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Abstract 

 
The goal of this paper is to improve the prediction 

performance of fault-prone module prediction models 
(fault-proneness models) by employing over/under 
sampling methods, which are preprocessing 
procedures for a fit dataset. The sampling methods 
are expected to improve prediction performance when 
the fit dataset is imbalanced, i.e. there exists a large 
difference between the number of fault-prone modules 
and not-fault-prone modules. So far, there has been 
no research reporting the effects of applying sampling 
methods to fault-proneness models. In this paper, we 
experimentally evaluated the effects of four sampling 
methods (random over sampling, synthetic minority 
over sampling, random under sampling and one-sided 
selection) applied to four fault-proneness models 
(linear discriminant analysis, logistic regression 
analysis, neural network and classification tree) by 
using two module sets of industry legacy software. All 
four sampling methods improved the prediction 
performance of the linear and logistic models, while 
neural network and classification tree models did not 
benefit from the sampling methods. The improvements 
of F1-values in linear and logistic models were 0.078 
at minimum, 0.224 at maximum and 0.121 at the mean. 
 
1. Introduction 
 

Identification of fault-prone modules [12] is an 
important issue for improving software quality in the 
testing and maintenance phases [9]. Various 
multivariate modeling techniques, which are 
applicable to fault-prone module prediction, have been 
proposed, including linear discriminant analysis 
[12][13], logistic regression analysis [10], neural 
network [2] and classification tree [5]. These models 
are built from a fit dataset, which contains product 

metrics and fault data of modules of a past software 
project. 

However, preparing a balanced fit dataset is not 
always possible in practical situations. Many module 
datasets in the field are actually imbalanced, i.e. there 
exists a large difference between the number of fault-
prone modules and not-fault-prone modules; and, this 
causes performance degradation of fault-proneness 
models [6]. For example, in Khoshgoftaar et al.’s case 
[7], the percentage of fault-prone modules to all 
modules (Pfp) was about 6% in the maintenance phase. 
Also, in NASA IV&V Facility Metrics Data 
Program’s case [11], Pfp was below 15% in 8 datasets 
out of 15. 

So far, an extended classification tree model 
suitable for an imbalanced dataset has been proposed 
by Khoshgoftaar et al [7]. In conventional fault-prone 
models, the prediction accuracy of the minority class 
(fault-prone modules) usually becomes worse since the 
prediction accuracy of the majority class (not-fault 
prone modules) is dominant in satisfying objective 
functions of the models [1]. The extended 
classification tree model is built based on the 
misclassification rate to improve the accuracy of the 
minority class. However, the problem here is that the 
classification tree is not always the best (most 
accurate) model among other models. Gray and 
Macdonell showed that the best model among 
available models often depends on a dataset being 
used [2]. 

In this paper, we focus on an approach to modify a 
fit dataset and not to extend fault-proneness models 
themselves. The approach is called sampling methods 
that can be applied independent of a fault-prone model. 
The sampling methods are classified into two 
methods: (1) over sampling that adds fake fault-prone 
modules (minority class) to a fit dataset, and (2) under 
sampling that reduces not-fault-prone modules 
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(majority class) from the fit dataset [1][8]. However, to 
our knowledge, no study has reported the effects of 
applying sampling methods to fault-proneness models. 
Furthermore, it is not clear which sampling methods 
are most appropriate for the fault-proneness models. 

In this paper, we experimentally evaluated the 
effects of four sampling methods (random over 
sampling, synthetic minority over sampling, random 
under sampling and one-sided selection) applied to 
four commonly used fault-proneness models (linear 
discriminant analysis, logistic regression analysis, 
neural network and classification tree) using two 
module datasets A and B (each written with different 
programming language) of large legacy software of a 
Japanese software company. Since all four sampling 
methods have the ability to control the number of 
modules to add to or delete from a dataset, we also 
evaluated the prediction accuracy with different 
numbers of additions/deletions. In our experiment, the 
fit datasets (of both A and B module sets) were built 
from data during the three years prior to a certain 
release in a maintenance phase (Pfp are 5.67% and 
13.16%), and the test datasets were built from data 
during three years after the release (Pfp are 2.15% and 
3.36%). The predictor variables of fault-proness 
models are 16 complexity metrics and 3 change 
history metrics of modules. 

