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ABSTRACT
Background: AnAndroid smartphone is an ecosystem of applica-
tions, drivers, operating system components, and assets. The vol-
ume of the software is large and the number of test cases needed to
cover the functionality of an Android system is substantial. Enor-
mous e�ort has been already taken to properly quantify “what fea-
tures and apps were tested and veri�ed?”. This insight is provided by
dashboards that summarize test coverage and results per feature.
One method to achieve this is to manually tag or label test cases
with the topic or function they cover, much like function points.
At the studied Android smartphone vendor, tests are labelled with
manually de�ned tags, so-called “feature labels (FLs)”, and the FLs
serve to categorize 100s to 1000s test cases into 10 to 50 groups.
Aim: Unfortunately for developers, manual assignment of FLs to
1000s of test cases is a time consuming task, leading to inaccu-
rately labeled test cases, which will render the dashboard useless.
We created an automated system that suggests tags/labels to the
developers for their test cases rather than manual labeling.
Method: We use machine learning models to predict and label the
functionality tested by 10,000 test cases developed at the company.
Results: Through the quantitative experiments, ourmodels achieved
acceptable F-1 performance of 0.3 to 0.88. Also through the quali-
tative studies with expert teams, we showed that the hierarchy and
path of tests was a good predictor of a feature’s label.
Conclusions: We �nd that this method can reduce tedious man-
ual e�ort that software developers spent classifying test cases, while
providing more accurate classi�cation results.
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1 INTRODUCTION

Manufacturing an Android phone is software intensive. Android
needs to be customized to �t the requirements of the organization,
the hardware supported, and the target end-users. Thereby, An-
droid is a large software ecosystem consisting of many layers com-
posed of applications, components, drivers, operating system, and
a kernel. To take charge of this complexity, organizations such as
the studied company engage in rigorous and comprehensive test-
ing of their own particular Android ecosystems. At the company1,
test cases covers a wide variety of functionality supported across
the software stack by applications and even the kernel.

Given the complexity, the many features and functions, the tests
must be comprehensive and numerous. The test cases provide feed-
back on the stability and state of the current level of development—
but there are too many test cases to review. The company engages
in using project dashboards that summarize test case coverage and
test case status to give insight to stakeholders. Stakeholders in-
clude developers, project managers, and product managers, all of
whom require di�erent information and have di�erent intents. De-
velopers want to know how stable or �nished components they
rely upon are. Project managers want to understand their devel-
opers’ current progress. Product managers want further overviews
across the entire system to understand scheduling, blockers, and
other issues that arise during development.

To enable project dashboards about testing, the company’s de-
velopers have painfully hand annotated and labeled test cases with
their functional purpose, called “feature label (FL)”. The FLs are a
small collection of labels, around 10s to 50s labels per feature, and
are de�ned by the feature owner. Test cases gain summarized in-
formation of test content by the annotation of the label (See Sec-
tion 2.4). These labels are aggregated by the project dashboard,
allowing insight into each project, and an overview of the entire
product especially from the quality assurance (QA) perspectives.
For instance, it is now easy to list the areas of FLs where more
testing resource is demanded. Examples of FLs include 11ac and
WPS for a wireless product. Unfortunately, if developers do not la-
bel tests then the insight is limited. In order to promote the labeling
of tests we have built machine learning and NLP based systems to
help predict and suggest the appropriate label/topic of the test case
so that developers are not burdened by this task.

1We cannot disclose the company name because of con�dentiality reasons.
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This paper makes the following contributions:

(1) We propose a method of automatic labeling of test cases
based on textual descriptions and �le pathnames.

(2) We investigate the work/accuracy trade-o� between man-
ual e�ort labeling and automated labeling performance.

(3) We quantitatively and qualitatively validate the labeling ap-
proachwith the company’s practitioners—demonstrating that
the deployed approach can reduce time and e�ortwhile achiev-
ing acceptable prediction accuracy.

2 TEST CASE MANAGEMENT AT A
SMARTPHONE VENDOR

2.1 Application Lifecycle Management with
ALMS

The ALM—Application Lifecycle Management—is a way to man-
age a set of pre-de�ned processes that exist to streamline business—
such as software development—from start to �nish, e.g., product
releases or the termination of the product support [15]. In software
development, ALM deals with requirements, source code con�gu-
ration, build con�guration, project and release management.

TheALMS (ALM Software tool)2 provided byMicro Focus3, for-
merly part of Hewlett Packard4, is a software tool that helps man-
age the ALM process in an integrated way. The ALMS is shipped
with applications that ease the necessary ALM processes such as
testing, defect tracking/�xing, and requirements via a web inter-
face or a dedicated Windows application.

Data Structure of Test Cases with ALMS. Figure 1 shows a
screenshot of the actual ALMS use at the company. Note that the
image is modi�ed to hide some proprietary information. In the
ALMS, test cases are structured in a similar way as in typical �le
system; it has directories, and directories can contain directories
and test cases (2. in Figure 1). A test case must have a test case
name (1. in Figure 1), which is one of unique identi�ers apart from
the automatically allocated integer ID. It also contains a test case
description (4. in Figure 1) which explains more details about test
case setup, test conditions, test steps, expected results, and so on.
Finally, test cases are recommended to have a so called feature la-

bel (3. in Figure 1), which is the subject of this paper and we will
explain it more in Section 2.4

2.2 Test Case Management with ALMS at the
Studied Company

Our studied projects are developed by anAndroid smartphone ven-
dor; it has been developing and releasingAndroid smartphone prod-
ucts for many years. Each time the company has a product devel-
opment plan, it follows the sameALM processes including require-
ments and release management. Due to Android supporting many
legacy features, each release typically comes with even more fea-
tures. As the release version increases so does the customer’s and
market’s high expectations in terms of quality thus quality assur-
ance is a critical priority among all ALM processes at the company.

