
Revisiting Common Bug Prediction Findings
Using Effort-Aware Models
Yasutaka Kamei†, Shinsuke Matsumoto††, Akito Monden‡,

Ken-ichi Matsumoto‡, Bram Adams† and Ahmed E. Hassan†
†Software Analysis and Intelligence Lab (SAIL), School of Computing, Queen’s University,

††Graduate School of Engineering, Kobe University,
‡Graduate School of Information Science, Nara Institute of Science and Technology,

†{kamei, bram, ahmed}@cs.queensu.ca, ††shinsuke@cs.kobe-u.ac.jp
‡{akito-m, matumoto}@is.naist.jp

Abstract—Bug prediction models are often used to help allocate
software quality assurance efforts (e.g. testing and code reviews).
Mende and Koschke have recently proposed bug prediction
models that are effort-aware. These models factor in the effort
needed to review or test code when evaluating the effectiveness
of prediction models, leading to more realistic performance
evaluations. In this paper, we revisit two common findings in
the bug prediction literature: 1) Process metrics (e.g., change
history) outperform product metrics (e.g., LOC), 2) Package-
level predictions outperform file-level predictions. Through a case
study on three projects from the Eclipse Foundation, we find
that the first finding holds when effort is considered, while the
second finding does not hold. These findings validate the practical
significance of prior findings in the bug prediction literature and
encourage their adoption in practice.

I. INTRODUCTION

Software quality assurance activities (e.g., source code in-
spection and unit testing) are becoming increasingly important
as software systems are being widely used in our society.
Software faults (or bugs) in released products have expensive
consequences for a company and affect its reputation. Since
a company has only limited resources (e.g., developers and
cost) for software quality assurance activities, these activities
have to be performed as efficiently as possible.

To prioritize quality assurance efforts, fault prediction tech-
niques are often used to prioritize modules based on their
probability of having a fault or the number of expected faults
[1]–[3]. With these models, practitioners can allocate limited
testing or reviewing efforts to the most fault-prone modules.

However, as pointed out by Mende and Koschke [4], tra-
ditional prediction models [5]–[10] typically ignore the effort
needed to fix bugs, i.e., they do not distinguish between a
predicted bug in a small module and a predicted bug in a
large module. Clearly, both bugs require a different amount of
effort to inspect and fix, yet both are considered equal when
measuring the effectiveness of prediction models.

Mende and Koschke [11] proposed effort-aware models
that include the notion of effort. In their study, they use
lines of code as a proxy for effort. An experimental result
using publicly-available data sets shows that the prediction
performance of effort-aware models improved from a cost-

effectiveness point, compared to no effort-aware models (i.e.,
traditional prediction models).

Since effort-aware prediction models offer a totally new
interpretation and the practical adoption-oriented view of bug
prediction results, it is necessary to reconsider some of the
major findings in the fault prediction literature (e.g., [12]–[15])
by taking into account effort. In particular, we are interested
in addressing the following two research questions:

RQ1 Are process metrics still more effective than product
metrics in effort-aware models?
It is a known fact that process metrics are more
efficient fault predictors than product metrics [12]–
[14]. Since, Mende and Koschke [11] only used
product metrics, in their effort-aware models, it is
not clear whether process metrics still outperform
product metrics when considering effort.

RQ2 Are package-level predictions still more effective than
file-level predictions?
Traditionally, package-level bug prediction models
have been shown to have higher precision and recall
than file-level bug prediction models [15], [16]. We
examine whether or not effort-aware models at the
package-level are still as effective.

This paper provides the following contributions:

• We show that process metrics still outperform product
metrics using effort-aware bug prediction models.

• We show that package-level predictions are not more
effective than file-level predictions. This finding holds
even when considering Martin’s package design metrics
[17].

• We show that the effectiveness of package-level pre-
dictions can improve if we perform our predictions at
the file-level then lift it to the package-level instead of
collecting all metrics at the package-level. However this
new model still does not outperform file-level predictions
when considering the quality assurance efforts.

In what follow, Section II introduces related work. Section
III provides the design of our experiment, and Section IV gives
the results. Section V discusses the performance differences

26th IEEE International Conference on Software Maintenance in Timi!oara, Romania

978-1-4244-8628-1/10/$26.00 ©2010 IEEE

between package-level and file-level predictions. Section VI
presents the threats to validity and Section VII summarizes
the paper.

II. RELATED WORK

In this section, we discuss related work in fault prediction
models and effort-aware models.

A. Fault prediction models

Many fault prediction models have been proposed in lit-
erature [8]–[10], [18]–[20]. Zimmermann and Nagappan [10]
have introduced the use of network analysis on dependency
graphs for fault module prediction. They conducted an exper-
iment using industrial datasets. The result of their experiment
showed that network measures could identify 60% of the files
developers considered as critical. Mizuno and Kikuno [8] ap-
plied a generic text discriminator (i.e., as Spam filter) to predict
faults. They showed that their approach could classify 78% of
the actual faulty files as fault-prone. Kim et al. [18] proposed
a new bug prediction technique that works at the granularity
of an individual file level change. Their classifier is trained
using features (e.g., terms in the added delta source code and
terms in the change log) extracted from a version archive such
as CVS. They showed that their approach could classify the
files as buggy or not, with a 78 percent accuracy. Ratzinger
et al. [19] introduced non-refactoring and refactoring related
features to predict faults with high performance. Our study
evaluates the effect of well-known fault prediction models at
the package-level instead of at the file-level.

There are also several studies on evaluation methods for
prediction models [1], [4], [21], [22]. Lessmann et al. [21]
proposed a framework for comparative software fault clas-
sification (i.e., fault-prone or not). They considered three
sources for bias, such as, relying on accuracy indicators that
are conceptually inappropriate for software fault prediction
and cross-study comparisons. The AUC (Area Under the
receiver operating characteristics Curve) was recommended
as the primary accuracy indicator for comparative studies.
More recently, Mende and Koschke [4] introduced a method
for comparative fault density prediction based on the cost of
quality assurance activities. In our study, the experiments for
our two research questions are evaluated based on Mende and
Koschke’s method.