In what follows, Section 2 describes the details of 
the sampling methods. Section 3 provides the design 
of our experiment, and Section 4 gives the results and 
discussion. Section 5 summarizes the paper and 
presents some future topics of research. 
 
2. Sampling Methods 
 

In this paper, “sampling” means a preprocessing 
procedure to correct the imbalance of a given dataset 
by increasing or decreasing the cases (modules) in the 
dataset before applying it to model building. There are 
two types of sampling: over sampling and under 
sampling. Over sampling increases minority cases, 
while under sampling decreases majority cases of the 
dataset. 

Generally, the prediction accuracy of the minority 
class (fault-prone modules) becomes worse since the 
prediction accuracy of the majority class (not-fault 
prone modules) is dominant in satisfying objective 
functions of the models [1]. By correcting the 
imbalance, the prediction accuracy of the minority 
case is expected to be improved. One of the concerns 
in using sampling methods is that over sampling 
might cause over fitting to fake (added) cases. Another 

concern is that under sampling might eliminate useful 
cases. Therefore, experimental evaluation of sampling 
methods is needed. 

In this paper, we use the following sampling 
methods in the experiment. 

 
2.1. Over Sampling 
2.1.1. Random over sampling (ROS) 
Random over sampling (ROS) increases the number of 
minority cases in a dataset by duplicating minority 
cases randomly. ROS repeats until Pfp reaches a 
predefined value (e.g. 50%) as follows. 
 
Step 1: Selection of a minority case 

One case is selected randomly from a minority class in 
a dataset. 
 
Step 2: Duplication of a minority case 

A new case is added to the dataset by duplicating the 
case selected in step 1. 
 
2.1.2. Synthetic Minority Over sampling Technique 
(SMOTE) 
Chawla et al. proposed Synthetic Minority Over 
sampling Technique (SMOTE) that produces new 
cases based on the k-nearest neighbor [1]. SMOTE 
repeats steps the following steps 1,…,4 for each case 
of minority class. 
 
Step 1: Selection of a minority case 

One case (denoted as ma) is selected from a minority 
class in a dataset. 
 
Step 2: Identification of k-nearest neighbors 

K-nearest neighbors of ma are identified based on the 
similarity computation. In this paper, we adopted k=5 
as Chawla et al. used [1]. Below describes how to 
compute the similarity. 
 
Step 2-1. The normalization of predictor variables 
SMOTE requires computing the similarity between 
two arbitrary cases in a dataset to identify the k-
nearest neighbors of a case. However, the similarity 
calculation based on predictor variables of software 
modules requires some normalization, because the 
value ranges of the variables widely vary. Hence, we 
added a new step, which normalizes predictor 
variables so that their value ranges become [0, 1]. The 
normalized value norm(vi, j) of variable fj of case mi is 
calculated by the following equation: 
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where min(fj) and max(fj) denote maximum and 
minimum value in variable fj, respectively. 
 
Step 2-2: Similarity calculation 
The similarity between ma and all other cases in the 
minority class is calculated. In this paper, we used 
Euclidian distance, which is widely used as similarity 
measure. The similarity sim(ma,mi) between target 
case ma and other case mi is calculated by the 
following equation: 
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where vi,j denotes a value of variable fj of case mi, and 
n denotes the number of predictor variables. 
 
Step 3: Selection of a neighbor 

One case mr was selected randomly from the k-nearest 
neighbors. 

 
Step 4: Addition of a minority case 

A new case was added in some places along a straight 
line between the vertexes of the feature vector of cases 
ma and mr. Step 4 was repeated x times, where x = (the 
number of additional minority cases) / (the number of 
original minority cases). 
 
2.2. Under Sampling 
2.2.1. Random under sampling (RUS) 
Random under sampling (RUS) decreases the number 
of majority cases in a dataset by deleting majority 
cases randomly. RUS repeats until Pfp reaches a 
predefined value as follows. 
 