2https://software.microfocus.com/en-us/products/application-lifecycle-
management/overview

3https://www.microfocus.com/about/
4https://www.hpe.com

The ALMS is suitable in such a situation where lots of test assets
are reused over time, i.e., over di�erent products or Android OS
versions. For example, ALMS is capable of creating new test cases
by copying existing test cases from old software projects and by
slightly modifying the test case steps.

In reality, at the company, not all test cases are managed in the
ALMS database as teams have freedom in coming up with the best
solution to manage their test cases or assets in general, and the
ALMS is just an option among many possible options (e.g., Excel,
text �les, etc.). Many teams completely manage everything in the
ALMS, whereas other teams still have di�culty in managing tests
and assets in the ALMS because of the rigid data structure (See Sec-
tion 2.1). Teams responsible for many exploratory test cases tend
not to prefer the ALMS because their test cases are designed to
verify features in a cross-functional way and �nd it di�cult to de-
scribe all possible scenarios while making reproducible testing re-
ports. Teams with test cases who can describe their scenarios and
results by a simple description tend to choose the ALMS.

2.3 Problems Faced during Evolution of ALMS
Operations

For many teams, the ALMS outperforms conventional test case
management with Excel, spreadsheets, or any other local �les, be-
cause the database is centralized and engineers can create and share
asmany test cases as theywantwithminimal e�ort. However, after
using many ALMS operations and because of the high �exibility in
the ALMS, stakeholders started to face issues such as:

- Inconsistent size of test cases.
Some teams create large test scenarios that check many appli-
cation features in one test case, but other teams create many test
case records of a single feature. The ALMS allows everybody to
store their test cases, however, aggregation of those (e.g., to gen-
erate weekly veri�cation progress reports) sometimes does not
make sense because of the inconsistency, e.g., test case size.

- It is di�cult to extract high level summaries of test cases.

Test cases are primarily used internally within the team, thus
both of the test case name or its description tend to containmany
domain speci�c and implementation speci�c terms, that external
stakeholders can no longer follow. The intention was that some
summary information would be attached to individual test case
records so that external test engineers can understand the pur-
pose of the test without reading the source code.

2.4 “Feature Label” (FL) in Test Cases

To overcome the issues discussed in Section 2.3, ALMS users and
administrators introduced a new �eld “Feature Label” (FL) in test
case records that represents software features being tested in its
test case. In other words, the FL is summarized information of test
case name or test case description. Each team is responsible for
coming up with labels; the number of them, the balance between
simplicity and details, etc. Test cases are discouraged to have mul-
tiple FLs due to compatibility with internal dashboard presentation
tool, thus most of test cases currently have only one FL.

Many stakeholders were satis�ed by the introduction of FLs be-
cause of the following reasons:

- Test case sizes became similar with the FL.
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Figure 1: A screenshot of the ALMS; browsing a test case from the tree.

The level of granularity in FL slowly became similar, even across
di�erent feature domains. Thus, external stakeholders., e.g., test
leaders or product managers can extract test results of many
teams to compare them.

- Dashboards can visualize the distribution of test cases by the FL.

The FL has typically direct link to a small component of a feature,
and the dashboard can provide an overview of testing status of
a feature domain at a �ne-grained level. Stakeholders can easily
understand the detailed testing status without interpreting do-
main speci�c test case descriptions.

2.5 Overhead of Feature Labels

Yet from the test case provider side, test engineers began to claim
the extra e�ort around the FLs.

The initial challenge when using the FLs is to come up with
appropriate FLs for their team. The FLs (“feature” labels) are lit-
erally de�ned by a “feature” scope owner, which are equivalent
to “team” at the company. The FLs are unique per team, and are
not shared with another team, and this is quite practically reason-
able rule because, for instance, the FLs of WLAN team may con-
sist of [11ac, WPS, ...] and that of Android Framework may con-
sist of [ART/Runtime, AppWidget, ...]; apparently those two sets of
FLs have no relationship each other and their test cases should be
quite di�erent as well. The FL de�nitions must be agreed within
the team, so before reaching the �nal form of FL de�nitions, it usu-
ally has a loop of review involving multiple people.

Even after reaching a good set of FLs, the developers still had
100s to 1000s test cases that they have to manually label based
on the FLs they have de�ned. Labeling test cases requires domain
knowledge and investigation; a typical work�ow is to read the test
case name, check the �le path, and do further investigation such
as checking the source code that is tested, previously found bugs
by the test case, etc. The task is time consuming, much like other
tagging tasks [1]. Test engineers started to feel uncomfortable with
extra work caused by the FLs.

2.6 Motivating Automatic Classi�cation of FLs

Gradually, developers started saying that “Although FLs are suit-

able to overview our test case assets, it would be even greater if some

of initial cost is eliminated”. From the �rst author’s observation,
which is supported by a few of engineers worked on the FLs, FLs
tend to have strong associations with �le paths and the naming,
because developers tend to create many folders to place similar
test cases in one place. Still, the folder structure tends to be deep
which makes trivial labeling impossible. For example, if test cases
are collected in folders based on the network environments, test
cases under NW_Career_JPN may cover a range of features with
minor adjustment of the test scenarios based on the network en-
vironment.Test cases may be distributed in NW_Career_JPN/SMS

and NW_Career_JPN/Call but labeling all test cases under NW-

_Career_JPN as “SMS” would be incorrect. Thus, some advanced
technique beyond simple labeling is needed to meet the practi-
tioner’s demand, and we believe the machine learning with NLP
technique should de�nitely help.