Some studies evaluated the performance of fault prediction
models for package-level modules. Nagappan et al. [23] pre-
dicted the likelihood of post-release faults at the package-level
using a regression model and principal component analysis.
Schröter et al. [15] also predicted the number of faults at the
package-level. In contrast to those studies, we evaluate the
effect of prediction models on the costs of software quality
assurance activities. Also, while these studies used a single
technique for the prediction of package, such as lifting the
file-level metrics up to the package-level, our study uses three
techniques, in order to study the impact of these techniques
on our findings.

B. Effort-Aware Models

Many fault prediction studies evaluate the performance of
prediction models that classify a module into fault-prone or
not fault-prone [5], [7], [8], [10]. Test managers and quality
managers identify fault-prone modules using a prediction
model and allocate more test efforts to the modules that are
detected to fault-prone.

However, the prediction model would not be effec-
tive because the costs of quality assurance activities are
largely ignored. Conventional studies evaluate the predic-
tion performance based on the assumption that the effort of
test/inspection is the same across modules. The assumption is
rarely true in many cases. Arisholm et al. [24] pointed out that
the effort of testing or reviewing a module is roughly likely
to be proportional to the size.

This paper evaluates the performance of prediction models
in terms of effort as inspired by Mende and Koschke’s study
[11]. Their model considers the effort required to review a
module (i.e., file or package) and predicts the relative risk
Rdd(x) of a module:

Rdd(x) =
#errors(x)

E(x)
, (1)

where #errors(x) is the number of errors in a module
and E(x) is defined as the effort required to test or inspect a
module x. In this study, we use the lines of code as a measure
of effort, similar to Mende and Koschke [11].

We use the Popt evaluation metrics [4] to evaluate the
prediction performance of models. Popt is defined as the area
∆opt between the LOC-based cumulative lift charts of the
optimal model and the prediction model (Figure 1). In the
optimal model, all modules are ordered by the decreasing
actual fault density. While in the predicted model, all modules
are ordered by decreasing predicted fault density. As shown
in the following equation, a larger Popt value means a smaller
difference between the optimal and predicted model.

Popt = 1−∆opt (2)

However, the minimum value of Popt depends on the
number of bugs in our dataset. In this study, we used a
normalized value based on the following equation:

Norm(Popt) =
Popt −min(Popt)

max(Popt)−min(Popt)
, (3)

where max(Popt) and min(Popt) are calculated on the LOC-
based cumulative lift chart in which all modules are ordered
by fault density.

III. EXPERIMENT SETTING

In this section, we describe our experiment setting. We
describe the modeling techniques and the data sources. We
explain the recovery of bugs from software repositories.

TABLE I
STATISTICS SUMMARY OF STUDIED PROJECTS

ver. # of files
(*.java) # of packages Source lines of

code (KSLOC) # of faults Fault density
(Faults/KSLOC)

Platform 3.0 4,629 376 611 3,030 4.96
3.1 5,462 439 738 3,191 4.32
3.2 6,512 552 883 2,571 2.91

JDT 3.0 2,961 173 471 1,343 2.85
3.1 3,328 185 574 1,403 2.44
3.2 3,908 234 673 638 0.95

PDE 3.0 723 56 90 156 1.73
3.1 873 64 114 73 0.64
3.2 1,105 76 145 294 2.03

A. Used Modeling Techniques

We use three well-known modeling techniques; regression
model [25], regression tree [26] and random forest [27]. We
used the statistical computing and graphics toolkit R [28] and
its MASS, rpart and randomForest libraries to build the
three models.

B. Used systems

The target of our study is three subprojects within the
Eclipse software system, one of the best-known open de-
velopment platforms. We collected module (i.e., file and
package) datasets from three versions (v.3.0, v.3.1 and
v.3.2) in each subproject (Platform, JDT and PDE) from
the Eclipse CVS repository. We consider a Java file as
file-level and a package as package-level. For example,
in case of /org/eclipse/jdt/core/ElementChangedEvent.java,
the file is ElementChangedEvent.java and the package is
org.eclipse.jdt.core. Table I summarizes the statistics of the
used datasets.

C. Recovery of bugs

To obtain the number of bugs in source code files, we imple-
mented the SZZ algorithm [29]. This algorithm identifies when
a bug was injected into the code and who injected it by linking

0 5 10 15 20 25

0
2
0

4
0

6
0

8
0

SLOC (k)

D
e
f
e
c
t
s

Prediction Result

Optimal (bug density

based module order)

Fig. 1. Example of LOC-based Cumulative Lift Chart.

a version archive (such as CVS) to a bug tracking system
(such as Bugzilla). The SZZ algorithm basically consists of
three steps. First step, identifying the commit that fixes a bug,
SZZ searches for keywords such as “Fixed” or “Bug” in the
CVS comments. We used “bug”, “fix”, “defect” and “patch”
as keywords and identified the commit that had the keyword
and a digit number (e.g., bug 12345) as a bug-fix commit. The
second step confirms whether that commit is really a bug-fix
commit using information from Bugzilla. We link the digit
number of the CVS comments to the bug number of Bugzilla.
The commit is more likely to be a bug-fix commit if the author
of the commit has been assigned to the identified bug report.
Other, heuristics to confirm whether a commit is really a bug-
fix commit are discussed where [29]. The third step identifies
when the bug is introduced, we use the CVS diff and annotate
command (Figure 2). We locate fixed lines (e.g., line #3) of
the bug-fix commit (rev. C) and original lines (e.g., line #3)
of the previous commit (rev. B) using the diff command. We
identify the most recent revision (rev. A) in which the original
lines were changed using the annotate command. We consider
the commit of the identified revision as the bug-introducing
commit.

