
GreenBundle: An Empirical Study on the Energy
Impact of Bundled Processing

Shaiful Alam Chowdhury
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

shaiful@ualberta.ca

Takumi Shuto
Information Sc. & Electrical Eng.

Kyushu University
Fukuoka, Japan

shuto@posl.ait.kyushu-u.ac.jp

Abram Hindle
Department of Computing Science

University of Alberta
Edmonton, AB, Canada

abram.hindle@ualberta.ca

Ken Matsui
Information Sc. & Electrical Eng.

Kyushu University
Fukuoka, Japan

matsui@posl.ait.kyushu-u.ac.jp

Rick Kazman
Information Technology Management

University of Hawaii
Honolulu, HI, USA
kazman@hawaii.edu

Yasutaka Kamei
Information Sc. & Electrical Eng.

Kyushu University
Fukuoka, Japan

kamei@ait.kyushu-u.ac.jp

Abstract—Energy consumption is a concern in the data-center
and at the edge, on mobile devices such as smartphones. Software
that consumes too much energy threatens the utility of the end-
user’s mobile device. Energy consumption is fundamentally a
systemic kind of performance and hence it should be addressed
at design time via a software architecture that supports it, rather
than after release, via some form of refactoring. Unfortunately
developers often lack knowledge of what kinds of designs and
architectures can help address software energy consumption. In
this paper we show that some simple design choices can have
significant effects on energy consumption. In particular we exam-
ine the Model-View-Controller architectural pattern and demon-
strate how converting to Model-View-Presenter with bundling can
improve the energy performance of both benchmark systems and
real world applications. We show the relationship between energy
consumption and bundled and delayed view updates: bundling
events in the presenter can often reduce energy consumption by
30%.

Index Terms—energy consumption, MVP, MVC, architecture

I. INTRODUCTION

Energy consumption is an important quality requirement
for mobile devices [1] and for mobile software such as
apps [2], [3] that affects availability, battery life, and sales.
Unfortunately, and often, app developers are addressing energy
consumption when it becomes a problem [2], [4], rather than
at design time before coding starts. There is evidence that
developers simply are not trained enough in the topic of energy
consumption at the application level to be able to address
energy consumption effectively [4], [5]. Also, available opti-
mization tips do not impact energy consumption in real-world
apps, demanding higher-level changes for efficient accesses of
energy hungry components [6]. Unfortunately, developers have
little idea about what design choices are even available that
will affect energy consumption, as well as the consequence
and tradeoffs of those design choices. Yet interest exists as
Manotoas et al. [4] show: “experienced practitioners are often
willing to sacrifice other requirements for reduced energy
usage”. This paper discusses the kinds of design choices

and tradeoffs that architects face, and seeks to illustrate how
we can improve energy consumption of mobile applications
(and, indeed, of any application) by relatively small changes
in an architecture. Specifically, we show how a change to
Model-View-Presenter (MVP) with “bundling” or “dropping”
strategies can improve the energy performance of apps.

But why focus on mobile? By 2019, the number of
global smart-phone users is expected to reach 2.7 billion
[7]. Smartphones are essentially portable networked pocket
computers powered by batteries [8]. Smartphone apps range
from email apps to games, to notifications, prompts, reminders,
stock tickers, etc. This wide variety of software and uses is
ever present as the network bandwidth demands on mobile
networks starts to eclipse PC network bandwidth [9]. This
pressure on functionality and portable computing puts a huge
strain on a mobile device’s battery, which unfortunately has
not seen much technological improvement [10]. If the device’s
battery energy is consumed, the device is typically unusable.
The importance of energy consumption on mobile devices has
immediate consequences: app developers quickly learn that
their apps that use lots of energy suffer in ratings [2] as con-
sumers highly value battery life for their mobile devices [1].

We seek to aid developers in addressing energy consumption
at design time, before runtime. Our concern is that developers
do not have good guidelines or evidence-based models of the
costs and benefits of the design choices they make in the
design of energy efficient apps. Developers lack knowledge
of architectures, patterns, and tradeoffs that are potentially
“green” (energy efficient), or the parameters that can make
an architecture “green” at runtime. So in this work, we
demonstrate how the Model-View-Presenter pattern (MVP)
can be modified to reduce the event processing overhead of
model objects notifying view objects. We discuss how to
modify the presenter of MVP into a proxy that bundles re-
quests or drops redundant requests by delaying notifications—
thus avoiding frequent expensive intermediate notifications or

context switches that update views. Our research questions and
contributions include:

RQ 1: What is the impact of the number of event sources
and event generation rates on software energy consumption?

