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ABSTRACT

Context: The quality of mobile applications has a vital impact on
their user’s experience, ratings and ultimately overall success. Giv-
en the high competition in the mobile application market, i.e., many
mobile applications perform the same or similar functionality, users
of mobile apps tend to be less tolerant to quality issues.

Goal: Therefore, identifying these crashing releases early on so
that they can be avoided will help mobile app developers keep their
user base and ensure the overall success of their apps.

Method: To help mobile developers, we use machine learning
techniques to effectively predict mobile app releases that are more
likely to cause crashes, i.e., crashing releases. To perform our pre-
diction, we mine and use a number of factors about the mobile
releases, that are grouped into six unique dimensions: complexi-
ty, time, code, diffusion, commit, and text, and use a Naive Bayes
classified to perform our prediction.

Results: We perform an empirical study on 10 open source mobile
applications containing a total of 2,638 releases from the F-Droid
repository. On average, our approach can achieve F1 and AUC
scores that improve over a baseline (random) predictor by 50% and
28%, respectively. We also find that factors related to text extracted
from the commit logs prior to a release are the best predictors of
crashing releases and have the largest effect.

Conclusions: Our proposed approach could help to identify crash
releases for mobile apps.

CCS Concepts

eSoftware and its engineering — Software testing and debug-
ging, eGeneral and reference — Empirical studies; Evaluation;
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1. INTRODUCTION

Mobile apps are some of the most popular software systems to-
day. Recent market studies show that the Apple App Store has more
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than 1.5 million apps and Google Play has over 1.6 million app-
s [2]. This rapid development of mobile app markets has brought
huge benefits. At the same time, competition in the mobile app
industry is very high since many apps provide similar functional-
ity, e.g., there are more than 250 weather forecast applications in
Google Play'.

Although mobile apps are considered to be software systems,
they are very different from traditional “shrink wrapped” software
such as Mozilla Firefox or Microsoft Windows [47]. For example,
most mobile apps tend to be small in nature and are developed by
smaller and less experienced teams [50]. More importantly, the role
of mobile apps has evolved from simple games that entertain us to
playing a critical role in our daily lives [40]. For example, mobile
apps are increasingly being used in mission-critical systems such as
security, healthcare and the financial sector. Therefore, the quality
of mobile apps is of critical importance.

At the same time, due to the fact that these mobile apps are re-
leased through app stores, mobile apps tend to have more releases
compared to traditional applications. To further enhance the com-
petitiveness and attract more users, developers continually evolve
their applications and frequently release new versions. For exam-
ple, the gothfox_ Tiny-Tiny-RSS app released 280 versions
in the 3 year period from September 2011 to July 2014. Other apps
have even shorter release cycles. However, in many cases, mo-
bile developers may release versions of the app that are of poor
quality. Prior work showed that some of the most negatively im-
pacting releases, are crashing releases, i.e., releases that cause the
app to crash [23]. These crashing releases can cause users to unin-
stall an app and potentially give it a negative rating [16], which in
turn impacts the app’s revenues. Therefore, identifying crashing
releases early on, can help warn mobile app developers about a po-
tential crashing version before it is released and reduce the number
of crashing releases. Notice our prediction is used to prioritize the
releases rather than replace testing.

In this paper, we perform an empirical study on crashing releases
of mobile apps. We perform our study on 10 open source mobile
apps from the from F-Droid repository>. The 10 apps have 2,638
releases, of which 13% were crashing releases. For each app, we
mine its commit data to identify crashing releases. Since our goal is
to predict crashing releases, we extract 20 different factors from the
mobile app repositories that are grouped into six unique dimension-
s: complexity, time, code, diffusion, commit, and text. Using the
extracted factors, we leverage machine learning techniques to build
models that can effectively predict crashing releases. We compare
our approach with two baselines: random prediction and majority
prediction. Our results show that we are able to achieve an im-
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Makes stats and browser deck-aware, and a fix crash caused by
deck selector

Figure 1: Example commit log between Releases 2.2alpha86
and 2.2alpha87 of the ankidroid_Anki-Android mobile app.

Prevent crashes in onPostExecute() by not calling
onCreateDialog(). Force startLoadingCollection() to re-sync with
AnkiDroidApp.getCol()

Figure 2: Example commit log between Releases 2.3alphal6
and 2.3alphal7 of the ankidroid_Anki-Android mobile app.

provement over random prediction by 50% and 28% in terms of F1
and AUC score, and an improvement over majority prediction by
39% in terms of AUC score, respectively. Note that the precision
and recall for the majority prediction baseline are both 0, and thus
the F1-score for majority prediction cannot be calculated. In ad-
dition, we analyzed the factors that best indicate crashing releases
and find that factors in the text dimension, i.e., text in the commit
messages, are the best predictors.

The main contributions of the paper can be summarized as fol-
lows:

1. We propose the problem of crashing release prediction for
mobile apps. To the best of our knowledge, this is the first
work to predict crashing releases for mobile apps. We envi-
sion that our approach can be used to predict the releases that
are highly likely to be crashing so that they can be prioritized
for testing.

2. We develop factors that can be easily mined from mobile ap-
p repositories to predict crashing mobile app releases. We
use the developed factors to accurately predict crashing re-
leases and investigate the factors that best indicate crashing
releases.

3. We perform an empirical study on 10 open source mobile
apps and our experimental results show that our approach
achieves an improvement over two other baseline approach-
es.

The remainder of the paper is organized as follows. We describe
the motivation of our study in Section 2. We present our empirical
study data and empirical study setup in Section 3 and 4, respective-
ly. We present our empirical study results in Section 5. We discuss
additional points on the benefits and limitations of our approach in
Section 6. We discuss related work in Section 7. We conclude and
mention future work in Section 8.

2. MOTIVATION

Although our intuition and experience tells us that mobile app
developers have crashing releases and care about minimizing such
crashing releases, we wanted to make sure that this was a real prob-
lem that mobile app developers face and care about (note that prior
work only showed that crashing releases negatively impact user-
s [23]). Hence, we approached the task of investigating whether
crashing releases is a real problem in two ways. First, we exam-
ined the commit logs and found examples where developers ex-
plicitly mention that crashing releases occur and are swiftly fixed.
Second, we emailed a number of developers to get their opinion on
the importance of this problem. We elaborate on each of these two
tasks in the following subsections.

Examples of Crashing Releases in Commit Logs. Figure 1
presents example commit logs between Releases 2.2alpha86 and
2.2alpha87 of the ankidroid_Anki-Android mobile app. Figure 2
presents example commit logs between Releases 2.3alphal6 and

2.3alphal7 of the ankidroid_Anki-Android mobile app. We note
that in both cases presented in the Figures, the developers are men-
tioning fixes for crashes that were introduced by earlier versions.
Obviously these crashes were critical enough for the developers to
not only fix them, but to fix them quickly. In the example shown
in Figure 1, the fix to the crashing release was performed in 5 days
and in the example shown in Figure 2, the fix was committed in 4
days.

Developer’s Opinions of Crashing Releases. As mentioned earli-
er, we also asked mobile developers at Hengtian® and the develop-
ers of the mobile app projects ankidroid _Anki-Android
and gii_weiciyuan. We sent emails to 25 developers asking
them a very simple question:

Do you think it is necessary to predict the crash releases in mobile
apps? If so, why?