When we identify the dates of the introduction and fixing
of a bug using the SZZ algorithm, we count that file A has
one bug in v3.1 but file B has no bug in v3.1 because the bug
of file B is already fixed before v3.1 (Figure 3). We used the
Eclipse CVS repository and Eclipse Bugzilla reports provided
by the MSR 2008 Mining Challenge [30].

!"#$%&'(')*' !"#+%&'(')*' !"#,%&'(')*'

-

./0%123&45/63142 ./0%718

!"#$%&'(')*' !"#+%&'(')*' !"#,%&'(')*'

9

./0%123&45/63142 ./0%718

Fig. 3. Example of Counting the Number of Bugs.

!" #$$% &'()*%& +,(- ./0

1")*%&23*%& 42$5&6+./7

8" *3+3*%&24429:;;/0

<" -&(=-62(-=&7

>" ?

@" A

!" #$$% &'*.()*%&+,(- ./0

1")*%&23*%& 42$5&6+./7

8" *3+3*%&24429:;;/0

<" -&(=-62(-=&7

>" ?&%.&0

@" A

!" #$$% &'*.()*%&+,(- ./0

1")*%&23*%& 42$5&6+./7

8" *3+3*%&2B429:;;/0

<" -&(=-62(-=&7

>" ?&%.&0

@" A

#=C23*'2D$EE*(#=C2*6(-$F=D(*$62D$EE*(

!""#$!$% G-2H

-&I2J -&I2H -&I2K

-&I2H

-&I2J

!"#$%

-&I2J

-&I2H

A

&'((G-2H2G-2K

8D8

L222*3+3*%&244 9:;;/0

M222*3+3*%&2B4 9:;;/0

Fig. 2. Example of bug-fix and bug-introduction commits.

IV. EXPERIMENTAL RESULTS

The goal of our experiment is to study the effect of effort-
aware models on prior findings in the bug prediction literature.
We now present the results of our study with respect to our
two research questions.

RQ1: Are process metrics still more effective than product
metrics in the effort-aware models?

Overview. In the experiment for RQ1, we compare models
based on product metrics to models based on process metrics
at the file-level. We apply these metrics to three well-known
modeling techniques (regression model, regression tree, and
random forest) and evaluate the prediction performance. We
also study the performance of the product and process metrics
when combined together.

Motivation. Several studies continue to show that process
metrics are more effective than product metrics in predicting
faulty modules [12]–[14]. Since, Mende and Koschke [11]
only used product metrics, in their effort-aware models, it
is not clear whether process metrics still outperform product
metrics when considering effort.

Used Metrics. For our file-level analysis, we measure product
metrics and process metrics (Table II). The product metrics
measure the static structure of source code such as source lines
of codes and McCabe’s cyclomatic complexity. The product
metrics are measured using the Eclipse Metrics plug-in [31].

For process metrics, we used the metrics proposed by Moser
et al. [14]. The process metrics measure the change history of
source code, such as the number of revisions and the number
of times a file has been refactored. We wrote a script that
calculates the process metrics from the change history (i.e.,
the Eclipse CVS repository).

Since many product and process metrics have a strong
correlation with SLOC, we normalized metrics with a corre-
lation coefficient that is higher than 0.4 by dividing by SLOC
[32]. The normalized metrics were MLOC, NBD, PAR, VG,
NOF, NOM, WMC, Codechurn, LOCAdded, LOCDeleted and
Revisions.

Model Building Approach. In order to address our research
questions, we build fault prediction models that are based on

TABLE II
MEASURED METRICS AT THE FILE-LEVEL

Metrics name Definition
Product SLOC Source Lines of Codes
metrics MLOC LOC executable

PAR Number of parameters
NOF Number of attributes
NOM Number of methods
NORM Number of overridden methods
NSC Number of children
NSF Number of static attributes
NSM Number of static methods
NBD Nested block depth
VG Cyclomatic complexity
DIT Depth of Inheritance Tree
LCOM Lack of Cohesion of Methods
WMC Number of Weighted Methods per

Class
SIX Specialization Index

(NORM+DIT)/NOM
Process
metrics

Codechurn Sum of (added lines of code - deleted
lines of code)

LOCAdded Sum over all revisions of the lines of
code added to a file

LOCDeleted Sum over all revisions of the lines of
code deleted from a file

Revisions Number of revisions of a file
Age Age of a file in weeks
BugFixes Number of times a file was involved in

a bug-fix transaction
Refactorings Number of times a file has been refac-

tored

product and process metrics. We use three modeling tech-
niques (regression model, regression tree and random forest)
to build the prediction models.

Results of our Experiment. We performed two types of
evaluation analyses to study the performance of our experi-
ments. The two analyses are: cross validation and cross-release
prediction of post-release failures. For the cross-validation
analysis, we randomly divided our module (i.e., files or
packages) dataset into two sets with equal sizes. One of the
datasets was used as training and the other was used as test.
This division was repeated 20 times based on the experimental
result by Kirsopp and Shepperd [33]. For the cross-release
analysis, a training dataset was built from a past release of a
project, and a test dataset was built from the following release.
The cross-release evaluation leads to an evaluation in a more
practical setting.

Cross-validation analysis

Table III shows the experimental results of our cross val-
idation analysis at the file-level. The values in each row are
the average value of Popt for 20 iterations. A “*” symbol
next to a value indicates that it is the best performance among
the combinations of the three metric types (product metrics,
process metrics and both) and three modeling techniques (LM
- linear model, RT - regression tree and RF - Random Forest).
The value next to the “LOC” in the header of a table indicates
the Popt of a LOC based file order, which is the simplest
classifier that orders files just by their decreasing size (LOC).
In other words, if one were to just review files by picking the
biggest files to review first then proceeding to smaller files.
The value beside the ‘LOC” is used as the baseline for the
models.

