
Is Lines of Code a Good Measure of Effort in
Effort-Aware Models?

Emad Shihab∗, Yasutaka Kamei+, Bram Adams# and Ahmed E. Hassan@

Department of Software Engineering∗, Rochester Institute of Technology, Rochester, NY, USA,
emad.shihab@rit.edu

Graduate School and Faculty of Information Science and Electrical Engineering+, Kyushu
University, Fukuoka, Japan, kamei@ait.kyushu-u.ac.jp

Lab on Maintenance, Construction and Intelligence of Software (MCIS)#, École Polytechnique
de Montréal, Canada, bram.adams@polymtl.ca

Software Analysis and Intelligence Lab (SAIL)@, Queen’s University, Kingston, ON, Canada,
ahmed@cs.queensu.ca

Abstract

Context: Effort-aware models, e.g., effort-aware bug prediction models aim to
help practitioners identify and prioritize buggy software locations according to
the effort involved with fixing the bugs. Since the effort of current bugs is not yet
known and the effort of past bugs is typically not explicitly recorded, effort-aware
bug prediction models are forced to use approximations, such as the number of
lines of code (LOC) of the predicted files.
Objective: Although the choice of these approximations is critical for the perfor-
mance of the prediction models, there is no empirical evidence on whether LOC
is actually a good approximation. Therefore, in this paper, we investigate the
question: is LOC a good measure of effort for use in effort-aware models?
Method: We perform an empirical study on four open source projects, for which
we obtain explicitly-recorded effort data, and compare the use of LOC to various
complexity, size and churn metrics as measures of effort.
Results: We find that using a combination of complexity, size and churn metrics
are a better measure of effort than using LOC alone. Furthermore, we examine
the impact of our findings on previous effort-aware bug prediction work and find
that using LOC as a measure for effort does not significantly affect the list of files
being flagged, however, using LOC under-estimates the amount of effort required
compared to our best effort predictor by approximately 66%.

Preprint submitted to Information and Software Technology June 24, 2013

Conclusion: Studies using effort-aware models should not assume that LOC is a
good measure of effort. For the case of effort-aware bug prediction, using LOC
provides results that are similar to combining complexity, churn, size and LOC
as a proxy for effort when prioritizing the most risky files. However, we find that
for the purpose of effort-estimation, using LOC may under-estimate the amount
of effort required.

Keywords: Effort-aware Prediction; Prediction Models; Defect Prediction

1. Introduction

A large amount of research work has focused on predicting where bugs may
occur in software systems [37]. The main goal of this line of work is to prioritize
quality assurance efforts to make effective use of quality assurance resources.

However, the adoption of software bug prediction research in practice remains
low [16, 13]. One of the main reasons for this low adoption is the fact that, for
a long time, these bug prediction models did not take into consideration the ef-
fort needed to act on the recommended artifact [16]. In this context, effort means
the amount of effort required to address (i.e., unit test or code review) the rec-
ommended artifact (i.e., file or folder). This notion of effort is different from the
work on the next-release problem (i.e., given a set of parameters for a project how
much effort is needed for the next release) [1, 12] and from the work that focused
at predicting the amount of time required to fix a bug (e.g., [36]).

To incorporate effort into bug prediction, recent work (e.g., [22, 3, 23, 19])
studied the performance of effort-aware bug prediction models. These models
typically use lines of code (LOC) as a de facto measure of the effort required to
address bugs, since explicit effort is rarely recorded by development projects. The
authors showed that when effort is considered in the prediction models, the use-
fulness of some prediction models (e.g., models that use size to prioritize buggy
locations) may be affected. However, they point out that perhaps there might exist
better measures of effort than LOC [22].

To the best of our knowledge, previous work did not address the important
question of what is the best way to measure effort in effort-aware models? Yet,
finding a good estimator of effort is critical to the accuracy, and hence success of,
effort-aware models in practice.

In this paper, we perform an empirical study on four Open Source Software
(OSS) projects for which we obtain explicit effort data – namely JBoss, Spring,

2

Hibernate and Mule and compare the use of LOC to other code and process met-
rics as measures of effort. First, we perform correlation analysis to examine the
relationship between the various code and process metrics and effort. Then, we
examine which of process metrics, code metrics or the commonly used LOC mea-
sure best predict effort. Lastly, we examine the impact of our findings on prior
research findings related to effort-aware bug prediction. We aim to answer the
following research questions:

RQ1 Does LOC correlate better with effort than other code and process metrics?

We find that LOC has a low correlation with effort in all four studied projects.
Code metrics, in particular complexity metrics, have the highest correlation
with effort. However, the overall correlation values for both LOC and com-
plexity metrics remain relatively low.

RQ2 Is LOC a better predictor of effort than other code and process metrics?

We find that code metrics, in particular complexity metrics, are better pre-
dictors of effort than LOC in all four studied projects. Moreover, combining
LOC, complexity, churn and size metrics yields the best prediction results.

RQ3 How do our findings impact previous effort-aware bug prediction findings?

Revisiting prior effort-aware bug prediction work shows that for the pur-
pose of ranking the most buggy files, using LOC as a measure of effort
performs similar to our best effort predictor. However, for the purpose of
effort-estimation, using LOC under-estimates the amount of effort required
compared to our best effort predictor.

To facilitate future studies, we plan on making our explicit effort data set avail-
able to the software maintenance research community1.

The rest of the paper is organized as follows. Section 2 surveys the related
work. Section 3 describes our methodology. Section 4 presents an exploratory
analysis of the used effort data. Section 5 presents the findings of our study.
Section 6 discusses our findings and their implications. Section 7 lists the threats
to validity and Section 8 concludes the paper.

1We are currently in the process of adding our data set to the PROMISE repository.

3

2. Related Work

In this section, we highlight the previous work and contrast with our work.
The majority of the related work comes from the areas of software bug prediction
and effort estimation.

2.1. Bug Prediction
Standard bug prediction models. A large number of prior work uses code met-
rics to predict defective or fault-prone modules (e.g., files). The majority of this
prior work shows that McCabe’s cyclomatic complexity metric [21] and the Chi-
damber and Kemerer (CK) metrics suite [9] can be used to successfully predict
pre- and post-release bugs with high accuracy on both, commercial and open
source systems [29, 5, 35, 15, 11, 8, 28, 37].

Other work uses process metrics, such as the number of prior bugs or prior
changes to predict fault-prone modules. This work shows that the number of prior
changes to a file is a better predictor of bugs than code metrics in general [14, 2,
20]. More recently, Moser et al. [25] show that process metrics in general perform
better than code metrics when predicting post-release bugs in Eclipse. Hassan [17]
shows that using the complexity of code changes is a good predictor of bugs.

Although it has been shown that standard bug prediction can be beneficial to
improve the quality of software systems, its adoption remains low [13, 16]. There-
fore, a number of recent studies have argued that effort needs to be considered to
improve the adoption of standard bug prediction research.
Effort-aware bug prediction models. Recent work examined the performance
of software prediction models when effort is considered (i.e., effort-aware bug
prediction) [22, 19, 3, 24]. In all of these prior studies, LOC was used as the de
facto measure of effort. The authors showed that considering effort yields different
results from standard bug prediction (i.e., the performance of models built using
size metrics becomes comparable to that of a random predictor).