3 QUANTITATIVE STUDY SETUP

In Section 2.4 to 2.5, we showed that a new attribute “FL” (Feature
Label) improved the way test engineers work and provide insight
to other stakeholder, but it is costly because of the manual e�ort
required. Throughout our study, we try to understand: “Is it possi-
ble to automatically assign a FL to all test case records using textual

information?” In this section, we show our experimental setups us-
ing text information retrieval technique, and statistical modelings.

We �rst introduce the datasets studied in this paper. Next, we
explain the basic methodology of model construction and perfor-
mancemeasurement. Finally, we explain the parameter tuningmech-
anism that is tightly integrated in the model construction, to �nd
the best performing model out of numerous model parameters.

3.1 Our Studied Datasets
In our study, we pick test case data from 6 di�erent teams out
of over 50 teams at the company. We chose those teams because
most of their test cases are managed in the ALMS database, and
their test case records contain reliable FL values on most of their
maintained records. Note that not all test cases are managed in the
ALM database, as stated in Section 2.2. Thus, the number of test
cases is by no means proportional to the actual testing e�ort and
time. In Table 1, we show a brief summary of the test cases versus
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Table 1: Summary of the studied datasets.

Team Alias Team Domain # Test Cases # Missing Labels # Unique Labels # UT(*) in Name # UT in TC_Path

A Multimedia 711 422 15 886 69
B Multimedia 571 375 10 519 149
C Android OS and Linux Kernel 3,129 1,867 59 3,766 861
D Android OS and Linux Kernel 107 38 9 246 57
E Cellular and Connectivity 3,047 180 45 3,109 428
F Cellular and Connectivity 1,824 0 62 1,353 278

(*) UT: Unique Tokens

teams:

- The number of test cases per team varies between 107 to 3,129,
and the team domain has no relationship with it.

- There are many missing labels (i.e., test case records without
manual labeling of FL), but practically many of those unlabeled
records are usually obsolete test cases which are not maintained.

- The number of unique labels are roughly proportional to the
number of test cases, i.e., teams implicitly tend to keep the num-
ber of test cases in one group not too high.

- The number of unique tokens in Name (Test Case Name) are al-
ways larger than that in TC_Path (Test Case Path) because test
case names must be usually unique.

3.2 Model Constructions and Performance
Measurement

Figure 2 shows the high level summary of data �ow in our quanti-
tative study experiments. In the following, we explain each of the
operations in detail. The main work�ow is we load the test cases,
split into training and test, vectorize the texts used, tune the pa-
rameters of the model on the train set, train the �nal model on the
full train set, then evaluate on the test set. In tuning we repeatedly
split the training up into validation and train to �nd the best set
of parameters given a limited range of con�gurations or a limited
time to search.

3.2.1 Loading the Test Cases. We�rst load test cases fromALMS
as CVS format (a in Figure 2). We have 6 datasets and separately
treat them. We only load the data of the experiment’s concerned
team (i1 in Figure 2). The raw data consists of 4 columns, which
are subset columns from the ALMS database:

- Test Case ID, which is uniquely assigned in the ALMS database.
- Test Case Name (TC Name, which is de�ned by the users and
usually in a free text format of 100–200 characters in length.

- Test Case Path (Path), which is the absolute path of the folder
that contains the test case.

- Feature Label (FL), the expected label of the test case indicating
the feature it tests. This is set by users whereas some users keep
it blank when there is no input

We then select the column of use depending on the experiment
setup; TC Name or Path (i2 in Figure 2). We also select the feature
label column, which works as our dependent variable in statisti-
cal modeling context. We �nally �lter out those rows where the
feature label �eld is empty, because most of them are intentionally
left unlabeled as discussed in Section 3.1.

3.2.2 Spli�ing the Test Cases into Training and Testing Datasets.

We split the raw data into 2 parts; training and testing (b, c in Fig-
ure 2). The ratio depends on the experiment setup, but we split on
all rows unless otherwise noted. In RQ1 and RQ2, we randomly
split the raw data in half into training and testing datasets. In RQ3,
we randomly split the raw data, but the number of test cases datasets
varies in training and testing datasets.

3.2.3 Tuning Parameters. Before starting statistical model con-
struction of the �nal models, we perform parameter tuning only
on the training set. The purpose here is to �nd the best perform-
ing parameters (d in Figure 2) for a given training dataset. The
set of parameters vary depending on the statistical model selec-
tion (i3 in Figure 2), and whether the model is composed of word
count vectors or LDA topic vectors. These vectors will be discussed
in Section 3.2.4. The tuning logic will be discussed in Section 3.3.