Step 1: Selection of a majority case 

One case is selected randomly from a majority class in 
a dataset. 
 
Step 2: Deletion of a case 

The case selected in step 1 is deleted from the dataset. 
 

2.2.2. One-sided selection (ONESS) 
Kubat et al. [8] proposed an under sampling method 
called one-sided selection (ONESS), which exploits 
the concept of Tomek links [15]. Denoted by G (x,y), 
the distance between x and y, a pair of cases (x,y) is 
called a Tomek link if no case z exists such that G (x,z) 
< G (x,y) or G (y,z) < G (y,x) [15]. Kubat et al. proposed 
to select x from a minority class and y from a majority 
class. In this case, a Tomek link (x,y) can be found 
either (1) on the class boundary when both x and y 
exist in the right class regions, or (2) inside one of the 

Tomek link 
Major case

Minority case

Class Boundary

 
Figure 1. Example of distribution of majority cases 

and minority cases (Original fit dataset S) 
 

Tomek link 
Major case

Minority case

Class Boundary

R  
Figure 2.  Set C of cases containing R and all 

minority cases (After step 1) 
 

Tomek link 
Major case

Minority case

Class Boundary

R  
Figure 3. Set C without redundant (majority) cases 

(After step 2) 
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class regions when either x or y exists in the wrong 
region (i.e. it is considered noise). Kubat proposed to 
delete a majority case in a Tomek link that is believed 
to be borderline and/or noisy. 
Futhermore, Kubat et al. proposed to remove 
redundant (majority) cases based on a 1-nearest 
neighbor computation. 
Below are the details of one-side selection. 
 
Step 1: Selection of a majority case and initial 
samples 

Let S be the original fit dataset (Fig. 1). Randomly 
select a case R from a majority class in S. Let C be a 
set of cases containing R and all minority cases (Fig. 
2). 
 
Step 2: Building a sample set having no redundant 
majority cases 

Classify S with the 1-nearest neighbor rule using cases 
in C, and compare the assigned classification labels 
(either fault-prone or not-fault prone) with the original 
ones. Move all misclassified cases into C, which is 

now consistent with S while being smaller. As a result, 
redundant (majority) cases do not exist in C (Fig. 3). 
 
Step 3: Deletion of cases in Tomek links 

Remove from C all majority cases participating in 
Tomek links (Fig. 4). This removes those majority 
cases that are believed to be borderline and/or noisy. 
All positive examples are retained. The resulting set is 
referred to as T (Fig. 5). 
 
Step 4: Repetition 

In our pilot experiment, it turned out that the number 
of majority cases eliminated depends strongly on R 
selected in Step 1 (note that R is randomly selected). 
Thus, this paper proposes to repeat steps 1,…,3 until 
Pfp reaches a predefined value. 
 
3. Experiment Setting 
 

In this experiment, we experimentally evaluated the 
effect of four sampling methods (ROS, SMOTE, RUS, 
ONESS) applied to four commonly used fault-
proneness models (linear discriminant analysis (LDA) 
[12][13], logistic regression analysis (LRA) [10], 
neural network (NN) [2] and classification tree (CT) 
[5]). 

Since all four sampling methods can control Pfp 
(the percentage of fault-prone modules to all modules) 
in a sampled dataset, we also evaluated the prediction 
accuracy with different Pfp values. Note that Pfp should 
be 50% in terms of getting a balanced dataset; 
however, as described in section 2, there are two 
concerns with sampling (over sampling might cause 
over fitting to fake (added) cases, and, under sampling 
might eliminate useful cases), Thus, Pfp = 50 might 
not be the best choice. 

So, first, as a pilot experiment, the best Pfp value 
for each sampling method was identified by using a fit 
dataset only (based on the cross-validation technique). 
Then, fault-proneness models were built after 
sampling methods were applied to a fit dataset with 
the best Pfp value. Finally, using a test dataset, the 
prediction performance of the fault-proneness models 
was compared to that of naïve fault-pronenesses 
models built without sampling methods. 