Our study picks up from where this work left off by examining the important
question: what is a good measure of effort in effort-aware models? Although LOC
was used as a de facto measure, we would like to examine whether there exist other
metrics that are better predictors of effort to use in effort-aware models, as hinted
at by previous studies [22].

2.2. Effort Estimation
There has been a healthy number of studies on effort estimation as well. Most

of these studies examine the next-release problem: given a set of project param-

4

eters (e.g., the number of available developers) how much effort will my next
release require? Other work attempts to estimate the effort required to fix a bug.
Estimating Effort of Next Release. A number of studies focuses on estimating
the effort required for a future release in order to assist in project scheduling or
external contract bidding [7, 31, 4, 23].

These studies use metrics based on the features of past project releases (i.e.,
functional size measures, manager’s skill level and software development environ-
ment) and project requirements (i.e., how many developers and testers are avail-
able to work on the next release). For example, Shepperd and Schofield[31] pro-
pose the Estimation by Analogy (EbA) technique that derives the effort from one
or more past analogous projects that are similar to the current project. They show
that EbA outperforms other estimation methods that use linear regression.
Estimating the Time to Fix a Bug. Other studies related to effort estimation
focus on estimating the time it takes to fix a bug [1, 12, 18, 34, 36]. Song et
al. [34] uses association rule mining to estimate the effort required to fix a bug.
They use bug type data (e.g., whether the bug concerns an initialization error or
an interface error) to predict the effort required to fix the bug. Weiß et al. [36]
use the text in the title and description fields of an issue report to predict the effort
required to address the issue. Giger et al. [12] and Hewett and Kijsanayothin [18]
estimate the time to fix a bug based on metrics extracted from the bug report itself
(e.g., the reporter’s name and the bug severity and priority). More recently, Ahsan
et al. [1] analyze the correlation between the time it takes to address an issue
and source code metrics (e.g., LOC and Cyclomatic complexity). They find low
correlation values for LOC and Cyclomatic complexity for the Mozilla project.

There are some key differences between the prior work on effort estimation
and our work. First, our goal is not to estimate the time it takes to fix a bug,
rather our goal is to determine what is a good measure of the effort for use in
effort-aware models. Second, we map and perform our effort analysis to the file
level, not the issue or bug level. We map effort to the file level in order to use and
investigate the impact of our findings on previous bug prediction work (which is
mostly performed at the file level), which we examine in more detail in Section 5.

Third, one very important strength of our work is the used data set. The ma-
jority of the previous studies use the time between when a bug was opening until
its closure as a measure of effort. These effort values are noisy since they may
contain the off-time, where a developer is busy on other tasks or interrupted by
other unrelated issues. In contrast, our effort data is input by the actual practi-
tioner who made the change and considers the effort spent only on addressing the
specific issue. Weiß et al. [36] used explicit effort data but they only consider one

5

Figure 1: Approach Overview

Table 1: Number of Issues in Each Project

Hibernate JBoss Mule Spring

issues before 2011-01-01 10,666 92,179 6,543 23,504
∩ Non-empty effort data 242 2,220 125 1,852
∩ Type: Bug, Defect, New Feature, Fea-
ture Request, Task, Sub-task, Improve-
ment, Patch

241 2,178 125 1,833

∩ Status: Closed, Resolved 231 2,131 122 1,713
∩ Resolution: Done, Fixed, Complete 225 1,979 113 1,496
∩ Priority: not Trivial 218 1,966 113 1,025

∩ Total issues that modify source code 171 506 40 297
Total number of files 1,147 1,421 286 1,409

of the projects we consider, and in contrast, predict the time to fix a bug.

3. Methodology

Figure 1 provides an overview of our approach, which we detail in this section.
In a nutshell, we first extract issues that have effort records from the JIRA issues
database. These issues are parsed and the changed files, their churn (i.e., lines
added and deleted) and the effort associated with the issues is recorded. Then, we
extract the source code of the changed files for each issue and analyze the source
code to extract various code (i.e., complexity and size) and process (i.e., churn)
metrics. We map all of the metrics to the file level and use this information to
examine the correlations with, and predict effort.

6

Table 2: Summary of Metrics
Dim. ID Name Definition Level

LOC Total Lines of Code The total number of lines. File

C
om

pl
ex

ity

CDEN Cyclomatic Complexity Density The density of cyclomatic complexity (VG sum/LOC).

File

CODEN Comment Density The density of comments (TCOLOC/LOC).
CC Cyclomatic Complexity The cyclomatic complexity for all nested functions or methods.

Three measures are provided for CC: avg, max and total.
CCM Cyclomatic Complexity Modi-

fied
The modified cyclomatic complexity for all nested functions
or methods. The CCM expects that a multi-decision structure
statement (e.g., switch) is counted as 1. Three measures are
provided for CCM: avg, max and total.

CCS Cyclomatic Complexity Strict The strict cyclomatic complexity for all nested functions or
methods. The CCS expects that logical conjunction and con-
ditional expressions add 1 to the complexity for each of their
occurrences. Three measures are provided for CCS: avg, max
and total.

CCE Cyclomatic Complexity Essen-
tial

The essential cyclomatic complexity for all nested functions
or methods. The CCE iteratively replaces all structured pro-
gramming primitives to a single statement, then calculates CC.
Three measures are provided for CCE: avg, max and total.

CBO Coupling Between Objects The number of other classes to which this class is coupled.
Three measures are provided for CBO: avg, max and total.

ClassNOC Number Of Children The number of immediate subclasses. Three measures are pro-
vided for NOC: avg, max and total.

RFC Response For a Class The number of methods, including inherited ones. Three mea-
sures are provided for RFC: avg, max and total.

DIT Depth of Inheritance Tree The depth of a class within the inheritance hierarchy. Three
measures are provided for DIT: avg, max and total.

LCOM Lack of Cohesion in Methods 100% - average cohesion for class data members. Three mea-
sures are provided for LCOM: avg, max and total.

WMC Weighted Methods per Class The number of weighted methods per class. Three measures
are provided for WMC: avg, max and total.

FOUT Fan out The number of method calls. Three measures are provided for
FOUT: avg, max and total. MethodNBD Nested Block Depth The nested block depth of the methods. Three measures are
provided for NBD: avg, max and total.

PAR Number of Parameters The number of parameters of the methods. Three measures are
provided for PAR: avg, max and total.

VG McCabe Cyclomatic Complexity The McCabe cyclomatic complexity of the methods in a file.
Three measures are provided for VG: avg, max and total.

Si
ze

TBLOC Total Blank Lines of Code The number of blank lines.

File

TCLOC Total Code Lines of Code The number of lines that contain source code.
TCOLOC Total Comment Lines of Code The number of lines that contain comments.
TNOS Total Number of Semicolons The number of semicolons.
TNOST Total Number of Statements The number of declarative or executable statements.
TNODST Total Number of Declarative

Statements
The number of declarative statements.

TNOEST Total Number of Executable
Statements

The number of executable statements.

TNOT Total Number of Classes The number of classes.
TNOM Total Number of Methods The number of methods.
NOF Number of Fields The number of fields of the classes. Three measures are pro-

vided for NOF: avg, max and total. ClassNOM Number of Methods The number of methods of the classes. Three measures are
provided for NOM: avg, max and total.

NSF Number of Static Fields The number of static fields of the classes. Three measures are
provided for NSF: avg, max and total.