In total, 6 developers replied to our email. All the 6 developers,
denoted as D1 to D6, agreed that predicting crashing releases is an
important problem. We summarize their replies as follows:

1. Release Cycles: Since the release cycles for mobile apps are
very short (e.g., one release per week (D5)), “we do not have
enough time to test all aspects of the apps in each release”
(D2). “If there is a tool that can tell us whether the release
has a high likelihood of containing a crash, we will pay more
attention to the release and spend more time inspecting the
code” (D4).

2. Inspection Cost: In traditional desktop applications, for
each release, it may modify a large number of LOCs (e.g.,
more than 1M LOCs). In such cases, predicting crashing
releases for desktop applications is not necessary since de-
velopers will need to inspect a large number of LOCs (D3).
However, “in mobile apps, in each release our team only
modified several thousand LOCs. If a tool can tell us there
is a crash in the release, it is possible for us to manually
inspect the code” (D3). Note “it is impossible for us to in-
spect the code in all of the releases since we have too many
releases, and practically speaking, we can only focus on the
problematic releases” (D6).

3. Supplementary Means to Testing: Eventhough some apps
may have received enough testing, some of the crashes are
still hard to detect (D1). A crash release prediction tool can
be a supplementary means to testing (D1). After the testers
complete the testing, the tool can be used to ensure the qual-
ity of the released version.

3. EMPIRICAL STUDY DATA

This section details the data used in our study. First, select the
relevant mobile applications (application collection). Then, we i-
dentify the releases of the collected applications (release identifi-
cation) and use heuristics to determine the crashing releases (crash
release determination). We detail each step of the data collection
below.

Mobile App Collection: To perform our study, we need to obtain
a number of mobile applications. To do so, we collected the mo-
bile applications available on the Free and Open Source Software
(FOSS) repository F-Droid. F-Droid is widely used in a number of
software engineering studies (c.f., [1,26,29,36]). Each mobile ap-
plication available on F-Droid has a corresponding wiki page which

*Hengtian is a large software outsourcing company in China,
with more than 2,000 employees. More details can be found in
http://www.hengtiansoft.com/?lang=en



<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="org.andstatus.app"

android:@ersionName="13.0™ android:@ersionCode="113"

android:installLocation="internalonly">
Figure 3: The manifest file of andstatus.

provides details about the app. For us, wiki pages are very impor-
tant since they provided us with the number and dates of the releas-
es for each app. In total, we crawled the data for 900 mobile apps.
This data included: 1) the wiki page of the app, 2) the link to the
source code repository, and 3) the source code of the app.

Since some of the mobile apps did not provide all of the informa-

tion we required (e.g., there was no link to the source code repos-
itory available), we ended up with a total of 632 apps. Of these
632 apps, 466 mobile apps are managed by git, 40 are managed by
mercurial, and 126 are managed by svn. Since some of the tools
we used (e.g., the tools used to extract factors from commits) only
support Git repositories [49], we only consider the apps managed
by Git, i.e, 466 apps.
Release Identification: According to the Google Play developer
documentation*, when a new version is released, the version at-
tribute in the manifest file is also changed. More specifically, the
android:versionCode and the android:versionName attributes must
be changed. Figure 3 presents an example manifest file from the
andstatus app. The version code is “113”, and the version name
is “13.0”. With this information, we mine the commit logs in the
source code repository, and collect the dates of commit logs. We
use the dates from the commits and the dates for the version name
or version code in the manifest file (which we obtain from the wiki
page), to determine which commits belong to a release.

To filter out toy examples and non-active apps, we manually
check the status of apps by reading their release notes and check-
ing their download records. We select apps that existed in GitHub
for at least 2 years, since our prediction models require historical
data of the mobile apps. After this step, we are left with a total of
22 apps. Next, we further filtered out the apps that have less than
100 releases, since we require enough instances of crashing releas-
es and non-crashing releases to train our models. This step further
narrowed the number of apps to 10. Although our requirement of
having more than 100 releases may seem restrictive, it is important
to note that our approach is most useful for apps with a large num-
ber of releases (apps with a small number of releases can afford to
check every release).

Crashing Release Determination: Once we selected the 10 mo-
bile apps, we extracted all releases for these apps. Then, for each
release, we extract all its associated commits along with the commit
messages from the Git repo of the project. To identify the crashing’
releases, similar to prior work, we use keywords found in the com-
mit messages [25,45,52]. In particular, we looked for the keywords
“crash”, “crashed”, “crashing”, and “crashes”. Note that keyword
searches may increase the number of false positives and false neg-
atives. To reduce the number of false positives, for each identified
crashing release, the first and third author manually checked the
commit logs and modified source code, and we only find 5 releases
are misclassified. To reduce the number of false negatives, for these
non-crash releases, the first and third author also randomly choose
and manually checked 30% ( i.e., 688)of the releases from these
non-crash releases, and we find all of these releases labeled as non-
crash releases are correctly labeled. It is important to note here
that if we find these keywords in release x for example, then we
mark release x — 1 as the crashing release. This is because devel-
opers will often mention that they are fixing a crash in a previous
release. Based on our observations, in practice crashing releases

*https://developer.android.com/tools/publishing/preparing.html

Table 1: Statistics for the collected mobile applications. The
last row shows the total number of releases, the total number
of crashing releases, and the percentage of crash releases.

Project [ TimePeriod | #R [ #C | % C |

ankidroid_Anki-Android 2009/06-2014/09 597 97 16%
bpellin_keepassdroid 2009/01-2013/09 149 23 15%
BrandroidTools_OpenExplorer 2011/12-2013/05 156 28 18%

freezy_android-xbmcremote 2009/08-2013/12 392 19 5%
gothfox_Tiny- 2011/09-2014/07 280 36 13%
guardianproject_Gibberbot 2010/07-2014/09 233 26 11%
mariotaku_twidere 2012/04-2014/05 262 34 13%
mtotschnig_MyExpenses 2011/05-2014/09 241 34 14%
qii_weiciyuan 2012/07-2014/07 205 39 19%

WSDOT_wsdot-android-app 2010/05-2014/07 123 8 7%
Total 2,638 | 344 13%

are often followed by another release very swiftly. This is done to
minimize the negative impact of the crashing release. Using the
method above, we identify all the potential crashing releases. Next,
we manually check the commit logs, fixed bugs, release notes and
user reviews of the crashing releases and their subsequent releases
to makes sure the releases identified as crashing in fact are.

Table 1 presents the statistics for each mobile app in our data set.
The columns correspond to the time period, the number of releas-
es (# Releases), the number of crash releases (# Crash Releases),
and the percentage of the crash releases (% Crash Releases) for the
10 mobile applications. In total, we collect 2,638 releases across
the 10 mobile applications, and among them, 344 releases were la-
belled as crashing releases, which accounts for 13% of the releases,
on average. Note that the number of crash releases is much less than
the number of the non-crash releases. We refer to this phenomenon
as the class imbalance phenomenon [18]. Due to the class imbal-
ance phenomenon, we anticipate that predicting crashing releases
with high accuracy will be a difficult task.

4. EMPIRICAL STUDY SETUP

Now that we have observed that the percentage of crashing re-
leases is not negligible, the goal of our study is to be able to ef-
fectively predict crashing mobile releases early on so they can be
avoided. We extract a number of factors about the mobile releases
and use them to perform our prediction. We are interested in know-
ing how effective the extracted factors are at predicting crashing
releases. Furthermore, we determine the best indicators of crash-
ing releases and examine their effect. We formalize our study in the
following research questions:

RQ1: Can we effectively predict crashing mobile releases?
RQ2: What factors are the best indicators of a crashing mo-
bile release? What is the relationship of these factors with a
crashing mobile release?