RQ 2: Can bundling and dropping events help in saving
energy while varying the numbers of sources and rates?
Contribution 1: We developed a benchmark Android app
that follows the Model-View-Presenter (MVP) architecture to
understand the impact of bundling and dropping on Model-
View-Presenter architecture. We implemented the presenter in
three different forms: no bundling, bundling, and dropping.
The number of event sources and the rate of event generation
(i.e., number of events/second) are determined at runtime with
user input. Using the benchmark app, we answer RQ 1 and
RQ 2.

RQ 3: What are the energy impacts of bundling and
dropping on real-world applications?

RQ 4: Can bundling and dropping help address users’
feedback without harming apps’ energy consumption?
Contribution 2: We confirm the realism of the findings from
the benchmarks with four different real-world Android apps to
answer RQ 3 and RQ 4. Because benchmark apps, although
good for conducting controlled tests, do not necessarily reflect
real-world scenarios and performance [6].

RQ 5: Why do bundling and dropping save energy?
Contribution 3: We investigate the cause of performance
changes by analyzing resource access patterns (e.g., CPU use)
of apps with bundling and dropping to answer RQ 5.

RQ 6: What are the maintainability consequences of im-
plementing bundling and dropping on Android apps?
Contribution 4: We analyze the difficulty of incorporating
bundling/dropping in Android apps, and the consequences of
these changes on maintainability, to address RQ 6. Decoupling
Level (DL) metric [11] is used for analyzing the maintainabil-
ity cost of bundling and dropping versions.

We show that a small change to an architecture like MVP
allows for making energy consumption tradeoffs, allowing for
energy-aware decision making during design and maintenance
phases. In general, developers can save significant amount
of energy by adopting the proposed bundling and dropping
mechanisms—without harming user experience and without
materially affecting the maintenance cost. To support repro-
ducibility and extension, our energy measurements and the
open-source benchmark app are shared publicly [12].

II. BACKGROUND

A. Energy Efficiency is Difficult to Achieve

Power (P) is the rate of work expressed in watts. Energy
(E), expressed in joules, is the total amount of work in a
given time (T): E = P × T . Energy consumption is linearly
proportional to the run-time of a component, but only when P
is constant. A reduced time T can save energy, but what if the
CPU switches to a higher power consuming state for a reduced
time T ? Without actual energy measurements or estimates,
this is hard to answer. Moreover, CPU access patterns are just
one of the many considerations that affect energy consumption

in modern devices [13], [14]. Studies have recommended
energy efficient Java collections [15], [16], energy-efficient
communication protocols [17], [18], locating and finding en-
ergy bugs [19]–[22], and building models and tools for energy
estimation [14], [23]–[30]. Despite the increasing amount of
energy efficiency research, it is often unclear how software
design decisions impact energy consumption [31], and what
tradeoffs developers should be aware of [4], [5].

B. Model-View-Presenter

Model-View-Presenter (MVP) is a form of Model-View-
Controller (MVC) [32], [33]. MVC often uses a design pattern
such as the observable pattern to ensure synchronization be-
tween data in the model, and visual or concrete representations
in the views, while shielding the model from direct manip-
ulation from view objects via a controller. MVC has many
variants. Some have different purposes. One popular variant of
MVC is called active MVC [34], that is typically implemented
with a single process whereby the observer pattern is used
to allow interactions between the model objects and the view
objects. In Active MVC, model objects are observables that
notify observers (views) when their representation or data is
updated. This is done by keeping a list of observers and then
notifying each via a method call that the observable they are
watching has been updated. It is then up to the observer to
query the model objects for the information they need. This
can be quite cumbersome as every change can cause a cascade
of observers to react and deal with each change, regardless of
the granularity or usefulness of the change. Another problem
with this pattern is that it puts the notification and listener
logic into model objects.