We find that regardless of modeling techniques (LM, RT and
RF), using process metrics is better than using product metrics.
In the case of RF, the Popt range of process metrics is from
0.80 to 0.94, while that of product metrics is from 0.56 to 0.75.
Among the models, the improvement of Popt by using process
metrics is 0.07 at minimum (in PDE v3.0, RF) and 0.35 at
maximum (in Platform v3.2, RF). The prediction performance
of a combined model of product metrics and process metrics
shows no difference from using only process metrics. We also
note that using product metrics is better than LOC based file
order. In short, process metrics outperform product metrics and
combing both types of metrics does not lead to an improved
performance.

Cross-release analysis

Table VII shows the experimental results for the cross-
release analysis at the file-level. The values in each row are
the value of Popt for just a single iteration unlike the cross
validation study. Similar to the experimental results of the
cross validation study, process metrics show a better prediction
performance than product metrics across all datasets. The
improvement of Popt using process metrics is 0.01 at minimum
(in PDE v3.0, RT) and 0.43 at maximum (in PDE v3.0, LM).
For product metrics, LM and RT are worse in some cases
than the baseline (LOC based file) order, but RF is always
better than LOC based file order. For process metrics, RF gives
the best performance among three techniques for all datasets
except PDE v.3.0 → v.3.1. Again, we find that process metrics
outperform product metrics and combing both types of metrics
does not lead to an improved performance.

Figure 4 shows the LOC-based cumulative lift charts of
the random forest in Platform v.3.1 → v.3.2 of Table IV. We
order all files by decreasing fault density. The x-axis shows the
cumulative SLOC and the y-axis shows the cumulative number
of bugs. The dashed line plots the cumulative lift chart for files
ordered by decreasing actual (i.e., optimal) fault density, and
solid line and dot-line plot the cumulative lit chart for files
ordered by decreasing the predicted fault density of random
forest using process metrics and product metrics. This result
indicates that when we conduct a test on only 20% (of the
lines) of all files based on the predicted fault density, we could

detect 29% of all faults using product metrics and 74% of all
faults using process metrics. That is, using our bug predictions,
we only need to spend 20% of the efforts that it would take
to test all files to detect up to 74% of all faults. We find
that process metrics outperform product metrics by a factor of
2.6(=74/29) when considering effort.

The performance of our product metrics are consistent with
results reported earlier by Mende and Koschke’s [11]. They
showed that the result of random forest using only product
metrics was 35% in Eclipse v.3.0.

Process metrics outperform product metrics as predictors
of fault density when taking test effort into account.

RQ2: Are package-level predictions more effective than file-
level predictions?

Overview. In the experiment for RQ2, we compare file-level
predictions to package-level predictions. We compare the pre-
diction performance of one file-level prediction against three
types of package-level predictions. We use three modeling
techniques (i.e., LM, RT and RF) to build these three package-
level predictions.

Motivation. Traditionally, package-level bug prediction mod-
els have been shown to have higher precision and recall than
file-level bug prediction models [15], [16]. We clarify whether
or not effort-aware models at the package-level module are still
more effective.

Used Metrics. For package-level predictions, in addition to
product metrics and process metrics, we use the metrics
suite proposed by Martin [17]. Table V shows the Martin
metrics used in our study. Martin’s package design metrics
indicate instability (Ca, Ce, I) and abstractness (NA, NC, A)
of packages, and imbalance (D) of the instability and the
abstractness. In this paper, we consider that a highly instable
package is likely to have many bugs because when classes that

0 200 400 600 800

0
50
0

10
00

15
00

20
00

25
00

!"#$%&'(

!
"
#
"
$
%
&

)*+,-..%/-0*1,.

#201/34

567

897

5:7

)*+;<,0%/-0*1,.

Fig. 4. File-level: LOC-based Cumulative Lift Chart for Product Metrics v.s.
Process Metrics (RF, Platform v3.1→v3.2).

TABLE III
FILE-LEVEL: EXPERIMENTAL RESULT FOR PRODUCT METRICS V.S. PROCESS METRICS (CROSS-VALIDATION)

(a) Platform
Popt v.3.0 (LOC : 0.49) v.3.1 (LOC : 0.46) v.3.2 (LOC : 0.43)

LM RT RF LM RT RF LM RT RF
Product 0.59 0.52 0.56 0.58 0.54 0.58 0.60 0.54 0.59
Process 0.81 0.80 0.87 0.82 0.83 0.89 0.90 0.89 0.94*
Prod. + Proc. 0.83 0.80 0.88* 0.85 0.83 0.90* 0.90 0.88 0.93
*: Best Performance LM: Linear Model RT: Regression Tree RF: Random Forest

(b) JDT
Popt v.3.0 (LOC : 0.50) v.3.1 (LOC : 0.54) v.3.2 (LOC : 0.47)

LM RT RF LM RT RF LM RT RF
Product 0.55 0.50 0.57 0.54 0.56 0.61 0.52 0.56 0.60
Process 0.80 0.80 0.86* 0.74 0.76 0.80 0.75 0.78 0.83
Prod. + Proc. 0.76 0.73 0.82 0.79 0.78 0.87* 0.74 0.76 0.85*

(c) PDE
Popt v.3.0 (LOC : 0.53) v.3.1 (LOC : 0.60) v.3.2 (LOC : 0.51)

LM RT RF LM RT RF LM RT RF
Product 0.61 0.58 0.75 0.62 0.67 0.66 0.50 0.49 0.61
Process 0.78 0.78 0.82 0.78 0.77 0.83* 0.78 0.83 0.84*
Prod. + Proc. 0.75 0.75 0.84* 0.82 0.74 0.78 0.76 0.73 0.81

TABLE IV
FILE-LEVEL: EXPERIMENTAL RESULT FOR PRODUCT METRICS V.S. PROCESS METRICS (CROSS-RELEASE)