4.1 Factors Studied

To predict whether a release is a crashing release, we consider
20 factors grouped into six unique dimensions: complexity, time,
code, diffusion, commit, and text. These factors are derived from
the source control repository data of a mobile application. Table 2
presents the summary of the factors used in our study. We use
these 20 carefully developed factors because either 1) prior work
showed that they perform well in predicting defects [17, 19,21, 35,
58, 60] or 2) intuitively, the factors made sense to include when
predicting a crashing mobile release. That said, we are the first to
investigate the effectiveness of these factors in predicting crashing
mobile app releases and encourage future factors to be developed
to help predict crashing mobile app releases. Next, we discuss each
dimension in detail.

Complexity Dimension: If the source code in a release has high
complexity (e.g., high number of data flows in an applications), the
code will be harder to maintain, which may increase the chance of



Table 2: Factors used to identify crashing releases

[ Dimension [ Name | Definition | Rational
Complexity Cyclomatic The number of branching paths within code in all the source High complexity indicates that the code may be difficult to modify and has a higher chance
code files in a release. of containing/introducing a defect [42,54].

Time PreDays The number of days since the previous release. The shorter the number of days passed from the previous releases, the high chance the
current release is a non-crashing release since developers need to fix the crashes appeared
in the previous release.

LA Number of lines added in a release The higher the number of lines added, the more likely a defect can be introduced, increasing
the chance of a crash release [39,41].

Code LD Number of lines deleted in a release The higher the number of lines deleted, the higher chance that a previous bug recurs, or
important functionality is removed [39,41].

SIZE Total number of lines of code in the current release An increase in the SIZE causes an increase in complexity, and high complexity may result
in crash releases [39,41].

SAME Number of source code files that are modified by both the cur- The higher the number of the same source code files that are modified, the higher the chance

rent and the previous release that the current release fixes existing defects in the previous release.

CUR_file Number of source code files in the current release An increase in the number of source code files between two releases (CUR_file -
PREV_file) may indicate that the current release adds more functionality and/or performs
many fixes, which may result in crash release.

PREV_file Number of modified source code files in the previous release

Top_NS Number of unique subsystems changed between two releases The more functionalities there are in an application release, the more prone it is to fail. We
use the subsystem as a proxy for a feature. Releases that contain many modifications at the

Diffusion subsystem level are more likely to be crash releases.

Bottom_NS Number of unique subsystems changed between two releases

NF Number of unique files that have changed between two releases Releases that touch too many files have a higher chance of being a crash releases.

File_entropy Distribution of modified files across the release Releases with high entropy are more likely to be crash releases, since a developer needs to
inspect large number of scattered changes (at file or code levels) across each file.

Churn_entropy Distribution of modified code across the application

Commit NC Number of commits The more number of commits, the more functionality added and/or defects fixed. This may
increase the chance of a crash release.

NFC Number of commits which fix bugs The higher the number of commits that fix defects, the higher the chance that a future defect
may be introduced, leading to a higher chance of a crash release [25,45].

Fuzzy_score Fuzzy set scores of commit logs The text content of commit logs between the previous release and the current release. We
represent the text of the commit logs using fuzzy set scores [65], naive Bayes scores [34],

Text naive Bayes multinomial scores [34], discriminative naive Bayes multinomial scores [53],
and complement naive Bayes scores [46]. A higher score means the release is more likely
to be a crash release.

NB_score Naive Bayes scores of commit logs

NBM_score Naive Bayes Multinomial scores of commit logs

DMN_score Discriminative naive Bayes Multinomial scores of commit logs

COMP_score Complement naive Bayes scores of commit logs

a crashing release. Also, the defect prediction literature showed
that complexity (e.g., cyclomatic complexity) is a good predictor
of defect-prone modules [42, 54]. We expect that the complexity
dimension can be used to determine the likelihood of a crashing
release. As shown in Table 2, we propose McCabe’s cyclomat-
ic complexity in the complexity dimension. McCabe’s cyclomatic
complexity can be measured directly from the source code in the
current release using standard code analysis tools. In our study we
used the Understand tool® to determine the code complexity.

Time Dimension: If the time period between the previous release
and the current release is short, the current release has a higher
chance to be a non-crash release since it may fix the crashes ap-
peared in the previous release. We expect that the time dimension
can be used to determine the likelihood of a crashing release. As
shown in Table 2, we propose the number of days since the pre-
vious release (PreDays) to make up time dimension, PreDays is
computed by counting the number of days between the previous
and current release.

Code Dimension: If a release has large changes done to its source
code, then it has a higher probability to introduce more defects,
which in turn may cause a crashing release [42]. Previous defect
prediction studies show that the size of changes (e.g., number of
lines of code added or deleted) is a good indicator of defects [39,
41]. Also, if the current release modifies many of the same source
code files as the previous release, this may be an indication that a lot
of fixing is being done, which may indicate that the current release
is a good release. We expect that the code dimension can be used to
determine the likelihood of a crashing release. As shown in Table 2,
we propose 6 factors which make up the code dimension. These
factors can be measured directly from the source control repository
by comparing the difference between 2 releases.

Diffusion Dimension: In general, a highly distributed release is
more difficult to understand, and requires more work to inspect all

Shttps://scitools.com/

the locations that are changed. Also, previous defect prediction s-
tudies found that the number of subsystems touched is an indicator
of defects [38], and scattered changes are good indicators of de-
fects [17]. We expect that the diffusion dimension can be used to
determine the likelihood of a crash release. As shown in Table 2,
we propose 5 factors that make up the diffusion dimension.

We use the top directory name and bottom directory name as the
subsystem name to measure Top_NS and Bottom_NS, respectively.
For example, if a commit changes a file in the path
“src/app/easytoken/MainActivity.java”, then its top directory name
is “src/”, and the bottom directory name is “src/app/easytoken/”.
For the i*" release, we compute the set of top directory name Top;
and bottom directory name Bottom;. Then, for two consecutive
releases (i*" and (i + 1)th releases), Top_NS= |T'op; N Topi+1],
and Bottom_NS =|Bottom; N Bottom;1].

To measure the file and churn entropy, we use the measures sim-
ilar to the measures proposed by Hassan [17]. Entropy is computed
as: H(P) = — > 7_, (pr % logz px). In the above equation, n is
the number of files changed in the release, pr, > 0 is the probability
for file k, and py, satisfies (3_;_, px) = 1. px can be computed
at different levels of granularity: to compute file entropy, py, is the
proportion that file & is modified in the changes® in a release, to
compute churn entropy, pi is the proportion that the number of
lines of code in file k that is modified in the changes in a release.
Entropy aims to measure the distribution of the release across the d-
ifferent files or the lines of code in the files. The higher the entropy,
the larger the spread of a release.

Commit Dimension: If a release has a large number of commits,
we conjuncture that the release has a high probability to be a crash-
ing release. This belief is driven by the intuition that more commits
mean more changes (e.g., bug fixes, new functionalities) to the ap-
plication, which may introduce more problems (e.g., bugs) in the

®In a release, there are multiple commits, and each commit corre-
sponds to a change.




release. As shown in Table 2, we propose 2 factors which make
up the commits dimension: the number of commits (NC), and the
number of bug fixing commits (NFC). NC is computed by counting
the number of commits in the current release, and NFC is comput-
ed by counting the number of commits which contains the strings
“fix”, “’error”, “fault”, “crash”, “issue”, or “bug” [25,45,52].