3.2.4 Vectorization of Training texts. Having the column of text
data, we convert the texts into bag-of-words representation, sepa-
rating thewords by splitting on characters such as "-", "_" and " "

(a space character). We removewords that consist of numeric char-
acters only, because numeric characters are used alone in many
places to sort directories. We then remove words that appear in al-
most every test cases (5% most common), and remove words that
appear only once. Later we build a “corpus-dictionary” of vocab-
ulary (f in Figure 2) that maps words to integers indices from
training texts. The corpus-dictionary will be used to construct to-
kenized vectors for a test dataset in Section 3.2.6. Finally, we apply
the TF-IDF transformation on the vectors to amplify the explana-
tory power of rare words. We use the Python gensim library [16]
(3.4.0) to apply TF-IDF conversion (default parameters) to the en-
tire set of word vectors.

If an experiment setup involves LDA (i3 = true in Figure 2), we
convert the word count vectors into so-called LDA topic vectors,
by training an LDA model to extract topics from our texts. LDA is
an unsupervised algorithm that seeks to allocate documents with
underlying topics. These topics are distributions of word counts.
E�ectively LDA can be used as a dimensionality reduction tech-
niques to convert bags of words into associated topic allocations—
vectors of length N where N is the number of LDA topics cho-
sen [18]. LDA has numerous parameters, e.g., number of topics, α ,
and η are which we tune for (d in Figure 2). In our experiment, we
choose these parameters as following:

α = η =
m

N
where m is the magnitude to the parameters, which are selected
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Figure 2: Flow-chart of how text data is processed

in the tuning from 0.1, 1.0, 10.0—thus α is always relative to the
number of topics N .

We also convert textual label data into single label via one-hot
encoding. The resulting vectors are noted as e in Figure 2.

3.2.5 Training a Model using the Best Parameters. In our study,
we use a K-nearest neighbor model to infer the feature label by
a given dependent word count or LDA vector. We use the Python
scikit-learn library [17](0.19.1) on themodel constructions. The
K nearest neighbor model measures the Minkowski distance of a
concerned vector against all vectors in the training dataset. And
the K nearest vectors are assumed to have the most probable label,
and it simply picks up themost voted label out of it. Minkowski dis-
tance is used because document sizes are relatively similar so the
size normalization of cosine distance is not needed. In our study,
we use the best performing K out of 1, 3, 5, 9, 15, which discovered
via tuning (d in Figure 2).

3.2.6 Vectorization of a Test Dataset. Unlike the vectorization
of a training dataset discussed in Section 3.2.4, the vectorization
of a test dataset is not purely made up of word occurrence of its
dataset; theword count vectors are built based on the corpus-dictionary
of the training dataset (f in Figure 2), i.e., words that appear only
in the test dataset are ignored, because the �tted model is only on
the words that the model has ever seen. Additionally, if the exper-
iment setup requires LDA vectors, i.e., i3 = true in Figure 2, the
word count vectors are converted to LDA vector also by using the
LDA inference on the trained LDA model (e.g., LDA topic conver-
sion). The feature label is also encoded in as same value as in the
training dataset, and the resulting vectors and labels are shown in
h in Figure 2.

3.2.7 Predict and Performance Measurement. We explain how
our model returns the predicted values, and how we measure the
performance of themodel so that we can comparemultiple models.

Prediction. We use K-nearest neighbor model as our statistical
model, and its classi�er algorithm is to simply choose the most
voted label as a predicted label. If votes spread over di�erent la-
bels equally leading to a tie, we output such case as “unpredictable”,
which does not contribute to performance gains, but also not to
performance loss of certain metrics. For engineers practically, “un-
predictable” is often better than predicting a wrong FL, because de-
velopers can e�ciently provide help when machine learning is not
con�dent.

Performance Measurement. All predicts are compared with
the actual FLs, and if a predicted label e.g., #a, correctly points to
the actual FL, i.e., #a, such predict is counted as “true positive” of #a
in our sense, whereas if a predicted label wrongly points to another
#b, such predict is marked as “false negative” of #b. “unpredictable”
does neither add up true positive nor false negative.

Using the number of true positives and false negatives, we de-
�ne following performance metrics: The “true positive ratio (TPR)”
is de�ned by

TPR =
True Positives

Number of Test Dataset Rows

whereby the TPR is calculated for the entire dataset. The “F1” of
label x is de�ned by

F1 =
2 · Recall · Precision

Recall + Precision

whereas the precision is the number of true positives of label x di-
vided by the number of the rows of label x in the test dataset, the
recall is the number of true positives of label x divided by the sum
of true positives and false negatives of label x. The F1 is calculated
for each label, and the overall performance metrics is a median
value over the F1 scores of all labels. In RQ3, we also evaluate the
return of investment, by calculating the pro�t (PRO), which is de-
�ned by

PRO =
True Positives − Number of Training Dataset Rows

Number of Test Dataset Rows

In short, PRO is the gains (number of true positives, which our ML
engine produce as values) deduced by the cost (number of training
data rows, which testing engineers manually spend). PRO is nor-
malized by the number of test data rows, so that it is comparable
for di�erent datasets. Same as the F1 scores, PRO is calculated for
each label, and a median value represents the overall performance
metric.

3.2.8 Result Summarization by Averaging. We repeat the pro-
cess between 2 to 7 in Figure 2 for 20 times. We summarize the
results by box-plots, point plots for visual representations, and by
averaging them to get the model’s performance.

3.3 Parameter Tuning

The main purpose of parameter tuning is to �nd the best perform-
ing parameters set out of numerous combinations of parameters
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Table 2: Parameters to be tuned.

Name Selections Description
k 1, 3, 5, 9, 15 k of K-nearest neighbor model

ntopic 20, 50, 100, 200 Number of topics in LDA
αmag 0.1, 1.0, 10.0 Order of magnitude of α in LDA

Table 3: Input variables in RQ1 to RQ3.