NSM Number of Static Methods The number of static methods of the classes. Three measures
are provided for NSM: avg, max and total.

MLOC Method Lines of Code The number of method lines of code. Three measures are pro-
vided for MLOC: avg, max and total.

Method

C
hu

rn CHURN Total Churn The sum of the number of added lines of code and the number
of deleted lines of code. File

ADD Total Added Lines The number of lines of code added to a file.
DEL Total Deleted Lines The number of lines of code deleted in a file.

7

3.1. JIRA Issues Database
JIRA is a popular issue tracking system. In addition to having the standard

features of an issue tracking system (e.g., recording bug descriptions, states and
open/closure dates), JIRA has a very unique feature that enables users to input the
value of effort that an issue takes to address.

The first step of our work was to extract these issues from the JIRA databases
of four Java projects: Hibernate, JBoss, Mule and Spring. The main reason for
choosing to use these projects is the fact that they used JIRA as their issue tracking
system and they recorded effort for their issues.

3.2. Extract Issues
Similar to previous studies [36], we focused on issues that had a non-empty

effort field, had a type field as Bug, Defect, New Feature, Feature Request, Task,
Sub-task, Improvement or Patch, had a status of closed or resolved, had resolution
as Done, Fixed or Complete and had a priority that was non-trivial. In addition,
we ignored issues that did not modify any source code files. For issues that modify
code files and other types of files (e.g., XML files), we mapped their effort to the
source code files only, since bug prediction work focuses on source code files.

Table 1 shows the number of used issues and files from each project in our
study. We note that only a small number of issues contains effort information and
an even smaller number meets all of our criteria to be considered in the study.

At first glance, the number of issues in our data set seems to be low. However,
our data set contains approximately double the amount of issues compared to the
study by Weiß et al. [36] (which uses 567 issues). To the best of our knowledge,
that study is considered the state of the art study for this kind of data. In addition,
our data set covers four different projects, whereas Weiß et al. leveraged data
from only one project.

3.3. Extract Changed Files, Process Metrics and Effort
After downloading all of the issues in html format, we wrote scripts that parsed

all of the downloaded issues to determine the following: 1) the names of those files
that were changed to address the issue, 2) the process metrics (i.e., the number of
churned lines) for each file and 3) the amount of effort required to address the
issue.

The effort value extracted from the issues is logged by the person who ad-
dressed the issue. The effort value is measured in time and includes the time
needed to perform all activities that the practitioner needed to complete the as-
signed issue. It includes the time needed to identify which files need to be changed,

8

Table 3: Change Level Effort (measured in hours)

Project Mean SD Min Max Skew Kurtosis

Hibernate 4.84 8.85 0.02 78.00 4.46 27.99
JBoss 12.71 21.95 0.00 280.00 5.31 47.78
Mule 4.74 4.44 0.00 18.00 1.21 0.50
Spring 4.42 6.97 0.08 44.00 3.10 10.86

the time it took to inspect these files and decide where to make the changes and
the time it took to make the actual changes. Having explicit effort data makes
using this effort value ideal for our study, especially since this data is free of noise
(i.e., it does not include things such as triage time and testing delays).

At the end of this step, we have a linkage between the effort an issue required,
files changed to address the issue and the amount of churn done to these files.

3.4. Extract Source Code and Code Metrics
To obtain code metrics (e.g., code complexity metrics), we require the source

code of the changed files. We use the list of file names and corresponding revision
numbers in each issue to download the corresponding revisions of files from the
source control database.

We use the Understand 2.0 [30] tool to analyze each file and extract their
code metrics (i.e., complexity and size). Table 2 lists all of the metrics used in our
study. A total of 47 complexity metrics and 26 size metrics were extracted for
each files. In addition, we annotate this metric set with the churn metrics for each
file. In total, we ended up with an extensive set of 76 code and process metrics for
each file.

We use the code and process metrics in our study because they are widely
available for most software projects and their relationship to quality has been
studied extensively in the past (e.g., [26, 37]). Furthermore, there is an intuitive
relationship between code and process metrics and effort (e.g., the more complex
a piece of code is, the more effort it requires to be addressed).

3.5. Map Metrics and Effort to Files
The effort in the issue tracking system is recorded at the issue level. As men-

tioned earlier, we map effort to the file level, not the issue level in order to study
the relationship between the various code and process metrics and to compare our
findings to previous bug prediction work, which are performed at the file level.

9

Table 4: File Level Effort (measured in hours)

Project Mean SD Min Max Skew Kurtosis

Hibernate 14.07 18.20 0.03 78.00 2.40 5.72
JBoss 26.28 35.70 0.03 280.00 3.93 23.32
Mule 7.23 4.75 0.00 18.00 0.23 -1.24
Spring 15.19 12.31 0.17 44.00 0.64 -0.65

Since issues may touch one or more files, we need to map the issue effort to the
file level.
Mapping Effort to Files. We can employ a number of strategies when trans-
forming the effort from the issue to the file level. For example, we can take the
average effort of all the issues that touch a file and assign it to the file. However,
we decided to assign the effort value of a file to be the maximum effort required
to change it in all of the issues that touch the file. There are two main reasons for
this choice. First, assigning the maximum effort of all the issues that touch a file is
considered to be the worst-case scenario (i.e., the highest possible effort) for that
file. Therefore, using the maximum value is seen as a conservative approxima-
tion. Second, we experimented with mapping the average, median and minimum
effort of all the issues to the file level. However, using maximum effort yielded
the best and most meaningful correlations with effort. For example, in Table 5
we show the correlations of the different metrics with average effort, whereas in
in Table 6 we show the correlations of the different metrics with using maximum
effort. Clearly, using maximum effort yields higher correlation values.

To illustrate how we perform the mapping, we use the following example.
Suppose we have two issues Issue1 and Issue2 that took 3,600 and 1,800
seconds, respectively. Issue1 requires files fileA and fileB be modified,
while Issue2 requires that fileA and fileC to be modified. Then we cal-
culate the effort for fileA as the maximum of Issue1 and Issue2, which is
3,600 seconds (Issue1), the effort for fileB is 3,600 seconds (Issue1) and
the effort for fileC is 1,800 seconds (Issue2).
Mapping Metrics to Files. Similar to the issues, we also need to map the met-
rics to the file level, i.e., make each file one data point. Since some files may be
touched by multiple issues (and therefore have multiple revisions), we assigned
each file its average value of the metrics. For example, if the Cyclomatic Com-
plexity (CC) of a fileA is 50 in Issue1 and 100 in Issue2, then we would
assign a CC value of (50+100

2
= 75) to fileA.

10

Ta
bl

e
5:

M
et

ri
c

C
or

re
la

tio
ns

w
ith

E
ff

or
t(

us
in

g
av

er
ag

e
ef

fo
rt

)
C

om
pl

ex
ity

Si
ze

C
hu

rn

L
O

C
M

et
ri

c
C

or
r.

Im
pr

ov
.

M
et

ri
c

C
or

r.
Im

pr
ov

.
M

et
ri

c
C

or
r.

Im
pr

ov
.

H
ib

er
na

te
-0

.0
7

**
C

C
E

av
e

0.
05

(+
16

9%
)

T
N

O
T

0.
00

(+
10

7%
)

D
E

L
-0

.0
7

**
(-

4%
)

JB
os

s
-0

.0
6

**
C

B
O

av
e

0.
14

**
*

(+
35

4%
)

T
C

O
L

O
C

0.
04

(+
16

8%
)

C
H

U
R

N
0.