Text Dimension: In the text dimension, we extract a number of
textual factors from commits, and we convert the terms that appear
in commit logs into numerical values. In total, we compose 5 dif-
ferent factors in the text dimension, which correspond to the textual
scores based on 5 different classifiers.

During the release of an application, many commits may be sub-
mitted to fix defects or implement new features. Since prior work
showed that text descriptions can help with bug prediction [60], we
believe that analyzing the natural language description in the com-
mit logs may help us identify crashing releases. We refer to the fac-
tors extracted from the commit logs as textual factors. To extract
the textual factors, we first tokenize the text in the commit logs
into words, phrases, symbols, or other meaningful name element
tokens. Next, we remove the stop-words such as “I”, “the”, “he”,
which carry little value to discriminate crashing releases. Then, we
perform stemming on the tokens, which reduces inflected (or some-
times derived) tokens to their stem, base or root form (e.g., “write”,
“wrote”, and “written” are reduced to the root form “writ”). We
use the resulting textual tokens and count the number of times each
token appears in the commit logs of a release.

Our textual dataset contained a large number of tokens. S-
ince a high number of tokens (factors) can cause, what is known
as the curse-of-dimensionality [15], we follow previous studies
(e.g., [60]) and we convert the textual factors into numerical values,
which associate each textual feature with a value that it indicates a
crashing releases and another value that the textual feature is in-
dicative of a non-crashing release. For example, the word bug may
have a score x that it indicates a crashing release and a score y that
it indicates a non-crashing release.

To come up with the scores for the different textual features, we
first divide our data into a training set and a testing set. Then, the
training data set is split into two training subsets by leveraging s-
tratified random sampling, so that the distribution and number of
non-crashing and crashing releases in both training subsets is the
same [60]. Next, we extract the textual factors from the training
subsets, and create word frequency tables based on the extracted
factors. We train a classifier with the first training subset, and use it
to obtain the textual scores on the second training subset. We also
train a classifier with the second training subset, and use it to obtain
the textual scores on the first training subset. We use this strategy to
avoid the textual classifiers from being biased toward their training
sets [60]; otherwise, our models may lead to optimistic (unrealis-
tic) values for the textual scores. In the prediction phase, for a new
release, we leverage the text mining classifiers that are built on all
of the training releases to compute the values of the textual factors.

In this paper, we use 5 types of textual classifiers to calculate
the scores of the textual features, which are: fuzzy set classifi-
er [65], naive Bayes classifier [34], naive Bayes multinomial clas-
sifier [34], discriminative naive Bayes multinomial classifier [53],
and complement naive Bayes classifier [46], and we denote the
textual scores using these 5 classifiers as fuzzy_score, NB_score,
NBM_score, DMN_score, and Comp_score respectively. In the
following paragraphs, we present the details of the 5 classifiers.

Fuzzy Set Classifier: A fuzzy set classifier considers the concur-
rence of words and labels (i.e., crashing or non-crashing release) as
good indicators of identifing crashing releases. If a word always ap-

pears in a crashing release in the training set, then for a new release,
if the same word appears, the release will be assigned a high prob-
ability of being a crashing release. We denote the label of the '
release as [;, and we represent the textual factors in the i*"* release
as a vector of weights denoted by R; = (fty.i; ftasir® * * ftm,i)
(fi,, i denotes the n*" factor of R;), where f;,; = 1 represents
that the word token ¢, appears in the commit logs of the i*" re-
lease; and f;,,,; = 0 else wise. Based on these notations, we define
a label-term affinity score as follows:

DEFINITION 1. (Fuzzy Label-Word Affinity Score.) Consid-
er a historical release data collection D, and a set of labels L.
For each label | € L, and word token t € D, the fuzzy label-
word affinity score of | and t, denoted as Aff(l,t), is computed
as Aff(l,t) = ﬁ ny,¢ denotes the number of releases
whose commit logs contain the word token t and are of the label
l, n; denotes the number of releases that have the label | and n.
denotes the number of releases that contain the word token t.

In our paper, we have two labels, crashing release C' and non-
crashing release NC'. Thus, for each word token t € D, we have
two fuzzy label-word affinity scores, Aff (C, t), and Aff(NC, t).
For a new release Rnew = (ft; news ftamew,  * 5 ftm,new), We
define the label-release affinity score as follows:

DEFINITION 2. (Label-Release Affinity Score.) For a new
release RNew, the label-release affinity score Fuzzy(l, New) is
computed as the combinations of the label-word affinity scores
Aff(l,t) of its associated terms w: Fuzzy(l, New) = 1 —
[Licnew(I — Aff(I,1)). t denotes the word tokens that appear
in the commit logs of the new release.

For a new release, we have 2 label-release affinity scores,
ie., Fuzzy(C, New) and Fuzzy(NC, New), the fuzzy score
(Fuzzy _score) to be a crash release for fuzzy set classifier is

_ Fuzzy(C,New)
Fuzzy(New) T Fuzzy(C,New)+Fuzzy(NC,New) "

Naive Bayes Classifier: In Naive Bayes classifier [34], we consider
the number of times a word as good indicators to identify crashing
releases. Previous studies show that Naive Bayes is a fast and ef-
fective text classification technique [34]. Similar to the fuzzy set
classifier, we represent the textual factors in the ‘" release as a
binary vector denoted by Ri = (ft,,i; fto,is * s Stm,i) (fen,i de-
notes the n'™ factor of R;), where fi, ; = 1 represents that the
word token ¢, appears in the commit logs of the ‘" release; and
ftn,i = 0 else wise. For each word token ¢,,, we count the number
of times that ¢,, appears in the crashing releases as Crashy,, and
the number of times that ¢,, appears in the non-crashing releases as
NonCrash,. Then, the probability that w; is related to crashing
releases as P(t") = Crashnc-:]%fso}::brashn .

After the naive Bayes classifier is built, we compute the N-

B_score of the commit logs in a new release New as N B(New) =
[1P(tn)

H P(t'rz)+1_[ (17P(tn)) ’

logs of New.

where t,, refers to the word in the commit

Naive Bayes Multinomial Classifier: Naive Bayes multinomial
(NBM) is one of the variants of naive Bayes algorithm which builds
a classifier based on multinomially distributed data [34]. McCal-
lum et al. empirically find that NBM performs better than Naive
Bayes in text classification tasks [34]. Different from Naive Bayes,
NBM leverages the word frequency information to perform text
classification, i.e., we represent the textual factors in the ¢*" release
as a vector of weights denoted by R; = (wWe; i, Wiy iy * *y Wiy ,i)s
where wy,, ; is the number of times the word token ¢, appears in
the commit logs of the i'" release. We use the implementation of
naive Bayes multinomial on top of Weka [14]. For a new release
Rnew, we denote the likelihood score to be a crash release of the
naive Bayes multinomial classifier as NBM_score N BM (New).



Discriminative Naive Bayes Multinomial Classifier: Discrimina-
tive naive Bayes multinomial (DMN) is one of the variants of naive
Bayes algorithm multinomial which learns parameters by discrimi-
natively computing frequencies from data [53]. Su et al. empirical-
ly find that compared with Naive Bayes, DMN converges quickly,
and does not suffer from the over-fitting problem [53]. We use the
implementation of DMN on top of Weka [14]. For a new release
Rnew, we denote the likelihood score to be a crash release of the
discriminative naive Bayes multinomial classifier as DMN_score
DMN (New).