Active MVC is cumbersome and requires many model
objects to keep track of observers. Model-View-Presenter is
a variant that uses the observer pattern, but it provides a
proxy (presenter) between the model and the views. The model
objects, when modified, updates the presenter. The presenter
notifies views and provides them with the information they
need to update. The views do not necessarily need the model
objects as the presenter is in the way, thus isolating the model
objects further from views, while removing the responsibility
of model objects to notify views for updates. The controller
part of MVP is often folded into the presenter object itself.
Using this presenter as a proxy allows one to put delegation
logic into the presenter and keep that logic out of the model
objects. This means that a presenter could, for example, bundle
updates or drop updates that were deemed irrelevant. Both
of these choices could improve the runtime behaviour of an
application. Because of its simplicity, the MVP pattern has
been recommended in several developers’ blogs and discus-
sions [35]–[37]. Our approach, however, can also be adopted
with other architectures besides MVP.

C. Events, Bundling and Dropping Presenters

An event can be a database update request, a packet trans-
mission request, a view update request and so on. Bundling is
the act of storing and queuing incoming events such that they

Fig. 1: UML class diagram of the benchmark app.

can be processed together, even periodically. Dropping is the
act of keeping only the last incoming event to be processed—
periodically, or on demand, it processes only the most recent
event. A bundling presenter stores incoming events and send
them later in a single batch for processing them together. On
the other hand, a dropping presenter discards previous events
and processes only the most recent one. Bundling is applicable
when a delay in processing is acceptable, whereas dropping is
relevant when, along with the delay tolerance, the most recent
event nullifies the importance of previous events.

Bundling has been found energy efficient in earlier studies.
Pathak et al. [38] proposed I/O bundling for reducing tail
energy leaks in mobile apps. The authors found that some
hardware components, such as the network interface card or
SDCard, suffer from the tail energy phenomenon. Tail energy
is the wasted energy by a component while transitioning
from the active to the inactive state. Bundling operations that
involve such hardware devices reduces the tail energy phases
significantly, and thus save software energy consumption. For
the same reason, Chowdhury et al. [39] found that writing log
messages in batches can reduce energy consumption. Other
research found that HTTP/2 servers can reduce clients’ energy
consumption by enabling a form of bundling, compared to the
HTTP/1.1 servers [18]. Lyu et al. [40] has shown that energy
efficiency can be significantly improved by grouping multiple
database auto-commit transactions into a single transaction.

In this paper, however, we focus on modifying an existing
architectural pattern (MVP) with dropping and bundling. We
show that by adopting this modified architecture one can gain
the maintainability and architectural benefits of MVP. Yet
developers may still decide how to balance event-based energy
consumption against other qualities such as latency.

III. METHODOLOGY

This section describes the benchmark app we developed
for our experimentation, along with our energy measurement
process and test scripts for driving the subject apps.

A. The Benchmark App

This app has three major components including Model,
View, and Presenter in compliance with the MVP pattern.
Figure 1 illustrates the benchmark app with a class diagram.

The benchmark app, with an UI, allows a tester to choose a
configuration of parameters to test. For example, the number
of emitters (i.e., event sources), event generation rate, test
run duration, and the version of the presenter—no bundling,
bundling, or dropping—can be selected at run time. For
bundling and dropping, a delay parameter is also provided,
i.e., how long the app should wait for collecting the incoming
events before processing all the saved events in a single batch?
This UI, with a button click, can then spawn a new experiment
running on a thread separate from the UI thread [41]. The new
experiment will have emitters and views of emitters’ emissions
instantiated.

1) Model: The model is a collection of emitters objects
(i.e., event sources) based on the user’s input. The model is
responsible for dealing with the emitters and forwarding their
emissions to the presenter. The model has a registerObserver
method which can add any number of presenters that can
be interested in an update from this model. However, for
simplicity, we used only one presenter in our experiments.
The model is an observable from the Observer pattern. The
model component uses four different sub-components: Emitter,
Emission, Distribution, and EmitterQueue.

a) Emitter: An emitter is an event source that emits
events at a given rate (i.e., number of events/second). Each
emitter creates emission objects that contain all the data of
the next scheduled transmission from that emitter. The emitter
is also responsible to notify the model about emissions, so
that the model can notify the interested presenter. Emitters
are meant to simulate event sources like stock prices, weather
information, or sensor output.

b) Emission: An emission is an event that contains
some data, usually a message. These messages are randomly
generated and timestamped.

c) Distribution: Each emitter produces emissions fol-
lowing a probability distribution function (PDF) for schedul-
ing the next emission. The benchmark app is designed to
accommodate any PDF at run-time. For simplicity and low
variability in our energy measurements, we used only the
uniform distribution.

d) EmitterQueue: The EmitterQueue uses a priority
queue (Java’s PriorityQueue) to schedule emitters for emitting
and transmitting the next emissions. The priority queue enacts
an efficient algorithm for scheduling the emitter. The Emit-
terQueue sorts all the emitters based on their next waiting time.
The model then removes the first emitter from the priority
queue, finishes its transmission, and then insert it again based
on its next scheduled emission time. This process continues
until the test run duration expires.