RQ Train:Test Source-Stat.Model
RQ1 50%:50% (Name-WC, Name-LDA)

RQ2 50%:50% (Name-WC, Path-WC, Path-LDA)

RQ3 (7.5%-50%):50% Path-WC

within a limited amount of time. The parameters and their possi-
ble values are noted in Table 2; we have 5 combinations for word
count vector model, and 60 combinations for LDA vector model.
We randomly select 1 combination with replacement, and we will
set the timeout length su�cient long so that at least 10 combina-
tions are tried.

At each combination, we follow similar steps from the step 2 to
8) in Figure 2. The di�erence is we use a training dataset as input
a) in Figure 2. Then we randomly split it in half as a new training
dataset (b in Figure 2) and a validation dataset (c in Figure 2). Then,
we perform the step 4) to step 8) with parameters at the combina-
tion. We repeat 5 iterations to mitigate the noise of randomness
and calculate the averaged performance with the parameters.

When timeout is reached, we compare all of the averaged per-
formance measurement values across parameters combinations, at
least 10, and decide which parameters are the best among them.

4 QUANTITATIVE STUDY RESULTS

In this study, we conduct a numerical simulation of FL predictions
while we change the input parameters depending on the objec-
tives of the question. The summary of variables are put in Table 3,
whereas target variables are highlighted with parentheses.

4.1 RQ1: Does LDA help to improve the
performance?

Motivation. LDA has been known to be powerful unsupervised
algorithm to transform large sized text data into much shorter vec-
tors of associated topics. In our case, the vocabulary is not large
compared with existing studies [4, 5, 8, 9]. Thus we want to know
if LDA improves the overall model performance for inferring FLs.

Approach. Weuse the TC Name source of all of the 6 teamsA to F.
The training and test dataset split ratio is constantly set to 50% and
50%. Each of the datasets, we build 2 models; the KNNmodel using
LDA vectors (Name-LDA) and the KNN model using word count
vectors (Name-WC). We thenmeasure the median F1 score and the
total positive rate. This overall procedure is repeated for 20 times
with a new sampling, and the resulted scores and rates are reported
in a box-plot format to visually and numerically evaluate whether
which of Name-LDA or Name-WC has better performance.

A B C D E F

LDA WC LDA WC LDA WC LDA WC LDA WC LDA WC
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Figure 3: RQ1 —Median F1 (upper graph) and total true pos-

itive ratio (lower graph) comparisons (LDA and WC).

Results. Figure 3 (upper) shows the median F1 score distribu-
tions of the two models per team. We observe higher score dis-
tributions of Name-WC in teams A, D, E, F, suggesting that the
simpler Name-WC is yet powerful to infer FLs. There is no clear
di�erence between Name-WC and Name-LDA for teams B and C.

Figure 3 (lower) shows the total positive rate distributions. We
can still see the same tendency with the F1 score distributions that
(1) Name-WC model is slightly better with teams B, C, E, F and
Name-WC is dominant for teams A, D, E, F and no much di�er-
ence for teams B, C. When we examine the 95% con�dence inter-
vals, teams B and C indicate that WC and LDA perform similarly,
while for teams A, D, E, and F, WC models perform better on aver-
age (95% CI: [0.0859,0.163] median F-1 di�erence betweenWC and
LDA across all teams combined).

Word count vector model trends towards better performance,

whereas 4 out of 6 teams have observable di�erences in F1 scores

and true positive ratios.

4.2 RQ2: Which source of text predicts Feature
Labels better?

Motivation. Wehypothesize that test case names and folder paths
are both related to the attached FL. Due to the nature of FLs, a fea-
ture label must be a brief representation of a group of similar test
case names (TC Name). Also, as shown in Section 2.1, users gen-
erally try to manage test cases in an ordered hierarchical manner
because these are many, so eventually the resulting folders tend to
contain similar test cases in the same place. This means that due
to the manual organization of test cases, a test case path (Path)
should be related to FLs assigned to tests with similar paths.

Thus, both the test case name and folder paths should be a clear
indicator for FLs, and we want to know which has even stronger
predictive power so that we can achieve more accurate statistical
models, and so that we can provide advice to test engineers about
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Figure 4: RQ2 — Median F1 score (upper) and true positive

rates (lower) of Path (PLDA and PWC) and TC Name (TWC).

where their e�ort should be spent: description or organization. We
do not mix the two sources at once for now, because our study is
yet preliminary and we have project mandate to explain the fun-
damental theory behind the model performance to practitioners at
the company, thus we need to clearly knowwhich source of textual
data is a better indicator for FLs.

Approach. The approach is the same as RQ1 except that our
models this time are Path-LDA and Path-WC. In the resulting
plots, Figures 4, we reuse the numerical results of Name-WC from
RQ1 as a reference, because it performed slightly better thanName-
LDA. We again plot the 20 repeated measurements for the models
of 6 teams, whereby sampling, new model construction, and pa-
rameter tuning with at least 10 con�gurations.

Results. Figure 4 (upper) shows the distribution of F1 score for
each of the teams, and Path-WC and Path-LDA are colored with
red, Name-WC is colored with green. There is clear advantage for
Path-(WC/LDA) models in Team A and D. The rest of the teams
have almost similar performances. The team C here again has high
standard deviations due to its small number of samples. The per-
formance di�erence between WC and LDA vectors may be minor.