(a) Platform
Popt v.3.0 → v.3.1 v.3.1 → v.3.2 v.3.1 → v.3.2

(LOC : 0.45) (LOC : 0.43) (LOC : 0.43)
LM RT RF LM RT RF LM RT RF

Product 0.59 0.53 0.61 0.53 0.49 0.57 0.58 0.54 0.64
Process 0.81 0.82 0.87* 0.82 0.86 0.91* 0.85 0.86 0.92*
Prod. + Proc. 0.82 0.77 0.87* 0.83 0.82 0.91* 0.87 0.84 0.92*

(b) JDT
Popt v.3.0 → v.3.1 v.3.1 → v.3.2 v.3.1 → v.3.2

(LOC : 0.54) (LOC : 0.47) (LOC : 0.47)
LM RT RF LM RT RF LM RT RF

Product 0.48 0.55 0.58 0.52 0.52 0.54 0.52 0.53 0.62
Process 0.76 0.75 0.80* 0.76 0.76 0.82* 0.80 0.77 0.84*
Prod. + Proc. 0.72 0.71 0.79 0.73 0.74 0.81 0.75 0.78 0.83

(c) PDE
Popt v.3.0 → v.3.1 v.3.1 → v.3.2 v.3.1 → v.3.2

(LOC : 0.59) (LOC : 0.50) (LOC : 0.50)
LM RT RF LM RT RF LM RT RF

Product 0.41 0.65 0.74 0.50 0.53 0.58 0.49 0.51 0.58
Process 0.84* 0.66 0.83 0.71 0.67 0.76* 0.72 0.56 0.73
Prod. + Proc. 0.82 0.65 0.83 0.70 0.68 0.73 0.74* 0.55 0.68

the package depends on are modified then the package needs
to be modified too increasing the chances that a bug might be
introduced. We also consider that a low-abstractness package
is likely to have many bugs because many program logics
could be implemented in the package. Additionally, we expect
that a highly imbalanced package is likely to have many bugs
because the design quality of the package might be worse.

Model Building Approach. When building a file-level pre-
diction model, product metrics and process metrics can be
used as is. However, since a package consists of multiple
modules (i.e., files), we either need to lift the file-level metrics
up to the package-level or use special package-level metrics
(e.g., Martin’s metrics). Figure 5 shows an overview of the
construction process of package-level prediction model. B0
File(Prod. + Proc.) shows building a file-level prediction

model. In this paper, we use the following building methods
for the prediction of packages in the experiment.

B1 Lifting the file-level metrics up to the package-
level
First, this building method measures metrics at the
file-level and calculates representative value (e.g.,
maximum and median) in each package. For ex-
ample, if there are three files in package with a
cyclomatic complexity of 8, 4 and 2, then the rep-
resentative value for the package is 8 in the case of
median. Next, this building method predicts the fault
density of a package. This method has been used in
other studies [23]. We use the mean for this study.

B2 Metrics for package-level modules
This building method measures the metrics that can

!"#$%&'()*'"+&,

!"#&*,,()*'"+&,

)-"'+.()*'"+&,

!"*$+&'+#.

)#$*/

0+1'*$(2*,%/',

-'(!-&3-4*5/*6*/(

7'(8+/*5/*6*/

7'(!-&3-4*5/*6*/

!"*$+&'+#.

)#$*/

0+1'+.4(%9

)#$%/*,

!"#$%&'()*'"+&,

!"#&*,,()*'"+&,

7'(!-&3-4*5/*6*/

2*,%/',

-'(8+/*5/*6*/

!"*$+&'+#.

)#$*/

0+1'+.4((2*,%/',('#(

!-&3-4*5/*6*/

0+1'*$(2*,%/',

-'(!-&3-4*5/*6*/(

!"#$%&'($)*+,-.$/$*+,0.1

!2#$*30435($)63+7&81

!9#$*30435($)*+,-.$/$*+,0.1

0+1'*$(2*,%/',

-'(!-&3-4*5/*6*/(

!:#$*30435($);&<7=>1

Fig. 5. Overview of the construction process of prediction models.

TABLE V
MEASURED METRICS AT THE PACKAGE-LEVEL

Name Definition
Ca Number of classes outside this package that depend on

classes within this package
Ce Number of classes inside this package that depend on

classes outside this package. We ignore dependencies to
standard libraries such as java.* and javax.*.

I Instability I = Ce/(Ca+ Ce)
NA Number of abstract classes
NC Number of concrete classes
A Abstractness A = NA/(NA+NC)
D Distance from the Main Sequence |A+ I − 1|

Main Sequence: balance between A and I that is, 1

be directly collected at the package-level. We use
Martin’ package-level metrics and predict the fault
density at the package-level. To our knowledge, no
study has reported the effects of Martin metrics on
fault density prediction.

B3 Lifting file-level prediction results to the package-
level
Instead of lifting metrics, we lift prediction results.
First, this building method measures metrics at the
file-level and predicts the fault density of each file.
Next, this method lifts the file-level fault density
predictions to the package-level while taking into
account the SLOC of a file since we lift density
values not basic bug counts. To our knowledge, this
paper represents the first experiment to ever consider
this method of building package-level predictions.

Results of our experiment. The presentation of our results
follows the same style as done in RQ1.

Cross-validation analysis

Table VI shows the experimental results using a cross
validation analysis. The values in each row are the average
value of Popt for 20 iterations. A “*” symbol next to a value
indicates that it is the best performance in a particular dataset
(i.e., project). Package(LiftUp) is the result of lifting file-level
combined process and product predictions (File(Prod. + Proc.))
to the package-level.

There is little difference between File(Prod. + Proc.) and
Package(LiftUp). For example, in the case of RF, the Popt

range of File(Prod. + Proc.) is from 0.78 to 0.93, while that
of Package(LiftUp) is from 0.81 to 0.93.

We find that the prediction performance of Package(LiftUp)
using random forests is the best for all 3 datasets across three
releases. On the other hand, the prediction performance of
Package(Martin) is the worst for all three datasets across the
three releases.