2) Presenter: The presenter is an observer of the model
component. It is notified whenever one of the model’s emitters
transmits. The presenter maintains a mapping of emitters and
views, which the presenter uses to notify the view of the
corresponding emitter with the emission. There are 3 kinds
of presenter used in both the benchmark App and the study: i)
No bundling—forwards the update immediately; ii) Bundling:
waits for the given bundling time, saves all the incoming

updates, and forwards each of them all together; iii) Dropping:
same as the bundling except the presenter forwards only the
most recent update and discards all the previous updates.

The presenter runs in a separate thread than the UI thread.
When the presenter receives an update, it decides which view
to notify and passes off the necessary information to the view
in the view’s thread—such as the UI thread if the view has
a UI. The bundling presenter, for example, sleeps inside a
timer thread and stores the incoming events in parallel. It then
forward all the stored events to the interested views once the
sleeping time is over (i.e., the bundling time provided by the
user). The dropping presenter is identical except it discards
previous events and only forwards the most recent one. To help
practitioners for implementing bundling/dropping presenters,
we made the benchmark app public and open-source [12].

3) View: Views are meant to receive updates from the
presenter. What they do with the update is up to them, but
typically they only talk to the presenter and updates them
with the emission objects they receive. They are observers
of the presenter but might be associated with a particular
object. For simplicity, the benchmark app maintains a one-to-
one relationship between the emitters and view components—
a single view, a textfield, is interested in a single emitter. A
view in the benchmark app is thus responsible to display the
received emission data from a emitter through the presenter.

B. Energy Measurements and Test Scripts

We used two implementations, to verify the generalizability
of our proposed approach, of the GreenMiner [42] software
energy measurement platform to measure the energy consump-
tion and resource usage of the apps used in this paper. The
GreenMiner’s tests and measurements can be accessed re-
motely, and GreenMiner has been used extensively in a variety
of software engineering energy consumption research [15],
[18], [30], [42]–[47].

The system under test is typically an Android smartphone.
Energy is measured using current sensor INA219 and INA159
chipsets that report to an Arduino Uno microcontroller. The
microcontroller processes and aggregates measurements, send-
ing to the test computer—a Raspberry Pi model B computer.
The current sensors and the Pi are connected to the phones
under test. The first GreenMiner is connected to 4 Galaxy
Nexus phones (system-under-test) running Android 4.4.1 with
an INA219, while the GreenMiner-2 is connected to an ASUS
ZenFone 2 running Android 5.0.2 with an INA159. For a
given app and test, the Pi acts as the test-runner which pushes,
runs, and collects measurements for a given test script. The
first GreenMiner system has four identical settings with four
Galaxy Nexus phones. Running different tests in parallel helps
accelerate the measurement process. GreeMiner-2 has only 1
ASUS Zenphone 2. GreenMiner test framework cleans any
previously installed apps before running a new test. This is to
ensure the same system state for each test; energy consumption
of a particular test is therefore unaffected by previous tests.
We ran the real-world app tests on the GreenMiner and
GreenMiner-2; the benchmark app was tested solely on the

1 2 4 8 16 32 64 128
Event generation rate (events/second)

20

25

30

35

40

45

50

55

E
n
e
rg

y
 (

J)

Number of emitters

Benchmark App

1
2
4
8
16
32
64
128

Fig. 2: Energy consumption of the benchmark app with
different numbers of emitters and event generation rates. Bars
indicate the 99% confidence interval.

GreenMiner to simplify comparison of parameters and energy
consumption.

Previous GreenMiner based works [15], [18], [30], [44],
[46] recommended running the same test multiple times, for
the observed variability in energy consumption. We ran all
versions of our subject apps (benchmark and real world apps)
10 times. To minimize outlier effects, we show the 99% con-
fidence interval of our measurement distribution. In addition,
whenever necessary, we used the Kruskal-Wallis test [48] to
verify if two energy measurement distributions are statistically
different. The advantage of Kruskal-Wallis test is that it does
not assume any distribution of the data as it is non-parametric.