Since all four sampling methods include some sort 
of randomness in their procedures, we repeated five 
times the above sampling, model building and 
performance evaluation and used the average 
performance values (recall, precision and F1-value). 

Tomek link 
Major case

Minority case

Class Boundary

R  
Figure 4. Tomek links in set C 

 

Tomek link 
Major case

Minority case

Class Boundary

R  
Figure 5. Resulting set T (After step 4) 
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In this experiment, we used the data mining toolkit 
SPSS Clementine to build all four fault-proneness 
models. We applied step-wise variable selection to 
LDA and LRA. 

Regarding the neural network model, five types of 
three-layer neural networks were constructed in the 
pilot experiment, each having one of the following 
numbers of learnings: 10,000; 20,000; 30,000; 50,000; 
100,000. The best number identified in the pilot 
experiment was used in the main experiment. To 
determine the link weights, the error back propagation 
algorithm [14] is commonly used as a learning 
algorithm. 

Also, as a classification tree model, we used the 
classification and regression trees (CART) algorithm 
[5] for model construction. 

3.1. Dataset 
 

The target is MIS (Management Information 
System) [4] software working on a mainframe 
machine. This software has been maintained for about 
twenty years and modified and expanded many times 
during that period. It was mainly written in two very 
old programming languages.  The total size is about 
1,000 KSLOC. Each language part consists of about 
2000 modules (source files). Each module contains 
several procedures (subroutines). 

In addition to fault data collected during 
maintenance, we measured 19 metrics for each module 
(Table 1). We used these 19 metrics as predictor 
variables. Fit datasets were built from data during 
three years prior to a certain release, and test datasets 
were built from data during three years after the 
release. 

We separated modules into two sets A and B 
according to the programming language used. We 
label a fit dataset of language A, Afit and language B, 
Bfit. Similarly, we label a test dataset of language A, 
Atest and language B, Btest. Original Pfp values of these 
datasets are shown in Table 2. The number of modules 
varies between fit datasets and test datasets due to the 
addition of new modules in the release. 
 
3.2. Evaluation Criteria 
 

We used three commonly used criteria, recall, 
precision and F1-value [3], to evaluate the prediction 
performance of built models. Recall is the ratio of 
correctly predicted fault-prone modules to actual fault-
prone modules and precision is the ratio of actual 
fault-prone modules to the modules predicted as fault-
prone. F1-value is a harmonic mean of recall and 
precision, formally defined as follows 
 

PrecisionRecall
PrecisionRecallF

�
uu

 
2

1
. 

 
3.3. Evaluation Procedure 
3.3.1. Finding appropriate percentage of fault-

Table 1. Collected metrics 

 Metrics 
m1 Source lines of code 
m2 Commented lines per SLOC 
m3 The number of procedures per SLOC 
m4 The number of unique operators 
m5 The number of unique operands 
m6 Total number of operators per SLOC 
m7 Total number of operands per SLOC 
m8 Halstead volume 
m9 Halstead difficulty 
m10 Maximum of nest level 
m11 Cyclomatic number per SLOC 
m12 Nest level per SLOC 
m13 The number of jump nodes per SLOC 

m14 
The number of external referred variables per 
SLOC 

m15 The number of inner calls per SLOC 
m16 The number of external module calls SLOC 
m17 Revision number 

m18 The number of days from the date each module 
is developed to the present 

m19 The number of days from the date each module 
is developed to the last release date 

 

 

Table 2. Statistics summary 

 # of fault-prone modules # of not fault-prone modules % of fault-prone modules 
Afit 103 1815 5.67  
Atest 42 1950 2.15  
Bfit 210 1596 13.16  
Btest 61 1815 3.36  
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prone modules (pilot experiment) 
The goal of the pilot experiment is to identify the 
appropriate Pft for each of 16 combinations of four 
sampling methods (ROS, SMOTE, RUS, ONESS) and 
four models (LDA, LRA, NN ,CT) by using a fit 
dataset. For each of 16 combinations, the following 
procedure was conducted. 
 