Figure 4 (lower) also shows the distribution of the entire positive
rates for each of the teams. The results are almost equal to that of
F1 score except that the standard deviations are slightly lower, and
making the tendency of Path apparent to additional teams A and
D too. Teams B,C,E, and F did not exhibit signi�cant di�erences.

The vocabulary sizes of Path, as previously shown in Table 1,
are smaller than that of TC Name by 3.5 times at smallest (Team B),
12.8 times at largest (Team A), and 6.7 times on average.

Globally for WC models, across teams, the 95% con�dence in-
terval of the di�erences in median F-1 measures between TC Name

and Path was negative (−0.162,−0.0857), showing that globally
Path is dominant in performance. Although if we look at con�-
dence intervals per team, most teams have similar performance
between TC Name and Path, with only teams A and D showing
Path dominating TC Name in F-1 performance.

Overall speaking, the results suggest that the text source Path,
which has much lower amount of textual information, is better
suited for inferring the associated FLs inmost of the studied datasets.
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Figure 5: RQ3 — True positive rates (upper) and pro�t rates

(lower) versus size using Path-WC model.

Folder path achieved higher predictive power of FLs globally, al-

though its word space is substantially smaller than that of test

case name.

4.3 RQ3: How small can a training dataset be?

Motivation. In Section 4.2, we saw thatModels using Path (folder
path to test case) have better performance compared to the another
text data TC Name (test case name). In that experiment, we used a
constant ratio of 0.5 for test and training data split. Practically in
the future, we want to achieve the good accuracy without having
rich amount of the training dataset so that we can produce accu-
rate FL inference only by feeding a few manually classi�ed test
cases into our classi�cation engine.

Thus, in this RQ, we study the e�ect of reducing the size of the
training dataset.We also consider the ROI (Return of Investment) by
calculating the pro�t (PRO) and we seek to optimize accuracy ver-
sus cost, which is important from a business perspective to stake-
holders, especially test engineers. Test engineers want accurately
predicted labels without much manual labeling. They do not want
to spend extra e�ort training machine learners.

Approach. We use Path-WC for all of the 6 datasets we have,
based on the performance comparisons in RQ1 and RQ2. In this ex-
periment, we vary the ratio of the use of a training dataset; we �rst
split the entire dataset into a test dataset and the rest by half. Then
from the rest, we take 15% of that amount as a training dataset (i.e.,
7.5% of the whole), and do themeasurements of the entire true pos-
itive rate and the pro�t rate (PRO). We repeat the test and training
samplings with the set ratio for 20 times, and then we increase the
size of the training dataset by 5%. We continue this until the train-
ing set ratio reaches 100% (i.e., 50% of the whole). By increasing the
training dataset size, we try to understand how the performance
changes, and how the corresponding pro�t changes.

Results. We show the training dataset ratio versus TPR in Fig-
ure 5 (upper). As expected, constant increase in TPR is observed
at the beginning, e.g., where the training dataset ratio is incre-
mented from 10% to 40%. Especially, the dataset of teams with
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smaller dataset size, e.g., Team A and B have steep increase. Over-
all speaking, the increased performance rate looks to be gradually
saturated, and we observe almost milder increase in TPR around
50% to 70%, implying that increased amount of training dataset
does no longer improve the performance if the model already has
rich amount of data to train.

In Figure 5 (lower), we show the PRO (pro�t ratio) of the same
dataset. Team A, C and F have clear tendencies that PRO is grad-
ually increasing at the beginning, i.e., gain is greater than cost.
However, after around 30% (i.e., 15% of the whole), PRO started
to decrease implying that the performance improvement by addi-
tional amount of the training dataset becomes low. The rest of the
teams have constant decrease in PRO from the beginning, however,
this implies that even a small amount of the training dataset may
yield contribution to performance improvement, i.e., pro�t exists.

From cost balance perspectives, it is most e�ective to have 10% to

20% of the entire dataset for training to maximize the return of

cost investment.

5 INTERVIEWS AND DISCUSSIONS

In this section, we qualitatively investigate our quantitative re-
sults with stakeholders involved in the projects that engage in fea-
ture labels. We investigated the potential underlying software en-
gineering reasons for our results. To do so, we reached out to engi-
neers from each team under study, who contributed to the manual
labeling of FLs, and held open discussions by showing our results.
We were able to get 3 engineers from 3 di�erent teams to partic-
ipate (50% response rate). In each of the discussions, we touched
upon the questions we prepared:
- Why does Path often work signi�cantly better than TC Name

when inferring FLs?
- In which case does Path fail to produce accurate inference?
- How could this auto classi�cation be bene�cial for you?

Interviewees. The 3 engineers that we interviewed are all test
engineers in the company, and each belongs to Team C, D, F with
5, 10+, 10+ years of experiences in the domain respectively. In the
past, all of them participated in manual labeling activities, and still
maintain the FLs if there is a need to update them. In the following,
we denote each of the members as Int-C,D,F.

Interviewer and Setup. The �rst author conducted the inter-
view with each of the members while showing the results of our
Path-WC model. Each interview took 20 minutes, and was con-
ducted in a meeting room. Interviews for C and F were in Japanese
and translated to English, Team D’s interview was in English.

5.1 “Why does Path often work signi�cantly
better than TC Name when inferring FLs?”

Motivation. Typically more features lead to be better machine
results. Often larger training sets achieve better model prediction
performance, but we achieved generally better performance with
smaller texts such as Path, which has less unique tokens than TC

Name (See Table 1) and generally performs better as in Section 4.2.
We want to clarify why.