Complement Naive Bayes Classifier: Complement Naive Bayes
Classifier (COMP) is one of the variants of Naive Bayes multi-
nomial (NBM) algorithm which uses various transformation ap-
proaches in information retrieval community to improve the predic-
tion performance for textual data [46]. Different from Naive Bayes
multinomial that assumes the text follows multinomial distribution.
COMP proposes the usage of heuristic solutions (i.e., term frequen-
cy, document frequency, and document length transformation) to
model better text [46]. We use the implementation of complement
naive Bayes on top of Weka [14]. For a new release Ryew, We
denote the likelihood score to be a crash release of the complement
naive Bayes classifier as Comp_score COM P(New).

4.2 Prediction Model

For each of our empirical study projects, we use our proposed
factors to train a Naive Bayes classifier to predict whether a release
will be a crashing release or not. We also compare our prediction
model with four other classifiers namely: decision tree, KNN, and
Random Forest.

Naive Bayes (NB): We use the Naive Bayes classifier for two pur-
poses: to convert textual information into numerical values (i.e., to
obtain the probability that the textual contents in the commit logs
are related to crash release), and to build a prediction model that
predicts if a release will be a crashing release or not.

Decision Tree (DT): C4.5 is one of the most popular decision tree
algorithms [15]. A decision tree algorithm classifies data points
by comparing their factor with various conditions captured in the
nodes and branches of the tree.

K-Nearest Neighbor (kNN): K-nearest neighbor is an instance-
based algorithm for supervised learning, which delays the induc-
tion or generalization process until classification is performed [15].
We use the Euclidean distance as the distance metric, and since the
performance of kNN may be impacted by different values of k, we
set k from 1 to 10, and report the best performance (in terms of
F1-score) among the 10 values of k.

Random Forest (RF): Random forest is a kind of combination ap-
proach, which is specifically designed for the decision tree clas-
sifier [5]. The general idea behind random forest is to combine
multiple decision trees for prediction. Each decision tree is built
based on the value of an independent set of random vectors. Ran-
dom forest adopts the mode of the class labels output by individual
trees.

4.3 Dealing with Data Imbalance

As can be noted, the number of crashing releases is much less
than non-crashing releases (i.e., we have a major class imbalance
in the data). For example, in WSDOT_ wsdot-android-app,
only 9% of the releases are crashing releases. In this paper, we
perform both over- and under-sampling to alleviate the imbalance
issue. In over-sampling, we increase the number of the minori-
ty class instances (in our case, crashing release). And in under-
sampling, we decrease the number of the majority class instances
(in our case, non-crashing releases). Previous studies (e.g., [8])

recommend that we perform both under- and over-sampling, since
under-sampling may lead to useful data being discarded and over-
sampling may lead to over-fitted models. We perform both over-
and under-sampling on the training data and predict using a non-
balanced test data set (i.e., we do not resample the testing data).
We use the resampling algorithm in Weka [14] to do the over- and
under-sampling on the training data, and we use the option “-B 1.0”
(ensure the class distribution is uniform in the output data), and “-
Z 100” (the final sample size is the same as the original dataset).
After the resampling, the number of crash releases and non-crash
releases are the same in the training set.

4.4 Experimental Evaluation

There are four possible outcomes for a release in the test data: a
release is classified as a crashing release when it truly is a crashing
release (true positive, TP); it can be classified as a crashing release
when it is actually a non-crashing release (false positive, FP); it can
be classified as a non-crashing release when it is actually a crashing
release (false negative, FN); or it can be classified as a non-crashing
release and it truly is a non-crashing release (true negative, TN).
Based on these possible outcomes, precision, recall and F1-score
are defined as:

Precision: is the proportion of releases that are correctly labeled
as crashing releases among those labeled as crashing releases, i.e.,
P=TP/(TP+ FP).

Recall: is the proportion of crashing releases that are correctly la-
beled, i.e., R=TP/(TP + FN).

F1-score: is a summary measure that combines both precision and
recall - it evaluates if an increase in precision (recall) outweighs a
reduction in recall (precision), i.e., F = (2x Px R)/(P+R). F1-
score is the harmonic mean of precision and recall, which is used
in many software analytics studies [19,24,43,56,62].

AUC: In addition to the Fl-score, we also use the Area Un-
der the Receiver Operating Characteristic Curve (AUC) to evalu-
ate the effectiveness of our approach. AUC is a commonly-used
measure to evaluate classification performance, and many other
software engineering studies also use AUC as an evaluation met-
ric [27,28,48,55]. The larger the AUC is, the better is the perfor-
mance of a classification algorithm.

5. EMPIRICAL STUDY

In this section, we answer the research questions posed earlier’.

RQ1: Can we effectively predict crashing mobile releases?
Motivation: In order to avoid a negative user experience and poor
ratings, we would like to effectively identify crashing releases ear-
ly on so they can be avoided (or more quality assurance efforts can
be targeted towards such releases). Therefore, we use our proposed
factors and build prediction models to examine whether it is feasi-
ble to build accurate models that help to predict crashing releases.
Approach: We implement our proposed approach on top of the
Weka tool [14]. We use 100 times stratified 10-fold cross valida-
tion to estimate the accuracy of our models. In stratified 10-fold
cross validation we randomly divide the dataset into ten folds. Of
these ten folds, nine folds are use to train the classifier, while the
remaining one fold is used to evaluate the performance. The class
distribution in the training and testing datasets is kept the same as
the original dataset to simulate real-life usage of the algorithm. We
run 10-fold cross validation 100 times to further reduce the bias due
to training set selection. To evaluate their performance, we use the
precision, recall, F1, and AUC metrics. The reported performance

"The datasets used in this paper can be downloaded in http-
s://www.dropbox.com/s/hréamcyssuj194c/dataset.zip?d1=0



Table 3: Precision, recall, and F1-score for our approach (our) compared with the baseline approaches. The best F1-score and AUC

values are highlighted in bold.

Projects Naive Bayes Model (our) il Random Prediction Model I Majority Prediction Model |

| Precision | Recall [ F1 [ AUC [[ Precision | Recall [ FI [ AUC [[ Precision | Recall [ FI [ AUC |
ankidroid_Anki-Android 0.18 0.52 0.26 0.50 0.16 0.50 0.25 0.50 0.00 0.00 NA 0.49
bpellin_keepassdroid 0.18 0.61 0.28 0.61 0.15 0.50 0.24 0.50 0.00 0.00 NA 0.45
BrandroidTools_OpenExplorer 0.22 0.79 0.34 0.70 0.18 0.50 0.26 0.50 0.00 0.00 NA 0.46
freezy_android-xbmcremote 0.21 0.58 0.31 0.70 0.05 0.50 0.09 0.50 0.00 0.00 NA 0.47
gothfox_Tiny-Tiny-RSS-for-Honeycomb 0.15 0.56 0.24 0.60 0.13 0.50 0.20 0.50 0.00 0.00 NA 0.46
guardianproject_Gibberbot 0.12 0.73 0.20 0.52 0.11 0.50 0.18 0.50 0.00 0.00 NA 0.45
mariotaku_twidere 0.20 0.50 0.29 0.63 0.13 0.50 0.21 0.50 0.00 0.00 NA 0.46
mtotschnig_MyExpenses 0.17 0.68 0.27 0.59 0.14 0.50 0.22 0.50 0.00 0.00 NA 0.46
qii_weiciyuan 0.41 0.67 0.51 0.78 0.19 0.50 0.28 0.50 0.00 0.00 NA 0.48
WSDOT_wsdot-android-app 0.19 0.63 0.29 0.78 0.07 0.50 0.12 0.50 0.00 0.00 NA 0.39
Average 0.20 0.62 0.30 0.64 0.13 0.50 0.20 0.50 0.00 0.00 NA 0.46

of the models are the average of the 100 times stratified 10-fold
cross validation. These metrics are compared to the performance
of our baseline model.