Cross-release analysis

Table VII shows the experimental results on a cross-release
study. The values in each row are the value of Popt for 1
iteration unlike the cross validation study. The result shows
a somewhat similar tendency as the cross validation study.
There is little difference between File(Prod. + Proc.) and
Package(LiftUp).

The result show that Package(LiftUp) is better than the
Package(Prod. + Proc.) and the Package(Martin). In the case of
RF, the Popt range of Package(LiftUp) is from 0.72 to 0.93,
while those of Package(Prod. + Proc.) and Package(Martin)
are from 0.51 to 0.89 and from 0.48 and 0.71.

Figures 6 and 7 show the LOC-based cumulative lift charts
of the best performance of File(Prod. + Proc.) and Pack-
age(LiftUp) from Table VII. We order all files/packages by
decreasing fault density. The x-axis shows the cumulative
SLOC and the y-axis shows the cumulative number of bugs.
The dashed line plots the cumulative lift chart for files ordered
by decreasing actual (i.e., optimal) fault density, and solid line
plots the cumulative lift chart for files ordered by decreasing
the predicted fault density of random forest. Note that the
cumulative lift charts of the optimal fault density is different
between file-level and package-level because the distribution
of faults inside the dataset is different at file-level versus the
package-level.

Figures 6 and 7 indicate that when we conduct a test on
20% (of the lines) of all files/packages based on the predicted
fault density, we could detect 74% and 62% of the faults at
the file-level and package-level respectively. That is, we only
need to spend 20% of the efforts that it would take to test all

TABLE VI
EXPERIMENTAL RESULT FOR FILE-LEVEL V.S. PACKAGE-LEVEL (CROSS-VALIDATION)

(a) Platform
Popt v.3.0 v.3.1 v.3.2

LM RT RF LM RT RF LM RT RF
File (Prod. + Proc.) 0.83 0.80 0.88 0.85 0.83 0.90 0.90 0.88 0.93*
Package (Prod. + Proc.) 0.82 0.79 0.84 0.82 0.83 0.88 0.89 0.85 0.91
Package (Martin) 0.65 0.56 0.57 0.55 0.60 0.60 0.54 0.59 0.52
Package (LiftUp) 0.86 0.87 0.90* 0.88 0.89 0.92* 0.90 0.92 0.93*

(b) JDT
Popt v.3.0 v.3.1 v.3.2

LM RT RF LM RT RF LM RT RF
File (Prod. + Proc.) 0.76 0.73 0.82* 0.79 0.78 0.87* 0.74 0.76 0.85
Package (Prod. + Proc.) 0.56 0.67 0.74 0.72 0.70 0.72 0.75 0.75 0.83
Package (Martin) 0.49 0.39 0.46 0.66 0.63 0.60 0.54 0.57 0.50
Package (LiftUp) 0.76 0.76 0.82* 0.79 0.83 0.87* 0.75 0.82 0.87*

(c) PDE
Popt v.3.0 v.3.1 v.3.2

LM RT RF LM RT RF LM RT RF
File (Prod. + Proc.) 0.75 0.75 0.84 0.82 0.74 0.78 0.76 0.73 0.81
Package (Prod. + Proc.) 0.72 0.72 0.74 0.83 0.83 0.78 0.63 0.73 0.71
Package (Martin) 0.46 0.50 0.56 0.47 0.54 0.26 0.60 0.58 0.53
Package (LiftUp) 0.76 0.78 0.88* 0.84* 0.75 0.81 0.76 0.82 0.85*

TABLE VII
EXPERIMENTAL RESULT FOR FILE-LEVEL V.S. PACKAGE-LEVEL (CROSS-RELEASE)

(a) Platform
Popt v.3.0 → v.3.1 v.3.0 → v.3.2 v.3.1 → v.3.2

LM RT RF LM RT RF LM RT RF
File (Prod. + Proc.) 0.82 0.77 0.87 0.83 0.82 0.91 0.87 0.84 0.92
Package (Prod. + Proc.) 0.81 0.72 0.85 0.79 0.82 0.84 0.87 0.83 0.89
Package (Martin) 0.63 0.62 0.71 0.66 0.56 0.63 0.61 0.56 0.63
Package (LiftUp) 0.86 0.87 0.90* 0.81 0.90 0.92* 0.86 0.92 0.93*

(b) JDT
Popt v.3.0 → v.3.1 v.3.0 → v.3.2 v.3.1 → v.3.2

LM RT RF LM RT RF LM RT RF
File (Prod. + Proc.) 0.72 0.71 0.79* 0.73 0.74 0.81* 0.75 0.78 0.83
Package (Prod. + Proc.) 0.50 0.52 0.51 0.54 0.72 0.71 0.78 0.74 0.74
Package (Martin) 0.42 0.38 0.58 0.48 0.37 0.52 0.53 0.52 0.61
Package (LiftUp) 0.65 0.69 0.72 0.72 0.79 0.80 0.81 0.84 0.85*

(c) PDE
Popt v.3.0 → v.3.1 v.3.0 → v.3.2 v.3.1 → v.3.2

LM RT RF LM RT RF LM RT RF
File (Prod. + Proc.) 0.82 0.65 0.83 0.70 0.68 0.73 0.74* 0.55 0.68
Package (Prod. + Proc.) 0.87 0.88 0.85 0.65 0.58 0.61 0.64 0.59 0.63
Package (Martin) 0.69 0.75 0.70 0.59 0.61 0.57 0.54 0.55 0.48
Package (LiftUp) 0.89* 0.57 0.89* 0.71 0.77 0.79* 0.74* 0.64 0.73

files to detect up to 74% and 62% of all faults using file-level
and package-level model. In short, the file-level model is 20%
better than the package-level model.

There is little difference between Popt of the file-level
and package-level when taking test effort into account.
However, file-level predictions are more effective than
package-level prediction, since only 20% of test effort
is needed to detect up to 74% of all faults. Also, we find
that lifting up prediction results is better than building
package-level models using lifted metrics.

