker may recommend nothing for these
questions. If we remove these 70 questions, the performance
of JBaker-code on the remaining 208 questions are signifi-
cantly improved as shown in the 2nd line of Table 7.

However, we think the removed 70 questions are more
difficult to analyze. Since these questions only contain nat-
ural language words, the gaps between words in questions
and APIs in API documents are more prominent. For the
second group of experiments, we run the algorithms in Section
7.2 on the 70 questions, including VSM, WE, and Word2API.
The performance of all the algorithms drops, even though
Word2API still outperforms the others by 0.143 to 0163 over
distinct metrics. Hence, Word2API can better bridge the
sematic gaps than the baselines on some “hard” instances.

Although JBaker may have difficulty in analyzing ques-
tions without code snippets, JBaker is useful to analyze
the API-API relationship between code snippets and API
documents. For the third group of experiments, we combine
the word-API relationship analyzed by Word2API and the
API-API relationship analyzed by JBaker for more precise
API documents linking. For a question, we assign two
scores to each API document. The scores are calculated by
Word2API and JBaker. All the API documents are ranked
according to the sum of the two scores (Word2API+JBaker).
If a question has no code snippets, JBaker assigns zero to
all the API documents. In Table 7, both MAP and MRR of
Word2API+JBaker over the 278 questions are significantly
improved, i.e., 0.501 for MAP and 0.514 for MRR.

In addition, we compare Word2API+JBaker with
Google, a state-of-the-art search engine. We take the
278 questions as queries and manually search Java
API documents with Google by rewriting a query as
‘query site:https://docs.oracle.com/javase/8/docs/api/’.
This method is denoted as GoogleSpecification. We find Google
provides a strong baseline for information retrieval tasks
in software engineering. For API documents linking, the
results of GoogleSpecification and Word2API+JBaker are quite
close. According to classical information retrieval textbooks
[13], a mature search engine may leverage many state-
of-the-art techniques to optimize the search results, such
as page rank, topic model, query expansion, and query
feedback. Hence, the word-API and API-API knowledge
captured by Word2API+JBaker is competitive as a combi-
nation of many retrieval techniques in analyzing APIs.

Conclusion. Word2API outperforms the baselines over dif-
ferent types of questions. The word-API relationship ana-
lyzed by Word2API is valuable to improve the algorithms
for API documents linking.

REFERENCES
[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-

mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

9

[2] H. Jiang, X. Li, Z. Yang, and J. Xuan, “What causes my test alarm?
automatic cause analysis for test alarms in system and integration
testing,” in Proc. of the 39th Int’l. Conf. on Softw. Eng. IEEE, 2017,
pp. 712–723.

[3] F. Asr, J. Willits, and M. Jones, “Comparing predictive and co-
occurrence based models of lexical semantics trained on child-
directed speech,” in Proc. of CogSci, 2016.

[4] T. D. Nguyen, A. T. Nguyen, H. D. Phan, and T. N. Nguyen,
“Exploring API embedding for API usages and applications,” in
Proc. of the 39th Int’l. Conf. on Softw. Eng. IEEE Press, 2017, pp.
438–449.

[5] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian, “An in-depth study of the promises and perils of
mining github,” Empirical Software Engineering, vol. 21, no. 5, pp.
2035–2071, 2016.

[6] X. Ye, H. Shen, X. Ma, R. Bunescu, and C. Liu, “From word
embeddings to document similarities for improved information
retrieval in software engineering,” in Proc. of the 38th Int’l Conf. on
Softw. Eng. ACM, 2016, pp. 404–415.

[7] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deep API learning,” in
Proc. of the 2016 24th ACM SIGSOFT Int’l Symposium on Foundations

of Softw. Eng. ACM, 2016, pp. 631–642.
[8] F. Lv, H. Zhang, J.-g. Lou, S. Wang, D. Zhang, and J. Zhao,

“Codehow: Effective code search based on API understanding
and extended boolean model,” in 30th IEEE/ACM Int’l Conf. on
Automated Softw. Eng. IEEE, 2015, pp. 260–270.

[9] M. Kahng, P. Y. Andrews, A. Kalro, and D. H. P. Chau, “Activis:
Visual exploration of industry-scale deep neural network models,”
IEEE Trans. on Visualization and Computer Graphics, vol. 24, no. 1,
pp. 88–97, 2018.

[10] X. Gu, H. Zhang, and S. Kim, “Deep code search,” in Proc. of the
40th Int’l. Conf. on Softw. Eng. ACM, 2018, pp. 933–944.

[11] C. Chen, Z. Xing, and X. Wang, “Unsupervised software-specific
morphological forms inference from informal discussions,” in
Proc. of the 39th Int’l Conf. on Softw. Eng. IEEE Press, 2017, pp.
450–461.

[12] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live API doc-
umentation,” in Proc. of the 36th Int’l. Conf. on Softw. Eng. ACM,
2014, pp. 643–652.

[13] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to
information retrieval. Cambridge University Press, 2008, vol. 39.