14
**

*
(+

34
4%

)
M

ul
e

-0
.0

8
N

O
C

m
ax

0.
07

(+
18

6%
)

N
O

F
m

ax
0.

02
(+

12
4%

)
A

D
D

0.
08

(+
20

0%
)

Sp
ri

ng
-0

.0
7

**
*

D
IT

m
ax

0.
10

**
*

(+
23

7%
)

M
L

O
C

av
e

0.
08

**
*

(+
20

9%
)

D
E

L
0.

15
**

*
(+

31
4%

)

(*
**

)p
<

0.
01

,(
**

)p
<

0.
05

,(
*)

p
<

0.
1

11

Ta
bl

e
6:

M
et

ri
c

C
or

re
la

tio
ns

w
ith

E
ff

or
t(

us
in

g
m

ax
im

um
ef

fo
rt

)
C

om
pl

ex
ity

Si
ze

C
hu

rn

L
O

C
M

et
ri

c
C

or
r.

Im
pr

ov
.

M
et

ri
c

C
or

r.
Im

pr
ov

.
M

et
ri

c
C

or
r.

Im
pr

ov
.

H
ib

er
na

te
0.

04
C

D
E

N
0.

19
**

*
(+

39
5%

)
M

L
O

C
to

ta
l

0.
10

**
*

(+
15

4%
)

D
E

L
-0

.0
4

(-
19

3%
)

JB
os

s
0.

02
C

B
O

av
e

0.
23

**
*

(+
10

19
%

)
T

C
O

L
O

C
0.

11
**

*
(+

41
5%

)
C

H
U

R
N

0.
16

**
*

(+
68

8%
)

M
ul

e
-0

.0
3

D
IT

m
ax

0.
16

**
*

(+
72

0%
)

M
L

O
C

to
ta

l
0.

07
(+

35
6%

)
A

D
D

0.
05

(+
29

0%
)

Sp
ri

ng
0.

06
**

D
IT

m
ax

0.
33

**
*

(+
41

2%
)

M
L

O
C

av
e

0.
30

**
*

(+
35

8%
)

D
E

L
0.

30
**

*
(+

36
2%

)

(*
**

)p
<

0.
01

,(
**

)p
<

0.
05

,(
*)

p
<

0.
1

12

Effort(hour)

of

 c
ha

ng
es

0 20 40 60 80

0
50

10
0

15
0

(a) Hibernate

Effort(hour)

of

 c
ha

ng
es

0 50 100 150 200 250

0
10

0
20

0
30

0
40

0

(b) JBoss

Effort(hour)

of

 c
ha

ng
es

0 5 10 15

0
5

10
15

(c) Mule

Effort(hour)

of

 c
ha

ng
es

0 10 20 30 40

0
50

10
0

15
0

20
0

(d) Spring

Figure 2: Distribution of Effort Across Issues

4. Data Exploration

To the best of our knowledge, this is one of the first (in addition to the study by
Weiß et al. [36]) studies to leverage explicit effort data. Therefore, before delving
into our case study results, we first explore our effort data in more detail.

We examine the distribution of the effort data at the issue and file levels. We
report a few of the most common descriptive statistics, i.e., mean, min, max, stan-
dard deviation (SD) for all projects. To study the skewness of the data, we calcu-
late the skew and kurtosis measures.

Skew measures the amount of asymmetry in the probability distribution of
a variable, in relation to the normal distribution. Positive skew means that the
distribution of the metric values are mostly on the low end of the scale, while
negative skew indicates that most of the metric values are on the high end of the
scale. The normal distribution has a skew value of 0.

Kurtosis on the other hand characterizes the relative peakedness or flatness of
a distribution, in relation to the normal distribution. Positive kurtosis indicates

13

Effort(hour)

of

 fi
le

s

0 20 40 60 80

0
10

0
30

0
50

0

(a) Hibernate

Effort(hour)

of

 fi
le

s

0 50 100 150 200 250

0
20

0
40

0
60

0
80

0

(b) JBoss

Effort(hour)

of

 fi
le

s

0 5 10 15

0
20

40
60

80

(c) Mule

Effort(hour)

of

 fi
le

s

0 10 20 30 40

0
10

0
20

0
30

0
40

0

(d) Spring

Figure 3: Distribution of Effort Across Files

that a curve is too tall and negative kurtosis indicates a curve that is too flat. A
normal distribution has a kurtosis value of 0.
Issue Level Exploration. Table 3 shows the descriptive statistics for the extracted
issues of the Hibernate, JBoss, Mule and Spring projects. From the table, we
observe that the average effort required to address an issue is between 4-5 hours
for the Hibernate, Mule and Spring projects. The JBoss project, however, has
a much higher average effort per issue, approximately 12 hours. One possible
explanation for the high mean effort value is the fact that JBoss had the most
number of issues and files, therefore, it had more outliers. In fact, the high kurtosis
value for JBoss indicates that.

Additionally, the Skew and Kurtosis values for the Hibernate, JBoss and Spring
projects are well over 0 (meaning the distribution of the data is far from normally
distributed). The effort data for Mule is less skewed.

To get a better idea of the skewness in the distributions, we plot the effort data
at the issue level in Figure 2. Clearly, we see that the majority of the issue ef-

14

fort values are on the lower end of the scale for the Hibernate, JBoss and Spring
projects. Mule seems to have a small jump in the number of issues at approxi-
mately 12 hours. We examined the issues that had this value of effort and found
that these issues had required large changes to many files (more than 10 files were
modified to address these issues). Furthermore, we would like to note that since
we did not have many issues for the Mule project, its data was very sensitive to
anomalies.
File Level Exploration. We also explore the distribution of the data at the file
level (Table 4). We see that the average effort per file is higher than that per issue.
The main reason for this is the fact that when we map the effort from the issue
level to the file level, we assign the file the maximum effort of all the issues that
touched it.

The distribution at the file level seems to be skewed for the Hibernate and
the JBoss projects as well. However, for Mule and Spring, the skew and kurtosis
values are relatively small. This can be confirmed from Figure 3, which plots the
distribution of effort at the file level for all four projects. Once again, we see a
spike in the number of files that have an effort of approximately 12 hours in the
Mule project. After manual inspection of the files with that effort value, we found
that once again, these files were the ones changed by the large issues mentioned
earlier.

5. Case Study Results

This section discusses our three research questions. First, we examine the cor-
relations between the various metrics and effort. Then, we determine which of
LOC, code or process metrics best predicts effort. Finally, we study the implica-
tions of our findings on previous effort-aware bug prediction studies.
RQ1. Does LOC correlate better with effort than other code and process met-
rics?

To examine the relationship between the various metrics and effort, we use
correlation analysis. Figures 4, 5, 6 and 7 shows the Spearman correlation of all
extracted metrics with effort for the Hibernate, JBoss, Mule and Spring projects,
respectively.