V. SUMMARY AND ANALYSIS

In this paper, we evaluated the prediction performance of
effort-aware models at the file-level and package-level using
three data sets collected from the Eclipse Platform. Our results
indicated that, at the file-level, process metrics outperform
product metrics as predictors of fault density in effort-aware
models, and random forest is the best prediction model among
the three models.

To illustrate the impact of product metrics and process
metrics, we use IncNodePurity in the output of the R
randomForest library [34]. IncNodePurity shows the mean
decrease in node impurity. That is, a higher IncNodePurity
means that a variable plays a more important role in a

built prediction model. Figure 8 shows IncNodePurity, sorted
decreasingly from top to bottom, of the metrics as assigned
by the random forest (Prod. + Proc.) for Platform v.3.1 →
v.3.2. The top five metrics are all process metrics (Revisions,
BugFixes, Age, LOCDeleted and Codechurn). By using ran-
dom forest and process metrics, test managers and quality
managers could allocate inspection/test effort to find faulty
modules more effectively.

For package-level prediction, the prediction performance of
Martin metrics is the worst for all three datasets. To illustrate
this, we build a random forest using the 7 Martin metrics
and the 22 lifted-up product metrics and process metrics in
Platform v.3.1 → v.3.2 and calculated the IncNodePurity. None
of the Martin metrics show up in the top five metrics. The
highest three positions in the 29 metrics are positions 10(Ce),

0 200 400 600 800

0
50
0

10
00

15
00

20
00

25
00

!"#$%&'(

!
"
#
"
$
%
&

)*+,-+,.,+%/0,12

#/3*45+&)*+,-+,.,+(

678

9:8

Fig. 6. LOC-based Cumulative Lift Chart at the File-level (RF, Platform
v3.1→v3.2).

0 200 400 600 800

0
50
0

10
00

15
00

20
00

25
00

!"#$%&'(

!
"
#
"
$
%
&

)*+'*,-./-0-/%12-34

#1567*/&)*+'*,-./-0-/(

89:

;8:

Fig. 7. LOC-based Cumulative Lift Chart at the Package-level (RF, Platform
v3.1→v3.2).

17(D) and 21(I).
There is little difference between Popt at the file and

package-level. However, we find that if we test 20% of all
modules based on the predicted fault density, we would detect
74% of faults using file-level models and 62% of faults
using package-level models. Such performance shows that
fault density prediction model at the file-level is more effective
than that at package-level.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to the validity of
our work. We use a dataset collected from one foundation.
In Tables III and IV, and Tables VI and VII, we can see
that the tendency of evaluation value Popt is similar in three
subprojects and three versions. We need to analyze other open
source and closed source systems to generalize our findings.

This study uses the lines of code as a measure of effort,
similar to Mende and Koschke [11], because Arisholm et al.
[24] pointed out that the effort is likely to be proportional
to the size. Replicated studies using other measures (e.g.,
McCabe cyclomatic complex) of effort will be useful to assess
the generalizability of our findings.

We use linear regression, regression tree, and random forest
techniques to evaluate the effect of the effort-aware models,
since these modeling techniques are well-known for bug
prediction. However, using other modeling techniques may
produce different results. We also use the mean value to
build package-level models using lifted metrics. Using other
representative values (e.g., maximum and median) may lead
to different results.

This study obtains the number of bugs in source code files
using the SZZ algorithm. The algorithm is commonly used in
fault prediction research [8] and [14], but has the limitation
that faults not recorded in CVS log comments cannot be
collected. Further research is required to improve the accuracy
of faults collection from repositories.

NSM
NSC
Refactorings
NORM
LCOM
SIX
DIT
NSF
NOF
NOM
WMC
VG
PAR
MLOC
NBD
SLOC
LOCAdded
Codechurn
LOCDeleted
Age
BugFixes
Revisions

0.00 0.05 0.10 0.15 0.20

IncNodePurity

Fig. 8. IncNodePurity of metrics as assigned by the random forest at the
File-level (RF, Platform v3.1→v3.2).

VII. CONCLUSION

In this paper, we sought to revisit some of the major findings
in the prediction literature by taking into account the cost of
additional software quality assurance efforts. We experimen-
tally evaluated the performance of effort-aware models using
data from three subprojects (Platform, JDT and PDE) from the
Eclipse Foundation across three releases. Our major findings
include the following:

• At the file-level, process metrics still outperform product
metrics when considering quality assurance efforts. We
show a 2.6 times improvement between process metric
and product metrics;

• At the file-level, random forest produce the best predictor
performance compared to linear models and regression
trees;

• Package-level predictions are less effective than file-level
predictions. When we test or review 20% (of the lines)
of all modules based on the predicted fault density, we
could detect almost 74% of faults using file-level models
versus 62% of faults using package-level models;

• At the package-level, lifting up prediction results is better
than building package-level models using lifted metrics.

The major limitation of this paper is that we used only a
dataset collected from one foundation. Our future work is to
confirm our results using other project datasets. We also plan
to explore other more appropriate measures as a proxy for the
effort instead of lines of code.

ACKNOWLEDGEMENTS

We are grateful to the reviewers for their valuable com-
ments. This research is being conducted as a part of the Next
Generation IT Program by the Ministry of Education, Culture,
Sports, Science and Technology, Japan.

REFERENCES

[1] N. Ohlsson and H. Alberg, “Predicting fault-prone software modules
in telephone switches,” IEEE Transactions on Software Engineering,
vol. 22, no. 12, pp. 886–894, 1996.

[2] M. Pighin and R. Zamolo, “A predictive metric based on discriminant
statistical analysis,” in Proc. Int’l Conference on Software Engineering
(ICSE’97), 1997, pp. 262–270.

[3] J. C. Munson and T. M. Khoshgoftaar, “The detection of fault-prone
programs,” IEEE Transactions on Software Engineering, vol. 18, no. 5,
pp. 423–433, 1992.