Discussion. Int-C mentioned the following:

“I know that TC Name is hard to de�ne, and sometime come up with

naming randomly without consideration. Thus, we do not really

trust it to �nd the right FL. How to �nd the right FL? Well, you will

need to survey di�erent sources, such as test case steps, the related

source code, previously found bugs from the cases, ... etc.”

Thus TC Name was not the major indicator of FL for them in the
context of the company. Int-D and Int-F also mentioned,

“TC Name can be set by multiple persons and there is no clear nam-

ing rule for it. Path is more ordered because we try to put similar

test cases in the same place and we have some guideline of main-

taining the folders.”

They pointed out the issue of test case naming involves multiple
people, that can easily lead to naming rule inconsistency. Keep-
ing the consistency of many test case names can be done by strict
naming rule. They seem to believe that Path is easier to maintain
even with multiple people, because people tend to scan through
existing folder structure before creating new folders.

Overall speaking, all of the interviewees show strong agreement
that our approach should use Path instead of TC Name.

Path is maintained carefully, and is quickly browseable, thus it

is more ordered whereas TC Name has no rules and is maintained

by many di�erent people, which make the textual information

less orderedly and harder to browse.

5.2 “In which case does Path fail to produce
accurate inference?”

Motivation. Our best model still failed to infer correct labels in
some cases. For future improvement, we want to knowwhere clas-
si�cation failures occur so we can improve our text processing and
model construction to achieve even higher accuracy in the future.

Discussion. We identi�ed 2 situations when inference failures
could occur. First, we and Int-C, D �rstly observed that there ex-
ists a pattern of mistake by inferring FLs of some teams: For ex-
ample, there is a term management and there was a case where
our model linked that with “Power Management” FL. So each time
words such as “process management and handling” appear in Path,
the inference could not correctly return “Unix Process” but it would
return “Power Management” due to the word management.

Second, another situation dealt especially with Int-F of Team
F, where numeric characters have special meaning, such as 2.4,
5.0, 802 in the wireless protocol areas—but in Section 3.2.4 we
stated that words consisting of numeric characters were removed.
These numbers are used in many places for ordering the folder
names, andwe believe such tokens can produce unnecessary noise.
We need to �nd a way to intelligently distinguish numeric that
has meaning so that it is included in our word vectors. We could
use a similar approach to Aggarwal et al. [1] who suggest adding
labels based on domain knowledge, such domain knowledge could
be used to replace words that were protocols or version numbers
with a token that will survive text transformation.

Errors arise from biases towards unique terms and inappropri-

ate token splitting. Some non-important tokens happen to obtain

strong predictive power of certain FLs. A domain speci�c text pro-

cessing approach should be attempted such that domain speci�c

tokens are retained to reduce classi�cation error.
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5.3 “How could this auto classi�cation be
bene�cial for you?”

Motivation. In our quantitative study, we showed that it is pos-
sible to build an auto classi�cation engine of FLs using historical
data. On the other hand, our studied teams have higher input rate
of FL input, e.g., Table 1 shows that Team E and F have 3,047 and
1,824 test cases, however, they only have 180 of those with miss-
ing labels for Team E, and 0 for Team F. Thus, we wonder whether
there is room where automation can contribute. If the cost is not
negligible, then it is di�cult to apply the techniques to industrial
projects. In this discussion question, we explore what could be the
bene�t for them if we have it as a deployment system.

Discussion. Firstly, they all agreed that themanual task on putting
the FL was very time consuming. Int-D explained;

“At �rst, we spent days and weeks to come up with the current set of

feature label de�nitions. I scanned the all of the test case assets we

have, roughly classify similar test cases, made an initial proposal

feature label de�nitions, asked a senior engineer to review them,

and slowly we reached the current feature label de�nitions.”

As mentioned in Section 2.4, coming up with the right de�nitions
of FLs is initially a tough problem to tackle—this is discussed later
in Section 8. Int-F also explained his team’s experiences:

“As you know, we have close to 2,000 test cases, but we had strong

managerial pressure that we needed to put the FLs. We were able to

manage it somehow, but we spent almost 3 months with multiple

engineers, including proposal making and reviewing.”

Int-F also supplemented his opinion saying this tedious task should
not be repeated in other teams. Int-F also makes it clear that the
cost of labeling is not just 30 seconds reading the text of a test, it
often involved communications between multiple engineers, exac-
erbating the cost of labeling. Int-C mentioned that

“ Although our test cases already havemanually assigned FLsmostly,

we are still adding new test cases from time to time. We are often

too busy to �nd an appropriate FL so we did not yet input the FL. It

would be great if those are automatically updated; our existing test

cases with FLs should de�nitely work as a training dataset. ”

Int-D con�rmed that their test cases are still evolving and auto-
matic classi�cation should de�nitely help them in the future. They
also showed understanding to our study’s accuracy as well:

“We are happy to have this studied result deployed. We can happily

accept the error ratio of e.g., 30% cause it is much smaller portion

compared to that of what we have to work on now.”

Bymaking use of our proven success with TeamA to F, we can ap-

ply our technique to new test cases and more teams at the studied

company, not to repeat the tedious manual labeling work.

6 RELATED WORK

Developers and stakeholders have information needs, as is dis-
cussed by Buse et al. [2]. Often this information can be aggre-
gated within dashboards, as suggested by Truede et al. [13], such
as the dashboards used by the studied company, and other com-
panies [10] in this study. Fundamentally software artifact analysis

must be funneled into dashboards, which is the aim of this study.