Step 1. Dividing a fit dataset into two datasets 

The fit data was divided into two datasets (denoted as 
a and b). 
 
Step 2. Appling sampling methods 

Apply a sampling method to dataset a to have Pft = 
20% (0.25 : 1.00), 33% (0.50 : 1:00), 50% (1.00: 
1.00), 60% (1.50: 1.00) and 67% (2.00 : 1.00) in 
resultant datasets. Each new (resultant) dataset is 
referred to as a1, …a5; and, a dataset without sampling 
is reffered to as a0. 
 
Step 3. Building fault-proneness models 

Build six fault-proneness models using datasets a0, 
…a5. 
 
Step 4. Evaluation of the prediction performance 

Evaluate the prediction performance (F1-value) of six 
fault-prone models by using dataset b. 
 
Step 5. Finding appropriate Pfp 

Select the best performing model to identify the best 
Pfp. 
 
3.3.2. Evaluation of effect of sampling methods 
(main experiment) 
In the main experiment, we built fault-proneness 
models after sampling methods were applied to a fit 
dataset with the best Pfp value and evaluated their 
prediction performance. 
 
Step 1. Applying sampling methods to fit datasets 

Apply sampling methods to fit datasets Afit and Bfit 
with the best Pft value. 
 
Step 2. Building fault-proneness models 

Build four fault-proneness models (LDA, LRA, 
NN ,CT) based on each resultant dataset of Step 1. 

Naïve models are also built based on Afit and Bfit 
without applying sampling methods. 
 
Step 3. Evaluation of the prediction performance 

Evaluate the prediction performance (F1-value) of 
fault-prone models by using test datasets Atest and Btest. 
 
4. Results and Discussion 
4.1. Pilot Experiment  
 

The prediction performance of fault-proneness 
models for different Pfp values are shown in Fig. 6. 
The vertical axis shows the F1-value and horizontal 
axis shows Pfp. The best Pfp values for datasets A and 
B are shown in Table 3 and Table 4. 

As shown in Fig. 6, Table 3 and Table 4, it was 
revealed that the best Pfp values were not 50% in most 
models. Interestingly, this indicates that building a 
fully balanced fit dataset via sampling methods is not 
necessarily relevant. The following characteristics 
were found for each model. 
 
LDA: The prediction performances got better as Pfp 
increased. The best Pfp values were 60%-67%. This 
indicates that sampling methods should be deeply 
applied so that minority cases (fault-prone modules) 
become majority cases in resultant fit datasets. 

LRA: The result was totally different from LDA’s. 
The best Pfp values were 20%-33%. This means that 
the sampling methods should be applied slightly. 

 
NN: The result showed a somewhat similar tendency 
as LRA’s. The best Pfp values were 20%-33% or 
without sampling. Notably, even slight sampling (Pfp 
= 20%) can cause performance degradation. 

 
CT: There was no clear relationship seen between Pft 
and the prediction performance. 
 
4.2. Main Experiment 
 

The result of the main experiment is shown in 
Tables 5 and 6. In the tables, “-” indicates a case 
where “no sampling” was the best in the pilot 
experiment; and, bold letters indicate performance 
improvements to naïve models. 
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Figure 6. Prediction performance of fault-proneness models for different Pfp values 
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Comparison of fault-proneness models: The results 
showed that all four sampling methods improved the 
prediction performance of the LDA and LRA models. 

On the other hand, the prediction performances of NN 
and CT were not improved in more than half of the 
cases. In addition, no sampling method could improve 
the performance for both datasets A and B in each 
model. This indicates sampling methods should not be 
applied to NN and CT models. 

LRA showed the best prediction performance among 
the models for dataset A, and LDA was the best for 
dataset B. This result is consistent with Gray and 
Macdonells’ result such that the best model among 
available models often depends on the dataset being 
used [2]. 
 
Comparison of sampling methods: The best 
performing sampling method was different among 
models and datasets. For example, for dataset A, a 

combination of SMOTE and LRA was the best (F1 
value = 0.382) while for dataset B, a combination of 
RUS and LDA was the best (F1 value = 0.324).  