Here, we choose two baseline models: random prediction, and

majority prediction. In random prediction, it randomly predict-
s crash releases. The precision for random prediction is the per-
centage of crash release in the data set. Since the random predic-
tion model is a random classifier with two possible outcomes (e.g.,
crash/non-crash release), its recall is 0.50. Majority prediction al-
ways predicts the label of an instances as the majority class (in our
case, majority prediction will predict every release as a non-crash
release). In majority prediction, its 7'P will be 0 since none of the
releases are predicted as crash releases, and thus its precision and
recall are both 0, which in turns cause the F1-score to be NA. To
compute the improvement of our approach over the baseline ap-
proaches, we denote the evaluation metric score of our approach as
our, and the score of the baseline approach as baseline. Then, the
improvement is computed as 24r=bascline 709,
Results: Table 3 presents the precision, recall, F1, and AUC scores
for our approach compared with the baseline approach for the 10
mobile apps, respectively. On average across the 10 projects, our
approach achieves precision, recall, F1-score, and AUC scores of
0.20, 0.62, 0.30, and 0,64, respectively. Our approach improves
over the random prediction by 54%, 24%, 50%, and 28% in terms
of precision, recall, Fl-score, and AUC scores, respectively. Al-
so, compared with majority prediction, considering its precision,
recall, and F1 scores are 0, 0, and NA, our approach improve the
AUC score of majority prediction by 39% on average across the 10
projects.

We notice for freezy_android-xbmcremote and WSDOT_wsdot-
android-app, the improvements of our approach over random pre-
diction are 251% and 156% in terms of Fl-score. We find that
only 5% and 7% of releases are crash releases in these two dataset-
s, i.e., these two datasets are more imbalanced than the other
datasets. This indicates that our approach is best suited for high-
ly imbalanced cases. To test whether the improvement of our ap-
proach over random prediction on highly imbalanced datasets (i.e.,
freezy_android-xbmcremote and WSDOT_wsdot-android-app) are
higher than these on the other datasets is statistically significant, we
apply Wilcoxon Rank Sum test [61], and the p-value we achieve is
0.0222. This indicates that the improvement is statistically signifi-
cant at the confidence level of 95%. Moreover, we also use Cliff’s
delta [6], which is a non-parametric effect size measure that quanti-
fies the amount of difference between the two groups. The Cliffafs
delta is 0.875, which corresponds to a large effect size.

Considering that only a small proportion of releases are crash re-
lease (on average across the 10 apps, 13% of the releases are crash
releases), the data imbalance phenomenon makes the prediction of
crashing releases a hard task. Some previous studies on software
engineering (c.f., [57,59, 63]) also achieved similar F1-scores, and
in the future, we plan to improve the F1-score of our approach fur-
ther by designing a better algorithm and considering more factors.

Table 4: Top-5 factors which achieve the highest IncNodePurity
(Inc.) and effect scores

andkidroid. bpellin.
Factor Inc. Effect Factor Inc. Effect
Fuzzy_sc. 7.46 1.00 DMN_sc. 1.46 0.80
Cyclomatic 722 0.23 Cyclomatic 2.29 0.44
DMN_sc. 6.88 0.21 PreDays 1.42 0.22
LA 4.79 0.21 CUR_file 1.30 0.23
CUR_file 4.30 0.22 NBM_sc. 1.29 0.23

Brandroid. Freezy.
Factor Inc. Effect Factor Inc. Effect
NBM_sc. 2.28 1.00 DMN_sc. 1.99 1.00
Cyclomatic 1.78 0.99 LA 1.69 0.00
CUR_file 1.65 0.99 Cyclomatic 1.64 0.00
SAME 1.29 1.00 Fuzzy_sc. 1.11 0.02
LA 1.28 1.00 SAME 0.81 0.00

gothfox. guardian.

Factor Inc. Effect Factor Inc. Effect
Fuzzy_sc. 3.80 0.93 NBM_sc. 2.06 0.99
LA 2.47 0.43 LA 1.96 0.99
NBM_sc. 2.32 0.43 Chrun_en. 1.54 0.99
Chrun_en. 1.75 0.44 CUR_file 1.50 0.98
LD 1.62 0.44 Fuzzy_sc 1.25 0.86

mariotaku. . mtotschnig.
Factor Inc. Effect Factor Inc. Effect
NBM._sc. 291 0.02 CUR_file 2.33 0.85
Fuzzy_sc. 2.55 0.02 DMN_score 2.03 0.70
SAME 1.91 0.02 Chrun_en. 1.79 0.88
SIZE 1.84 0.02 Cyclomatic 1.76 0.87
LD 1.56 0.02 LA 1.67 0.82

qii_weiciyuan. WSDOT.

Factor Inc. Effect Factor Tnc. Effect
DMN_sc. 2.62 0.74 DMN_sc. 0.92 0.04
Cyclomatic 5.79 0.06 NBM._sc. 1.33 0.00
NBM_sc. 1.66 0.01 Fuzzy_sc 0.82 0.00
Fuzzy_sc. 1.59 0.01 Cyclomatic 0.60 0.00
Chrun_en. 1.14 0.01 Comp_sc. 0.50 0.00

RQ2: What factors are the best indicators of a crashing mo-
bile release? What is the relationship of these factors with a
crashing mobile release?

Motivation: In addition to identifying crashing releases with high
accuracy, we are interested in knowing what factors are good in-
dicators of crashing releases and the relationship of the different
factors with crashing releases. Knowing which and by how much
each factor relates to a crashing release helps practitioners deter-
mine what factors they should carefully consider when determining
which releases have a higher chance of being a crashing release.
Approach: To determine the important factors in determining a
crashing release, we use IncNodePurity scores in the output of the
R random forest library [11]. IncNodePurity refers to the mean de-
crease in node impurity, i.e., a higher IncNodePurity score means
that the corresponding factor plays an more important role in the
built model. Since our goal here is understanding and not predic-
tion, we use the entire dataset to build the random forest models
since we only need to use IncNodePurity scores outputted by ran-
dom forest.

In addition, similar to prior work [37,51], we measure the rela-
tionship (i.e., effect) of each factor with a crashing release. To do
so, we create a model where factors are set to their median values,
we predict the likelihood score for the release to be a crashing re-



lease, and denote these likelihoods as base. Then, for each factor
f, we create a model where we double the median of the factor f,
while keeping all other factors at their median values. We compute
the likelihood score for the release to be a crashing release, and
denote the score as ferqsn. We measure the effect of the factor f
by using ef f(f) = W The effect of a factor can be
positive or negative. A positive effect indicates that a higher level
of a factor corresponds to an increase in the likelihood of a release
being a crashing release, while a negative effect indicates that a
higher level of a factor corresponds a decrease in the likelihood of
a release being a crashing release.

Results: Table 4 presents top-5 factors which achieve the highest
IncNodePurity scores of factors as assigned by the random forest,
and the effect scores. We notice for different datasets, the most im-
portant factors are different. For example, the top-2 important fac-
tors are fuzzy_score and Cyclomatic in ankidroid_Anki-Android,
and the top-2 important factors are NBM_score and fuzzy_score in
mariotaku_twidere.