Traceability. Traceability is a term used in software engineering
to discussing the linking of software artifacts [6]. In this study we
care about linking test-cases to features automatically. Keenan et
al. [6] describe Tracelab, a kind of benchmark suite for traceability
tasks, algorithms, and data—it does not focus on test cases.

Features and Test Cases. This proposed method is meant to
leverage test-cases to characterize functions and features of a sys-
tem. This approach is similar to function points [3], a unit of mea-
surement of software that is manually estimated in order to sug-
gest functionality and size of functionality that is completed.

Topic analysis. We leveraged LDA in classi�cationmodels. Pani-
chella et al. [9] argue, like Blei et al. [18], that LDA should be tuned.
They demonstrate the value of genetic algorithms for tuning LDA
on SE tasks as an alternative approach to Blei’s tuning on infor-
mation content and topic quality. They apply LDA to traceability
link recovery, feature location, and artifact labeling, much like this
study. We engaged in constrained random search for tuning as we
experimented with di�erent kinds of models.

Hindle et al. [5] studied the LDA topics generated from numer-
ous software requirement documents at Microsoft by surveying
the actual practitioners’ perceptions about those generated topics.
They found that some topics make sense and practitioners were
able to name them though, there are other topics which are hard
to interpret by human. We apply a similar methodology but we do
not expose the actual LDA topics to the end-users themselves.

Han et al. [4] used LDA to analyze bug reports of similar prod-
ucts produced by di�erent companies and found that the bug re-
ports had di�erent vocabularies for the same topic, implying that
organizations tended to be consistent with their own internal vo-
cabulary for the same topics. McIlroy et al. [7] studied user review
messages in mobile appstores, and described a method to assign
multiple topic labels to the review by textual retrieval technique.

Test case prioritization. The studied company’s underlyingmo-
tivation of having the FL is to have a high level overview of the
distribution of a large number of test cases, and take a necessary
action if needed, e.g., manual test case prioritization. Test case pri-
oritization is a mature �eld and numerous surveys have been writ-
ten about test-case prioritization research [11, 14]. The intent of
test case prioritization is to reduce redundancy in testing and run
the most important test �rst to get feedback about current devel-
opment. Some prioritization schemes seek test code that will be
called recent commits to the software. Our work does not focus
speci�cally on test-case prioritization but can leverage methods
from it. Thomas et al. [12] employ topic models (LDA) for test case
prioritization.

7 THREATS TO VALIDITY

Construct validity. To build the model that infers a feature la-
bel, we used two data resources: test case name and folder paths.
We could have explored other attributes as well. If we use more
data resources (e.g., test case description), we may be able to cap-
ture more characteristics of FLs for test cases. While we already
achieve good performance inferring feature labels, future work
will be to improve performance using other available resources.
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We assumed that FLs that were manually labeled by the com-
pany’s developers are true ones. Therefore, the FLs may be biased.
However, the developers that labeled the FLs belong to the project
and have more than at least 5 years experience as the company’s
developers. We believe that the bias may not be too large.

Internal validity. We used LDA to extract topics from word
count vectors and KNN generated the model that infers a feature
label. As shown in Table 2, we need to choose parameters for LDA
and KNN. Althoughwe apply parameter tuning inmodel construc-
tion, other parameters may yield di�erent results.

External validity. Weanalyze six industrial proprietary projects.
Our selection of subjects may introduce bias. To mitigate the risk,
we select projects of various size, with di�erent team domains. Our
�ndings have been useful to help the company to put into action
a plan to improve test case.

Our studied projects are based on the Android OS, whereby
source code is clearly divided into hundreds of repositories given
its gigantic scale. The directory structure of the source code en-
ables organization and allows tests organization to mimick already
existing paths. Software that is organized in a similar hierarchical
manner would bene�t from these techniques—but not all software
is so organized.

8 FUTUREWORK

Feature Labels, their de�nition, and agreement on labels is a multi-
person task and laborious. Future research should address the col-
laboration needs for discussing, de�ning, and deciding on feature
labels. Therefore the perceptual quality of suggestions of labels
needs to be evaluated, we propose instrumenting the existing UI
with feedback buttons that allow users to rate the suggestion.

Reinforcement learning and online learning could be explored
to help reduce the developer e�ort in labeling test cases. Such sys-
tems could request developers learn from particularly important
examples rather than any example. Online learning would enable
developers to update the model as they labeled test cases.

Domain speci�c specialization in the NLP and IR pipeline could
improve both machine learning performance and run-time perfor-
mance. Words like 802.11 and H264 should be part of the domain
knowledge and not split apart by a naive tokenizer.

9 CONCLUSIONS

In conclusion we have presented a method of labeling test cases
based on meta-data about the test case such as its organization (its
path) and its short description (its name). This task is important as
it provides dashboards with categorization used to infer high level
insights about project state and health. We found that we could
infer the correct feature being tested from these textual inputs 30-
85% of the time.

We investigated multiple models and found that the path of the
test case, once tokenized and TF-IDF processed, fared quite well at
annotating test cases with feature labels. The textual description
was less e�ective and interviews with developers con�rmed it was
less structured and less consistent than the path �eld.

We investigated how such a system could be deployed at an An-
droid smartphone vendor and how much work developers would
have to invest to make a working system. We found that by la-
beling 10% to 20% of test cases one could have acceptable feature

labeling performance.
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