In addition, Table 6 presents the correlations values and their statistical sig-
nificance based on their p-values. The absolute improvement over LOC is shown
in brackets, under the Improv. column. Due to the large number of metrics, we
only show the correlation between the best performing metrics from each category
(i.e., LOC, complexity, size and churn) and effort. For example, for the Hibernate

15

LOC
CDEN

CODEN
CC_ave
CC_max
CC_total
CCM_ave
CCM_max
CCM_total
CCS_ave
CCS_max
CCS_total
CCE_ave
CCE_total
CBO_ave
CBO_max
CBO_total
NOC_ave
NOC_max
NOC_total
RFC_ave
RFC_max
RFC_total
DIT_ave
DIT_max
DIT_total

LCOM_ave
LCOM_max
LCOM_total
WMC_ave
WMC_max
WMC_total
FOUT_ave
FOUT_max
FOUT_total
NBD_ave
NBD_max
NBD_total
PAR_ave
PAR_max
PAR_total
VG_ave
VG_max
VG_total
TBLOC
TCLOC

TCOLOC
TNOS
TNOST
TNODST
TNOEST
TNOT
TNOM

NOF_ave
NOF_max
NOF_total
NOM_ave
NOM_max
NOM_total
NSF_ave
NSF_max
NSF_total
NSM_ave
NSM_max
NSM_total
MLOC_ave
MLOC_max
MLOC_total

CHURN
ADD
DEL

−0.05 0.00 0.05 0.10 0.15

Complexity
LOC

Size
Churn

Figure 4: Correlation of Metrics using Maximum Effort in Hibernate

16

LOC
CDEN

CODEN
CC_ave
CC_max
CC_total
CCM_ave
CCM_max
CCM_total
CCS_ave
CCS_max
CCS_total
CCE_ave
CCE_total
CBO_ave
CBO_max
CBO_total
NOC_ave
NOC_max
NOC_total
RFC_ave
RFC_max
RFC_total
DIT_ave
DIT_max
DIT_total

LCOM_ave
LCOM_max
LCOM_total
WMC_ave
WMC_max
WMC_total
FOUT_ave
FOUT_max
FOUT_total
NBD_ave
NBD_max
NBD_total
PAR_ave
PAR_max
PAR_total
VG_ave
VG_max
VG_total
TBLOC
TCLOC

TCOLOC
TNOS
TNOST
TNODST
TNOEST
TNOT
TNOM

NOF_ave
NOF_max
NOF_total
NOM_ave
NOM_max
NOM_total
NSF_ave
NSF_max
NSF_total
NSM_ave
NSM_max
NSM_total
MLOC_ave
MLOC_max
MLOC_total

CHURN
ADD
DEL

−0.05 0.00 0.05 0.10 0.15 0.20

LOC
Complexity
Size
Churn

Figure 5: Correlation of Metrics using Maximum Effort in JBoss

17

LOC
CDEN

CODEN
CC_ave
CC_max
CC_total
CCM_ave
CCM_max
CCM_total
CCS_ave
CCS_max
CCS_total
CCE_ave
CCE_total
CBO_ave
CBO_max
CBO_total
NOC_ave
NOC_max
NOC_total
RFC_ave
RFC_max
RFC_total
DIT_ave
DIT_max
DIT_total

LCOM_ave
LCOM_max
LCOM_total
WMC_ave
WMC_max
WMC_total
FOUT_ave
FOUT_max
FOUT_total
NBD_ave
NBD_max
NBD_total
PAR_ave
PAR_max
PAR_total
VG_ave
VG_max
VG_total
TBLOC
TCLOC

TCOLOC
TNOS
TNOST
TNODST
TNOEST
TNOT
TNOM

NOF_ave
NOF_max
NOF_total
NOM_ave
NOM_max
NOM_total
NSF_ave
NSF_max
NSF_total
NSM_ave
NSM_max
NSM_total
MLOC_ave
MLOC_max
MLOC_total

CHURN
ADD
DEL

−0.15 −0.10 −0.05 0.00 0.05 0.10 0.15

LOC
Complexity
Size
Churn

Figure 6: Correlation of Metrics using Maximum Effort in Mule

18

LOC
CDEN

CODEN
CC_ave
CC_max
CC_total
CCM_ave
CCM_max
CCM_total
CCS_ave
CCS_max
CCS_total
CCE_ave
CCE_total
CBO_ave
CBO_max
CBO_total
NOC_ave
NOC_max
NOC_total
RFC_ave
RFC_max
RFC_total
DIT_ave
DIT_max
DIT_total

LCOM_ave
LCOM_max
LCOM_total
WMC_ave
WMC_max
WMC_total
FOUT_ave
FOUT_max
FOUT_total
NBD_ave
NBD_max
NBD_total
PAR_ave
PAR_max
PAR_total
VG_ave
VG_max
VG_total
TBLOC
TCLOC

TCOLOC
TNOS
TNOST
TNODST
TNOEST
TNOT
TNOM

NOF_ave
NOF_max
NOF_total
NOM_ave
NOM_max
NOM_total
NSF_ave
NSF_max
NSF_total
NSM_ave
NSM_max
NSM_total
MLOC_ave
MLOC_max
MLOC_total

CHURN
ADD
DEL

−0.1 0.0 0.1 0.2 0.3

LOC
Complexity
Size
Churn

Figure 7: Correlation of Metrics using Maximum Effort in Spring

19

project, the CBO max metric is the complexity metric with the highest correlation
with effort. The category of metrics that has the highest correlation with effort for
each project is shaded in grey. We observe the following:
LOC has weak correlation with effort.
We observe from Table 6 that LOC does not have a high correlation with effort.
The highest correlation is 0.13 in the JBoss project. The correlation for the other
projects is even lower and for the Mule project this correlation is practically zero.
Complexity metrics have a stronger correlation with effort than LOC.
Table 6 shows that complexity metrics have a stronger correlation with effort than
LOC. In fact, complexity metrics have a stronger correlation than size and churn
metrics as well. However, we would like to note that the correlation of all of the
metrics with effort remains rather low.
Different metrics best correlate with effort for different projects.
Examining the metrics that best correlate with effort in Table 6, we observe that
for almost each project, a different metric (in each category) best correlates with
effort. Even though we find that complexity metrics correlate best with effort, the
specific metric depends on the project.

Although the measured correlations are not that strong, previous work [33, 29]
showed that low correlations do not necessarily mean low prediction accuracy.
Therefore, we now proceed to build prediction models for effort to investigate
whether or not the code and process metrics (e.g., complexity) are a better predic-
tor of effort than LOC.
RQ2. Is LOC a better predictors of effort than other code and process metrics?
Motivation. Thus far, we were able to establish that LOC does not have a high
correlation with effort and that complexity metrics correlate better with effort.
Now, we would like to examine which of LOC or the other code and process
metrics best predict effort.

In addition, we would like to know how well code and process metrics predict
effort for different projects. For example, we would like to know if there exists
one category of metrics that performs well at predicting effort in all projects or
whether each project has its own set of metrics that predict effort well. If we
can find one metric or category of metrics (e.g., complexity) that outperforms the
other categories of metrics in all projects, then we can recommend this category
of metrics for future effort-aware studies.
Approach. To determine the best category of metrics to predict effort, we build
linear regression models that aim to predict the effort required to address a file.
The independent variables of the models are the set of metrics in each category
(e.g., churn) and the dependent variable is the effort required to address the file

20

(measured in seconds). We use a linear regression model (rather than a logis-
tic regression model, for example) since effort is a continuous variable, given in
seconds.