As for the relationship of the different factors with the predic-
tion of a crash release, we find that all of the 20 factors have
the non-negative effect with the crash releases. For Brandroid-
Tools_OpenExplorer and guardianproject_Gibberbot, we notice
the effect scores are much higher than the others, which mean-
s that in these apps a higher level of a factor corresponds to
an increase in the likelihood of a release being a crashing re-
lease. For freezy_android-xbmcremote, mariotaku_twidere, and
WSDOT_wsdot-android-app, the effect scores are much lower than
the others, which means the impact of these factors to identify crash
releases is low.

Considering both the importance (i.e., IncNodePurity) and ef-
fect of the factors, we find the factors in the text dimension such
as Fuzzy_score, NB_score, NBM_score, DMN_score, and Com-
p_score show higher IncNodePurity and effect score compared to
other factors. For example, DMN_score shows the highest im-
portance and effect scores for freezy_android-xbmcremote and qi-
i_weiciyuan.

To investigate why factors in the text dimension are more im-
portant and effective than the other factors, we also manually ana-
lyze the text in the commit logs. For example, in ankidroid_Anki-
Android, the Fuzzy_score is one of the most important factors. For
each term, we get its Fuzzy_score, and we rank these scores from
high to low. We find the top-5 terms with the highest Fuzzy_scores
are “screen”, “loading”, “UI”, “button”, and “view”, and these
terms are all related to problems in Ul

Similarly, in BrandroidTools_OpenExplorer, the NBM_score is
one of the most important factors. We also rank the terms according
to their NBM_scores, and we find the top-5 terms with the high-
est NBM_scores are “dialog”, “translation”, “icon”, “page”, and
“box”. The terms “dialog”, “icon”, “page”, and “box” are related
to Ul issues, and the term “translations” is related to the language
translation. We further investigate the patches for the crash releas-
es, we find in BrandroidTools_OpenExplorer, a number of crash
releases are caused by the enhancement or modification of Ul, and
also a number of crash releases are caused due to language transla-
tion (such as translate the language to French, Japanese, or Korean).

For the other apps, we also check the factors in the text dimen-
sion, and we find that a number of crashes are caused by UI en-
hancement or modification. In practise, users cannot bear the crash-
es in Ul and our finding is in consistent with the practical user
experience.

Notice that in our paper, to ensure our prediction model is not
biased by the large number of textual features, we only use 5 nu-
meric textual factors (we initially start with 20 factors) by using 5

Table 5: Prediction models by using different classifiers. N-
B=Naive Bayes, RF=Random Forest, C4.5=Decision Tree. The
best precision, recall, F1 and AUC scores are in bold.

Algo. ankidroid bpellin.
Prec. Recall F1 AUC Prec. Recall F1 AUC
NB 0.18 0.52 0.26 0.50 0.18 0.61 0.28 0.61
kNN 0.17 0.51 0.26 0.50 0.16 0.53 0.25 0.50
RF 0.22 0.28 0.24 0.57 0.18 0.30 0.23 0.49
C4.5 0.18 0.36 0.24 0.51 0.14 0.35 0.20 0.45
Algo. Brandroid. freezy.
Prec. Recall F1 AUC Prec. Recall F1 AUC
NB 0.22 0.79 0.34 0.70 0.21 0.58 0.31 0.70
kNN 0.19 0.57 0.29 0.51 0.07 0.53 0.12 0.62
RF 0.21 0.29 0.24 0.61 0.11 0.11 0.11 0.57

C4.5 0.26 0.50 0.35 0.62 0.05 0.16 0.08 0.51

Algo. gothfox. mariotaku.
Prec. Recall F1 AUC Prec. Recall F1 AUC

NB 0.15 0.56 0.24 0.60 0.20 0.50 0.29 0.63
kNN 0.16 0.69 0.26 0.56 0.18 0.59 0.27 0.63
RF 0.28 0.36 0.32 0.65 0.33 0.44 0.38 0.69
C4.5 0.22 0.39 0.28 0.59 0.21 0.41 0.28 0.62

Algo. mtotschnig. qii_wei.
Prec. Recall F1 AUC Prec. Recall F1 AUC

NB 0.17 0.68 0.27 0.59 0.41 0.67 0.51 0.78
kNN 0.17 0.57 0.26 0.62 0.29 0.69 0.41 0.70
RF 0.18 0.21 0.19 0.59 0.38 0.49 0.43 0.77
C4.5 0.23 0.47 0.31 0.62 0.38 0.59 0.46 0.67

Algo. WSDOT. Average.
Prec. Recall F1 AUC Prec. Recall F1 AUC

NB 0.19 0.63 0.29 0.78 0.20 0.62 0.30 0.64
kNN 0.23 0.75 0.35 0.85 0.17 0.60 0.26 0.60
RF 0.30 0.38 0.33 0.82 0.23 0.30 0.26 0.63
C4.5 0.25 0.38 0.30 0.65 0.21 0.39 0.27 0.58

different text mining techniques. Moreover, besides the text fac-
tors, other factors such as Cyclomatic and LA are also important
factors to predict crashing releases. For example, Cyclomatic and
LA appear in the top-5 most important factors for 6 out of 10 apps.

6. DISCUSSION

Comparison Using Different Classifiers: Besides the Naive
Bayes classifiers, there are other popular machine learning algo-
rithms that can be used to predict whether a release is a crash-
ing release or not. In this section, we compare the performance
of three other classifiers namely: kNN, decision tree and random
forest. Table 5 presents the precision, recall, F1, and AUC scores
achieved by these classifiers. We notice different classifiers show
different performance in different apps. For example, random for-
est shows the best F1 and AUC scores in gothfox_Tiny-Tiny-RSS-
for-Honeycomb and mariotaku_twidere, and kNN shows the best
F1 and AUC scores in WSDOT_wsdot-android-app. On average
across the 10 apps, we find that Naive Bayes achieves the best
performance. Thus, in practice, we recommend developers to use
Naive Bayes when predicting crashing releases.

Longitudinal Data Setup: To investigate whether our tool can be
used to solve the problem in the same setting as the one in practice,
we performed an experiment using a longitudinal data setup (i.e.,
not using cross validation). We sorted the releases in the temporal
order they are published. Then we built a prediction model by using
the first 70% of the releases, and predict the labels for the remaining
30% of releases. Note that in WSDOT_wsdot-android-app, there
are no crashing releases in the latest 30% of releases, thus the F1
and AUC scores are NA. Table 6 presents the precision, recall, F1,
and AUC scores for Naive Bayes in longitudinal data setup. We
see that Naive Bayes, in longitudinal data setup, achieves similar
F1 and AUC scores as Naive Bayes in cross-validation setting. The
average F1 and AUC scores for Naive Bayes in longitudinal da-
ta setup are 0.28 and 0.62, while these scores for Naive Bayes in
cross-validation are 0.30 and 0.64.



Table 6: Precision, Recall, F1, and AUC scores for Naive Bayes
in longitudinal data setup.