With respect to LDA and LRA, the average prediction 
performance (F1-value) for each sampling method was 
nearly equal (ROS=0.276, SMOTE=0.287, 
RUS=0.293, ONESS=0.273). This suggests that we 
could use any of these four sampling methods for LDA 
and LRA. All in all, the improvements of F1-values 
were 0.078 at minimum, 0.224 at maximum and 0.121 
at the mean. 
 
5. Conclusion 
 

In this paper, we experimentally evaluated the 
effects of four sampling methods (ROS, SMOTE, RUS, 
ONESS) applied to four fault-proneness models (LDA, 
LRA, NN, CT) by using two module sets of industry 
legacy software. Our major findings include the 
following: 

Table 3. Best Pft values for dataset A 

 LDA LRA NN CT 
ROS 67 20 33 67 

SMOT
E 67 20 20 50 

RUS 60 20 20 No samp. 
ONESS 60 20 No samp. No samp. 

 

Table 4. Best Pft values for dataset B 

 LDA LRA NN CT 
ROS 67 20 20 67 

SMOT
E 67 33 No samp. 67 

RUS 67 33 20 33 
ONESS 67 20 20 20 

 

 
Table 5. Prediction performance of models  

for dataset A 
  LDA LRA NN CT 

No samp. 0.857 0.238 0.333 0.762 
ROS 0.752 0.629 0.419 0.648 

SMOTE 0.791 0.595 0.443 0.733 
RUS 0.833 0.624 0.538 - 

Recall 

ONESS 0.795 0.629 - - 
No samp. 0.057 0.357 0.233 0.062 

ROS 0.146 0.266 0.142 0.094 
SMOTE 0.137 0.282 0.168 0.080 

RUS 0.117 0.257 0.136 - 

Precision 

ONESS 0.128 0.269 - - 
No samp. 0.106 0.286 0.275 0.115 

ROS 0.244 0.374 0.212 0.162 
SMOTE 0.233 0.382 0.243 0.143 

RUS 0.205 0.364 0.217 - 
F1-Value 

ONESS 0.220 0.375 - - 

 
Table 6. Prediction performance of models  

for dataset B 
  LDA LRA NN CT 

No samp. 0.590 0.033 0.098 0.393 
ROS 0.420 0.138 0.069 0.325 

SMOTE 0.443 0.220 - 0.220 
RUS 0.482 0.328 0.105 0.377 

Recall 

ONESS 0.505 0.177 0.177 0.603 
No samp. 0.118 0.200 0.200 0.068 

ROS 0.234 0.299 0.099 0.061 
SMOTE 0.249 0.210 - 0.043 

RUS 0.244 0.246 0.098 0.052 

Precision 

ONESS 0.194 0.277 0.144 0.060 
No samp. 0.196 0.056 0.132 0.116 

ROS 0.300 0.187 0.081 0.101 
SMOTE 0.319 0.215 - 0.072 

RUS 0.324 0.280 0.100 0.090 
F1-Value 

ONESS 0.280 0.216 0.156 0.108 
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z All four sampling methods improved the 
prediction performance of the LDA and LRA 
models while they could not always improve the 
performance of the NN and CT models. We 
recommend not using sampling methods for NN 
and CT models. 

z The most appropriate sampling level varied 
among the models. For LDA models, the 
resultant fit dataset after applying a sampling 
method should have Pft = 60%-67%. On the 
other hand, for LRA models, the resultant fit 
dataset should have Pft = 20%-33%. 

z With respect to the LDA and LRA models, the 
average prediction performance (F1-value) for 
each sampling method was nearly equal 
(ROS=0.276, SMOTE=0.287, RUS=0.293, 
ONESS=0.273). This suggests that we could use 
any of these four sampling methods for LDA and 
LRA. All in all, the improvements of F1-values 
were 0.078 at minimum, 0.224 at maximum and 
0.121 at the mean. 

 
The major limitation of this paper is that we used 

only two datasets. Our future work is to confirm our 
results using other datasets. 
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