To perform our analysis, we divide the data set into: a training set and a test
set. The training set contains 90% of the entire data set and is used to train the
linear regression model. The test set contains the remaining 10% of the data and
is used to test the accuracy of the model. We perform this random splitting 10
times (i.e., 10-fold cross validation) and report the averages of the 10 iterations.

Based on our analysis in Section 4 that showed that the independent vari-
ables and the dependent variable have high skew and kurtosis values, we log-
transformed the variables to alleviate the effects of the high skew and kurtosis.
Log-transformations are commonly employed in prediction work to deal with high
skew and kurtosis [37, 33].

We employ a backward elimination stepwise regression technique to select
only a relevant, non-redundant set of independent variables [27]. In backward
selection stepwise regression, an initial model is built using all independent vari-
ables. Then, the deletion of independent variables is tested and independent vari-
ables are removed from the model if they do not make a statically significant con-
tribution to the model. This process is repeated until the no further improvements
are possible. Finally, the model will contain the best set of independent variables
that achieve the highest variance explained.

Furthermore, to avoid problems due to multicollinearity [32], we computed
the pairwise correlations of the independent variables and removed any indepen-
dent variable that had an inter-correlation greater than 0.8. After performing the
prediction, we evaluate the performance of the model using two complementary
measures. First, we evaluate the predictive power of the model by calculating the
Spearman correlation between the output of the model with the actual effort for
each file. The explanative power of the model is evaluated by measuring the R2

value of the fitted model. These two measures are commonly used in previous
work to evaluate the accuracy of prediction models [10].
Results. Table 8 shows the predictive and explanative power of each model. In
addition, we report the statistical significance of the correlations for each model.

In all four projects, prediction models built using complexity metrics outper-
formed the LOC models in terms of predictive and explanative power (shown in
grey in the table). We would like to point out here that although the prediction
models using complexity metrics were the best performing, their overall predic-
tive and explanative power are still low. We discuss this issue in more detail in
Section 6.

21

Table 7: (Pearson) Effort Prediction Results

Project Category Average
Predictive
Power
(Correla-
tions)

Average
Explana-
tive Power
(R2)

Hibernate LOC 0.11 *** 0.00
Complexity 0.22 *** 0.08
Size 0.02 0.00
Churn -0.11 *** 0.00
All 0.26 *** 0.10

JBoss LOC 0.05 * 0.00
Complexity 0.30 *** 0.13
Size 0.13 *** 0.05
Churn 0.17 *** 0.03
All 0.35 *** 0.17

Mule LOC -0.20 *** 0.00
Complexity 0.30 *** 0.11
Size 0.05 0.01
Churn -0.25 *** 0.00
All 0.29 *** 0.12

Spring LOC 0.06 ** 0.00
Complexity 0.28 *** 0.10
Size 0.24 *** 0.09
Churn 0.22 *** 0.07
All 0.39 *** 0.19

(***) p < 0.01, (**) p < 0.05, (*) p < 0.1

We also built a model that contained metrics from all categories, labeled “All”
in Table 8. To assure that only the significant metrics are used, we performed the
same stepwise regression technique mentioned above to prune the “All” model
as well. The “All” model seems to provide the best performance, providing a
significant improvement over the LOC model and a slight improvement over the
complexity model in all four projects. This finding shows that although complex-
ity metrics outperform LOC, using all metrics is the best option when predicting
effort.

22

Table 8: (Spearman)Effort Prediction Results

Project Category Average
Predictive
Power
(Correla-
tions)

Average
Explana-
tive Power
(R2)

Hibernate LOC 0.10 0.00
Complexity 0.20 ** 0.08
Size 0.05 0.00
Churn -0.05 0.00
All 0.27 *** 0.10

JBoss LOC 0.02 0.00
Complexity 0.31 *** 0.13
Size 0.15 * 0.05
Churn 0.19 ** 0.03
All 0.36 *** 0.17

Mule LOC -0.20 0.00
Complexity 0.30 0.11
Size 0.04 0.01
Churn -0.20 0.00
All 0.28 0.12

Spring LOC 0.05 0.00
Complexity 0.29 *** 0.10
Size 0.26 *** 0.09
Churn 0.25 *** 0.07
All 0.41 *** 0.19

(***) p < 0.01, (**) p < 0.05, (*) p < 0.1

�

�

	
Complexity metrics are better predictors of effort than LOC, churn and

size metrics. However, combining LOC, complexity, churn and size metrics
provides the best prediction of effort.

23

Ta
bl

e
9:

C
or

re
la

tio
ns

of
To

p
20

%
M

os
tR

is
ky

Fi
le

s
L

is
ts

w
he

n
L

O
C

,C
om

pl
ex

ity
an

d
A

ll
M

et
ri

cs
ar

e
U

se
d

as
a

M
ea

su
re

fo
rE

ff
or

t
JD

T
PD

E
Pl

at
fo

rm

L
O

C
C

om
pl

ex
ity

A
ll

L
O

C
C

om
pl

ex
ity

A
ll

L
O

C
C

om
pl

ex
ity

A
ll

L
O

C
-

-0
.3

3
0.

93
-

-0
.2

0
0.

94
-

-0
.2

4
0.

94
C

om
pl

ex
ity

-0
.3

3
-

-0
.3

0
-0

.2
0

-
-0

.1
5

-0
.2

4
-

-0
.2

0
A

ll
0.

93
-0

.3
0

-
0.

94
-0

.1
5

-
0.

94
-0

.2
0

-

24

RQ3. How do our findings impact prior effort-aware bug prediction findings?

Motivation. In the previous research question, we found that using complexity
metrics is a better predictor of effort than using LOC alone, however, using all
metrics is the best predictor of effort. Now we would like to investigate the im-
pact of the aforementioned findings on the prior work on effort-aware models.
Generally speaking, effort-aware models serve two purposes. First, they assist in
ranking which files to address first. Second, they provide practitioners with an
estimate of the effort (e.g., hours) required to address the selected files.

Therefore, we use the data set from the study done by Kamei et al. [19] to see
whether using LOC significantly impacts the findings of their study based on the
two above mentioned criteria, file-ranking and effort-estimation.
Approach. In their work, Kamei et al. [19] built bug prediction models to predict
the number of bugs in a file. Then, the files are prioritized based on their risk
values, which is measured as RiskLOC = #Bugs

LOC
. The main idea behind this is that

files with the most bugs and least effort (measured in LOC) would be prioritized
higher.
File-ranking. To examine the impact on the study by Kamei et al. [19] in terms of
file rankings, we generated three lists of files that are ranked based on their risk.
One list used LOC as a measure of effort in the risk equation, another list used
complexity metrics and the third list used all of the metrics. Then, we use the
Spearman rank correlation to measure the similarity between the three lists.
Effort-estimation. Since we showed that using complexity or all metrics is a better
measure of effort, we would like to know if using LOC over- or under estimated
the amount of effort, compared to when complexity or all metrics are used. The
way we measure this is we generate a list of files using the RiskLOC equation.
Then, we measure the amount of effort required to address this list of files when
LOC is used, when complexity metrics are used and then all metrics are used as a
measure for effort. Finally, we compare the difference in effort for the generated
lists of files.

To perform the comparison, we need to first estimate effort (in seconds) from
LOC, complexity and all metrics. Because we do not have explicit effort data
for Kamei’s data set, we estimate effort data using the best performing prediction
models from our effort prediction analysis, as shown in Table 8. For LOC, we use
the model from the Hibernate project. For complexity, we use the model from the
JBoss project and for all metrics we use the model from the Spring project.