[ Project [ Precision [ Recall [ F1 [ AUC |
ankidroid_Anki-Android 0.11 0.22 0.15 0.50
bpellin_keepassdroid 0.31 0.79 0.45 0.56
BrandroidTools_OpenExplorer 0.23 1.00 0.37 0.81
freezy_android-xbmcremote 0.06 0.88 0.12 0.74
gothfox_Tiny-Tiny-RSS-for-Honeycomb 0.15 0.50 0.23 0.57
guardianproject_Gibberbot 0.18 0.58 0.28 0.59
mariotaku_twidere 0.28 0.65 0.39 0.62
mtotschnig_MyExpenses 0.22 0.53 0.31 0.55
qii_weiciyuan 0.33 0.15 0.21 0.60
Average. 0.21 0.59 0.28 0.62

Precision vs. Recall: The goal of our approach is to flag crash-
ing releases to improve the quality of mobile apps. As with any
classification technique, there is a tradeoff between precision and
recall. As we have shown, our approach easily outperforms the
baseline approaches in terms of F1-measure and AUC, however, it
is important to note that we tend to achieve better recall than pre-
cision. The reason for favouring recall over precision is due to the
fact that crashing releases are very negatively perceived by users,
hence, it is important that we avoid crashing releases at any cost.
That said, it is important to note that one can easily modify the
threshold used in our technique (currently we set the threshold to
be 0.5), to achieve a higher precision at the cost of lower recall. De-
pending on individual/project-specific circumstances, users of our
tool can adjust the threshold based on how much recall or precision
matter to them.

Usefulness of Our Proposed Tool: After we completed the study,
we also sent a version of this paper to mobile app developers in a
company, called Hengtian, to inquire about the usefulness of our
approach and the factors used to perform our prediction. In total,
we sent the paper to 20 developers, and we received 12 responses
(denoted as R1 to R12). The majority of the developers (11 out of
the 12) consider the proposed factors and machine learning tech-
niques to be practical and applicable in a real mobile development
environment. For example, R2 states: “we can easily extract these
factors from the commits in a release, and also the naive Bayes
classifier is understandable”. However, RS has some question-
s about how machine learning techniques could work in practice.
Moreover, 10 out of the 12 developers agree that the results show
that our proposed approach is useful. For example, R9 states that
“although F1-score is not high, the recall score is good, in prac-
tice we are interested to find all the crash releases as possible, thus
recall is more important than precision. The proposed tool could
enhance the confidence about the quality of a release”. On the oth-
er hand, two developers (RS and R7) wish the Fl-score would be
higher. Therefore, in the future we plan to continue investigating
other factors that can help improve our prediction accuracy.

Threats to Validity: Threats to internal validity refers to errors in
our code and experiment bias. We have double checked our code,
however, there may exist some errors that we did not notice. Also,
to identify the crash releases, we looked for the keywords “crash”,
“crashed”, “crashing”, and “crashes”. In such a way, we may in-
crease the number of false positives and false negatives. To reduce
the number of false positives, for each identified crashing release,
we manually checked the commit logs and modified source code.
To reduce the number of false negatives, for these non-crashing re-
leases, we also randomly choose and manually check 30% of the
releases from these non-crashing releases, and we found all of these
releases labeled as non-crashing releases were correctly labeled.
Set and selection bias is another threat to internal validity. To
mitigate this bias, we run the 10-fold cross-validation 100 times,
and present the average performance. To identify crashing releases,
we manually check the commit logs, bug reports, code change, and

user reviews. Due to the manual process, some releases may be
wrongly identified as non-crashing/crashing releases.

Threats to external validity relates to the generalizability of our
results. We have analyzed 2,638 releases from 10 mobile applica-
tions. In the future, we plan to reduce this threat further by analyz-
ing even more releases from additional mobile applications.

Threats to construct validity refers to the suitability of our eval-
vation measures. We use F1 and AUC scores which is also used by
past studies to evaluate the effectiveness of various software engi-
neering studies [19,24,27,28,43,48,55,56,62].

7. RELATED WORK

Prediction in Software Engineering: There have been a number
of studies that use prediction in software engineering (SE). Kim
et al. proposed the change classification problem, which predict-
s whether a change is buggy or clean [24]. Jiang et al. proposed
PCC, which built a separate prediction model for each developer
to predict software defects [19]. Bhattacharya et al. proposed a
set of graph-based metrics to predict the number of defects in a
release [3]. Dhaliwal et al. [7] used crash report data to assist in
the bug fixing of Mozilla Firefox bugs. Francese et al. use require-
ments measures to predict software project and product measures in
the context of Android mobile apps [12]. Yu and Yeung use install
and uninstall log in a mobile app store to estimate the value of the
apps [64]. Finkelstein et al. extract a set of features from release
notes available in app store, and they find that there is strong cor-
relation between customer rating and the rank of apps in terms of
the number of downloads [10]. Ferrucci et al. perform a replicated
study on the effectiveness of functional and code size measures to
apps [9]. Similar to the prior work, we also perform prediction in
SE context. However, our work focuses on a related but different
problem: different from prior defect prediction work, we evaluate
the quality of a mobile application at the release level. In particular,
we predict which mobile releases have a high likelihood of being a
crashing release. To the best of our knowledge, our work is the first
to predict crashing mobile app releases.

Mobile Applications: There have been a number of studies in the
area of mobile apps. Martin et al. perform a comprehensive survey
on app store analysis for software engineering [33]. Minelli and
Lanza studied the difference between the development of mobile
application and traditional software systems [36]. They develop a
web-based software analytics platform named SAMOA. Harman
et al. found that there are strong correlations between the rating of
mobile apps and the ranking of app downloads by mining the re-
views from App stores [16]. Joorbachi et al. investigated the chal-
lenges in mobile application development [20]. They found that
dealing with multiple mobile platforms is one of the most chal-
lenging aspects of mobile development. Martin et al. find that the
release context plays a role in whether a release is impactful and the
type of impact it has [31,32]. Nayebi et al. perform two surveys
to understand the common release strategies used for mobile apps,
the rationale behind them and their perceived impact on users [44].
Martin et al. propose the app sampling problem, and study its ef-
fects on sets of user review data [30]. Guerrouyj et al. study the im-
pact of app churn on the app rating by analyzing 154 free apps, and
they find that high app churn leads to lower user ratings [13]. Most
related is our prior work, where we performed an empirical study
on the reasons behind low ratings and complaints that were posted
on mobile app reviews [22,23]. We found that a high percentage
of complaints and bad reviews were posted after new releases. The
work presented in this paper is motivated by the findings of our pri-
or findings, however, our study is orthogonal since our goal is to
predict crashing mobile app releases.



8. CONCLUSION AND FUTURE WORK

In this paper, we perform a study on the prediction of crashing
releases in mobile applications. We first collect 2,638 releases from
10 mobile applications in F-Droid. Then, we extract various factors
from the collected releases. Based on the factors, we propose the
usage of a Naive Bayes model to predict crashing releases. To in-
vestigate the performance of our proposed approach, we perform
experiments on the 2,638 releases. On average across the 10 app-
s, our approach can achieve F1 and AUC scores to 0.30 and 0.64,
which improves the random prediction by 50% and 28%, and im-
proves the AUC scores of majority prediction by 30%, respectively.

Our work is one of the first works focusing on the prediction of
crashing releases. Although the performance of our approach is not
perfect, we hope that our work will inspire other researchers to de-
velop more advanced techniques to identify crashing releases, since
it is clearly a problem that negatively impacts both, mobile users
and developers. In the future, we plan to explore more factors and
evaluate our approach with datasets from more mobile application-
s, develop a better technique that can further improve the prediction
performance, and evaluate the performance of our proposed tool by
deploying it in practice. We also plan to investigate how the inte-
gration of bug localization techniques into our technique can help
developers in the fixing process of crashing releases. Moreover,
we plan to perform an empirical study on developers’ perception
on crash release prediction. Recently, Bowes et al. investigated
the usefulness of mutation metrics for fault prediction [4]. In the
future, we plan to investigate if these metrics are useful to predict
crashing releases.
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