[4] T. Mende and R. Koschke, “Revisiting the evaluation of defect prediction
models,” in Proc. Int’l Conference on Predictor Models in Software
Engineering (PROMISE’09), 2009, pp. 1–10.

[5] V. R. Basili, L. C. Briand, and W. L. Melo, “A validation of object-
oriented design metrics as quality indicators,” IEEE Transactions on
Software Engineering, vol. 22, no. 10, pp. 751–761, 1996.

[6] A. E. Hassan, “Predicting faults using the complexity of code changes,”
in Proc. Int’l Conference on Software Engineering (ICSE’09), 2009, pp.
16–24.

[7] T. M. Khoshgoftaar and E. B. Allen, “Modeling software quality with
classification trees,” in Recent Advances in Reliability and Quality
Engineering. Singapore: World Scientific, 1999, pp. 247–270.

[8] O. Mizuno and T. Kikuno, “Prediction of fault-prone software modules
using a generic text discriminator,” IEICE Transactions on Information
and Systems, vol. E91-D, no. 4, pp. 888–896, 2008.

[9] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “Software defect
association mining and defect correction effort prediction,” IEEE Trans-
actions on Software Engineering, vol. 32, no. 2, pp. 69–82, 2006.

[10] T. Zimmermann and N. Nagappan, “Predicting defects using network
analysis on dependency graphs,” in Proc. Int’l Conference on Software
Engineering (ICSE’08), 2008, pp. 531–540.

[11] T. Mende and R. Koschke, “Effort-aware defect prediction models,” in
Proc. of European Conference on Software Maintenance and Reengi-
neering (CSMR’10), 2010, pp. 109–118.

[12] T. L. Graves, A. F. Karr, J. S. Marron, and H. Siy, “Predicting
fault incidence using software change history,” IEEE Transactions on
Software Engineering, vol. 26, no. 7, pp. 653–661, 2000.

[13] N. Nagappan and T. Ball, “Use of relative code churn measures to
predict system defect density,” in Proc. Int’l Conference on Software
Engineering (ICSE’06), 2005, pp. 284–292.

[14] R. Moser, W. Pedrycz, and G. Succi, “A comparative analysis of the
efficiency of change metrics and static code attributes for defect pre-
diction,” in Proc. Int’l Conference on Software Engineering (ICSE’08),
2008, pp. 181–190.

[15] A. Schröter, T. Zimmermann, and A. Zeller, “Predicting component
failures at design time,” in Proc. of the 2006 ACM/IEEE international
symposium on Empirical software engineering (ISESE’06), 2006, pp.
18–27.

[16] T. Zimmermann, R. Premraj, and A. Zeller, “Predicting defects for
eclipse,” in Proc. Int’l Workshop on Predictor Models in Software
Engineering (PROMISE’07), 2007, p. 9.

[17] R. C. Martin, Agile Software Development, Principles, Patterns, and
Practices. Prentice Hall, 2002.

[18] S. Kim, E. J. Whitehead, Jr., and Y. Zhang, “Classifying software
changes: Clean or buggy?” IEEE Transactions on Software Engineering,
vol. 34, no. 2, pp. 181–196, 2008.

[19] J. Ratzinger, T. Sigmund, and H. C. Gall, “On the relation of refactorings
and software defect prediction,” in Proc. Int’l Working Conference on
Mining Software Repositories (MSR’08), 2008, pp. 35–38.

[20] Y. Kamei, A. Monden, S. Morisaki, and K. ichi Matsumoto, “A hybrid
faulty module prediction using association rule mining and logistic
regression analysis,” in Proc. Int’l Symposium on Empirical Software
Engineering and Measurement (ESEM2008), 2008, pp. 279–281.

[21] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” IEEE Transactions on Software Engineering,
vol. 34, no. 4, pp. 485–496, 2008.

[22] Y. Jiang, B. Cukic, and Y. Ma, “Techniques for evaluating fault pre-
diction models,” Empirical Software Engineering, vol. 13, no. 5, pp.
561–595, 2008.

[23] N. Nagappan, T. Ball, and A. Zeller, “Mining metrics to predict
component failures,” in Proc. Int’l Conference on Software Engineering
(ICSE’06), 2006, pp. 452–461.

[24] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and
comprehensive investigation of methods to build and evaluate fault
prediction models,” The Journal of Systems and Software, vol. 83, no. 1,
pp. 2–17, 2010.

[25] A. L. Edwards, Introduction to Linear Regression and Correlation.
W.H.Freeman & Co Ltd, 1976.

[26] L. Breiman, J. Friedman, C. J. Stone, and R. Olshen, Classification and
regression trees. Chapman and Hall/CRC, 1984.

[27] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, pp.
5–32, 2001.

[28] R, “The R Project for Statistical Computing,” http://www.r-project.org/,
last viewed: 17-Apr-2010.

[29] J. Śliwerski, T. Zimmermann, and A. Zeller, “When do changes induce
fixes?” in Proc. Int’l Conference on Mining Software Repositories
(MSR’05), 2005, pp. 1–5.

[30] MSR Mining Challenge 2008, http://msr.uwaterloo.ca/msr2008/
challenge/index.html, last viewed: 17-Apr-2010.

[31] Frank Sauer, “Eclipse Metrics plugin,” http://sourceforge.net/projects/
metrics, last viewed: 17-Apr-2010.

[32] S. Sato, A. Monden, and K. Matsumoto, “Evaluating the applicability
of reliability prediction models between different software,” in Proc.
Int’l Working on Principles of Software Evolution (IWPSE’02), 2002,
pp. 97–102.

[33] C. Kirsopp and M. Shepperd, “Making inferences with small numbers of
training sets,” IEE Proceedings Software, vol. 149, no. 5, pp. 123–130,
2002.

[34] A. S. Foulkes, Applied Statistical Genetics with R. Springer New York,
2009.