Performing the aforementioned steps allows us to compare LOC, complexity
and all metrics, in terms of effort, on a level playing field.

25

Results.
File-ranking. Table 9 shows the correlation coefficients between the ranked lists
generated using LOC, complexity and all metrics for the JDT, PDE and Platform
projects. Using complexity as a measure of effort significantly affects the results
of Kamei’s study since the lists generated using complexity have a negative weak
correlation with the file list using LOC (which was used as a measure of effort
by Kamei et al.) for all three projects. On the other hand, the lists generated
using LOC have a positive, strong correlation with the file list generated using all
metrics, which proved to be the best predictor of effort (as shown in Table 8).

The strong correlation between LOC and all is encouraging since it shows that
although LOC was not a good predictor of effort, its use in effort-aware bug pre-
diction models is valid. For the purpose of file ranking, using LOC as a measure
of effort performs similar to our best effort predictor, the all metrics model.
Effort-estimation. Figure 8 shows the estimated effort required versus the per-
centage of bugs. The three lines show the effort estimate when LOC, complexity
and all metrics are used as a measure for effort. We observe that LOC slightly
under-estimates effort compared to complexity metrics, and both LOC and com-
plexity significantly under-estimate effort compared to all metrics (which was the
best predictor of effort). For example, to address 20% of the bugs, using LOC
would indicate that approximately 10% of the total effort is needed, complexity
indicates that approximately 12% of the total effort is need, whereas all metrics
indicates that approximately 35% of the total effort is needed. Therefore, using
LOC under-estimates effort by approximately 66% compared to our best predictor
of effort.

Due to space limitation, we only show the results for the JDT project, however,
a similar trend was observed for the PDE and Platform projects.

Our finding shows that although LOC may not impact the file ranking aspect
of effort-aware bug prediction model, it does lead to a different result in terms of
effort-estimation. In other words, our findings show that if someone is interested
in the effort-aware ranking of files, using effort-aware prediction models, then
using LOC is fine. However, if someone is interested in approximating the amount
of effort that needs to be spent on these files (e.g., to address these bugs), then LOC
is not a good measure since it seems to underestimate this effort.

26

Figure 8: JDT

�

�

	

For the purpose of ranking the most risky files, using LOC as a measure
of effort performs similar to our best effort predictor. However, for the pur-
pose of effort-estimation, using LOC under-estimates the amount of effort
required compared to our best effort predictor.

6. Discussion

Studying what is a good measure of effort is a very important issue, since
recent research shows that effort needs to be taken into account for bug prediction
to become more practical [22]. However, there is a lack of empirical evidence of
how to best measure effort. This is mainly due to the lack of availability of explicit
effort data.

This study is a step in the right direction, however, it is certainly far from
perfect. For this reason, we plan to (and encourage other researchers to) expand
on this work in the future. To facilitate future studies, we are making our data
publicly available to the research community through the PROMISE repository.
In particular, we see three directions for immediate improvement:

27

Collecting Better Quality Effort Data. The four projects used in our study are
some of the first to record effort data. However, as we can see from Table 1,
most projects have a very small percentage of issues with non-empty effort data.
Having such little data is a major obstacle that our community needs to overcome
in order to conduct large-scale research. We hope that this study will inspire future
developers to carefully input effort data that can be used for future studies.

We plan to revisit our study when more, better quality data is made available.
At the same time, we are attempting to obtain such data from commercial projects,
who may keep better track of explicit effort data.
Improving Prediction Accuracy. Although our experiments showed that using
complexity and all metrics had a higher correlation and could better predict ef-
fort than LOC, we believe there is still room for improvement. We believe the
prediction accuracy could be improved by obtaining more and better quality data
and by exploring more categories of metrics. For example, it may be helpful to
include code ownership metrics [6] in addition to the code complexity metrics,
since it may take less effort to change complex code by a person who owns the
code versus a person who is new to the same piece of complex code.

In addition, we plan to explore the use of different prediction techniques such
as regression trees or random forest.

7. Threats to Validity

Threats to Construct Validity consider the relationship between theory and ob-
servation, in case the measured variables do not measure the actual variable.

The collected effort data is input by the developer who made the change. In
certain cases, the input data may not reflect the actual effort (e.g., this data maybe
misrepresented or inflated due to specific motivations) required to change the file.
Also, only about 10% of the reports had an non-empty effort field. This scarcity
of the data may impact some of our findings or the quality of our models. That
said, as mentioned earlier our data set contains approximately double the amount
issues compared to prior state-of-the-art work (i.e., Weiß et al. [36]).

Furthermore, we map effort from the issue level to the file level by setting
each file’s effort as the maximum effort (from all the issues that touched the file)
out of the all issues that touch it. In some cases (e.g., when the fix is very easy),
using the maximum value might not be representative. However, we chose to be
conservative and used the maximum effort value in order to consider the worst
case scenario.

28

When studying the impact of our findings on prior work, we use the coeffi-
cients from the best model of the projects we have effort data for (i.e., Hibernate,
JBoss, Mule and Spring) to map LOC and complexity to effort measured in sec-
onds for the JDT, PDE and Platform projects. Ideally, we should use the coeffi-
cient from the project itself to do this mapping. However, we do not have effort
data for the JDT, PDE and Platform projects.

As shown in Table 1, a very small number of issues contain effort data. Having
such a small percentage to conduct our studies may affect our findings, however,
we would like to note that this type of data is very rarely available. Also, our study
uses approximately double the amount of issues compared to the state of the art
to using such data. Therefore, we see this study as a starting point and plan to
continue to mine such data as it becomes more widely available.
Threats to External Validity considers the generalization of our findings. All
of the four projects used are open source projects written in Java, therefore, our
results may not generalize to other open source or commercial projects written in
other programming languages.

When revisiting the prior effort-aware bug prediction results, we found that
using LOC as a measure for effort under-estimates effort, compared to when com-
plexity is used. Although we observed the same phenomena in all three projects,
the same trend might not generalize to other project.

When evaluating the relationship of the different metrics with effort, we used
Spearman’s rank correlation and the R2 measures. Traditionally, effort estimation
work uses measures such as the Mean Magnitude of Relative Error (MMRE) since
its primary goal is to measure how accurate an effort estimation is [38]. In our
case however, our primary goal was to measure the relationship of the metrics
with effort, hence using correlations and the R2 measures are a better fit for our
analysis.

8. Conclusions

Recent work stressed the importance of considering effort in bug prediction
models. Most of these studies used LOC as the de facto measure of effort. In this
paper, we set out to empirically examine which of LOC, or other code and process
metrics are the best measures of effort. Through a study on four open source
projects, we found that complexity measures have the highest correlation with
effort. Furthermore, we also found that using a combination of LOC, code and
complexity metrics provides a better prediction of effort than using LOC alone.

29

Replication of the work by Kamei et al. [19] shows that using LOC in effort-
aware bug prediction models provides results that are similar to using all met-
rics when prioritizing the most risky files. However, for the purpose of effort-
estimation, using LOC under-estimates the amount of effort required compared to
our best effort predictor.

References

[1] S. N. Ahsan, J. Ferzund, and F. Wotawa. Program file bug fix effort estima-
tion using machine learning methods for oss. In Proc. Int’l Conf. on Software
Engineering & Knowledge Engineering (SEKE’09), pages 129–134, 2009.

[2] E. Arisholm and L. C. Briand. Predicting fault-prone components in a java
legacy system. In Proc. Int’l Symposium on Empirical Software Engineering
(ISESE’06), pages 8–17, 2006.

[3] E. Arisholm, L. C. Briand, and E. B. Johannessen. A systematic and compre-
hensive investigation of methods to build and evaluate fault prediction models.
Journal of Systems and Software, 83(1):2–17, 2010.

[4] M. Auer, A. Trendowicz, B. Graser, E. Haunschmid, and S. Biffl. Optimal
project feature weights in analogy-based cost estimation: Improvement and
limitations. IEEE Trans. Softw. Eng., 32(2):83–92, 2006.

[5] V. R. Basili, L. C. Briand, and W. L. Melo. A validation of object-oriented
design metrics as quality indicators. IEEE Trans. Softw. Eng., 22(10):751–761,
1996.

[6] C. Bird, N. Nagappan, H. Gall, P. Devanbu, and B. Murphy. An analysis of
the effect of code ownership on software quality across windows, eclipse, and
firefox. Technical Report MSR-TR-2010-140, Microsoft Research, 2010.

[7] B. W. Boehm. Software Engineering Economics. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1st edition, 1981.

[8] L. C. Briand, J. W. Daly, and J. K. Wüst. A unified framework for coupling
measurement in object-oriented systems. IEEE Trans. Softw. Eng., 25(1):91–
121, 1999.

[9] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Trans. Softw. Eng., 20(6):476–493, 1994.

30

[10] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug
prediction approaches. In Proc. Int’l Working Conf. on Mining Software Repos-
itories (MSR’10), pages 31 –41, 2010.

[11] K. E. Emam, W. Melo, and J. C. Machado. The prediction of faulty classes
using object-oriented design metrics. J. Syst. Softw., 56(1):63–75, 2001.

[12] E. Giger, M. Pinzger, and H. Gall. Predicting the fix time of bugs. In
Proc. Int’l Workshop on Recommendation Systems for Software Engineering
(RSSE’10), pages 52–56, 2010.

[13] M. W. Godfrey, A. E. Hassan, J. Herbsleb, G. C. Murphy, M. Robillard,
P. Devanbu, A. Mockus, D. E. Perry, and D. Notkin. Future of mining software
archives: A roundtable. IEEE Software, 26(1):67 –70, 2009.

[14] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy. Predicting fault incidence
using software change history. IEEE Trans. Softw. Eng., 26(7):653–661, 2000.

[15] T. Gyimothy, R. Ferenc, and I. Siket. Empirical validation of object-oriented
metrics on open source software for fault prediction. IEEE Trans. Softw. Eng.,
31(10):897–910, 2005.

[16] A. Hassan. The road ahead for mining software repositories. In Frontiers of
Software Maintenance (FoSM’08), pages 48–57, 2008.

[17] A. E. Hassan. Predicting faults using the complexity of code changes. In
Proc. Int’l Conf. on Softw. Eng. (ICSE’09), pages 78–88, 2009.

[18] R. Hewett and P. Kijsanayothin. On modeling software defect repair time.
Empirical Softw. Engg., 14(2):165–186, 2009.

[19] Y. Kamei, S. Matsumoto, A. Monden, K. Matsumoto, B. Adams, and A. E.
Hassan. Revisiting common bug prediction findings using effort aware models.
In Proc. Int’l Conf. on Software Maintenance (ICSM’10), pages 1–10, 2010.

[20] T. M. Khoshgoftaar, E. B. Allen, W. D. Jones, and J. P. Hudepohl. Data
mining for predictors of software quality. International Journal of Software
Engineering and Knowledge Engineering, 9(5):547–564, 1999.

[21] T. J. McCabe. A complexity measure. In Proc. Int’l Conf. on Softw. Eng.
(ICSE’76), page 407, 1976.

31

[22] T. Mende and R. Koschke. Revisiting the evaluation of defect prediction
models. In Proc. Int’l Conf. on Predictor Models in Software Engineering
(PROMISE’09), pages 7:1–7:10, 2009.

[23] T. Menzies, O. Jalali, J. Hihn, D. Baker, and K. Lum. Stable rankings for
different effort models. Automated Software Engg., 17(4):409–437, 2010.

[24] T. Menzies, Z. Milton, B. Turhan, B. Cukic, Y. Jiang, and A. Bener. De-
fect prediction from static code features: current results, limitations, new ap-
proaches. Automated Software Engg., 17(4):375–407, 2010.

[25] R. Moser, W. Pedrycz, and G. Succi. A comparative analysis of the efficiency
of change metrics and static code attributes for defect prediction. In Proc. Int’l
Conf. on Softw. Eng. (ICSE’08), pages 181–190, 2008.

[26] N. Nagappan and T. Ball. Use of relative code churn measures to predict
system defect density. In Proc. Int’l Conf. on Softw. Eng. (ICSE’05), pages
284–292, 2005.

[27] N. Nagappan and T. Ball. Use of relative code churn measures to predict
system defect density. In Proc. Int’l Conf. on Softw. Eng. (ICSE’05), pages
284–292, 2005.

[28] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict component
failures. In Proc. Int’l Conf. on Softw. Eng. (ICSE’06), pages 452–461, 2006.

[29] N. Ohlsson and H. Alberg. Predicting fault-prone software modules in tele-
phone switches. IEEE Trans. Softw. Eng., 22(12):886–894, 1996.

[30] Scientific Toolworks, Inc. Understand 2.6. http://www.scitools.
com/.

[31] M. Shepperd and C. Schofield. Estimating software project effort using
analogies. IEEE Trans. Softw. Eng., 23(11):736–743, 1997.

[32] E. Shihab, Z. M. Jiang, W. M. Ibrahim, B. Adams, and A. E. Hassan. Un-
derstanding the impact of code and process metrics on post-release defects: A
case study on the Eclipse project. In Proc. Int’l Symposium on Empirical Softw.
Eng. and Measurement (ESEM’10), pages 1–10, 2010.

32

[33] Y. Shin, R. Bell, T. Ostrand, and E. Weyuker. Does calling structure infor-
mation improve the accuracy of fault prediction? In Proc. Int’l Working Conf.
on Mining Software Repositories (MSR’09), pages 61–70, 2009.

[34] Q. Song, M. Shepperd, M. Cartwright, and C. Mair. Software defect associ-
ation mining and defect correction effort prediction. IEEE Trans. Softw. Eng.,
32(2):69–82, 2006.

[35] R. Subramanyam and M. S. Krishnan. Empirical analysis of ck metrics for
object-oriented design complexity: Implications for software defects. IEEE
Trans. Softw. Eng., 29(4):297–310, 2003.

[36] C. Weiß, R. Premraj, T. Zimmermann, and A. Zeller. How long will it take
to fix this bug? In Proc. Int’l Working Conf. on Mining Software Repositories
(MSR’07), pages 1–8, 2007.

[37] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for
Eclipse. In Proc. Int’l Workshop on Predictor Models in Software Engineering
(PROMISE’07), pages 1–7, 2007.

[38] M. Shepperd, M. Cartwright, and G. Kadoda. On Building Prediction Sys-
tems for Software Engineers. Empirical Software Engineering, 5(3):175-182,
2000.

33