To measure the energy consumption of an app, we need to
run the app multiple times, which is infeasible with manual
testing. We used the Android’s adb shell [49] script for
writing the test cases. For the benchmark app, writing the
test script was straightforward. The script selects the number
of emitters, the presenter type, the bundling time in case of
bundling and dropping, and provides the test duration and
event generation rate before clicking the start button. For the
real-world apps, however, the tests were written with two of
the authors’ consensus that these tests represent an average
user’s interaction with these apps.

IV. RESULTS: BENCHMARK APP

In this section, we show the energy consumption of the
different versions of the benchmark app with different settings.
To select the number of emitters, and event generation rate,
we use powers of 2: 1, 2, 4, 8, 16, 32, 64, and 128. This large
range is able to show the big picture: the impact on energy
consumption with the increase in the number of emitters and
event generation rate. All versions (at all settings) of the
benchmark app were run for a fixed period of 20 seconds,
repeating 10 times each.

RQ 1: What is the impact of the number of event
sources and event generation rates on software energy
consumption? Figure 2 shows the energy consumption of

the benchmark app with different numbers of emitters (i.e.,
event sources) and event generation rates. Clearly, the en-
ergy consumption goes up when we increase the number of
emitters and/or the event rate. The Spearman [50] correlation
coefficient is 0.66 (p ≈ 0) between the number of emitters
and energy consumption in joules. The coefficient is 0.69
(p ≈ 0) between the event rates and energy consumption.
The coefficient would have been higher if the phones were
able to process high numbers of events and emitters. The
variations in energy measurements among multiple runs for
each setting are small; Figure 2 shows that the 99% confidence
intervals are not noticeable until the performance is saturated.
This is because we kept the benchmark app as simple and
deterministic as possible, which is harder to control in real-
world apps. We also observe that for high number of emitters
(i.e., ≥32 emitters) the energy consumption does not change
with the increase in the event rate after a threshold. This
is because of the limited capacities of the phones we used
for our measurements; these phones can process a certain
number of events within the allotted 20 seconds test duration.
Producing more events than this threshold does not impact
the energy consumption, for the phone can not process the
extra events within the allotted time. In fact, with the Kruskal-
Wallis test, we found statistical differences between the energy
measurements until the numbers of emitters and rates are high.
For example, with 8 emitters, α = 0.05, p = 0.0001 between
32 events/sec and 64 events/sec. However, for α = 0.05, p is
statistically insignificant (0.6242) between 64 events/sec and
128 events/sec when the number of emitters is fixed to 64.

Table I shows the percent increase in energy consumption
in the number of emitters and event generation rates compared
against the energy consumption of one emitter with one event
per second. For example, even with a single emitter, the energy
consumption can go up 38% when the event generation rate
is high (128 events/second). And note that the percentage
increase with high numbers of emitters and rates would have
been much higher than the reported values if the phones were
to able processing more events.

Findings: Many modern applications deal with large num-
bers of event sources with high numbers of incoming
events [51]–[53]. Our results show that energy consumption
is correlated with both the number of event producers and
the rate of event production.

RQ 2: Can bundling and dropping events help in saving
energy while varying the numbers of sources and rates?
To answer this question, we considered three different waiting
times for both bundling and dropping: 0.1 second—the corneal
reflex time of human eyes; 0.5 second—half of user-acceptable
latency; and 1 second—the broadly used acceptable latency
target for interactive applications [54]. Unlike the real-world
apps presented later, a wider range of waiting times were not
considered for the benchmark app so the graphs are readable.

Figure 3 shows the energy savings of different bundling
and dropping rates compared with no bundling or dropping
(presented as Nobundling in the figures). Each graph shows

TABLE I: Percent increase of energy consumption compared
with the energy consumption of 1 emitter and 1 event/second.
For readability, nearest integer values are presented.

Rates
Emitters 1 2 4 8 16 32 64 128

1 0 2 4 6 12 22 32 38
2 2 4 7 12 22 33 39 43
4 5 8 13 22 33 40 44 49
8 8 13 22 33 40 46 51 55

16 14 23 33 41 47 53 55 56
32 22 33 41 47 53 55 56 56
64 26 36 45 53 54 54 55 54
128 30 42 51 54 54 54 54 54

TABLE II: Energy savings (in percent) by different bundlers
and droppers when compared with no bundling or dropping.
Results are presented for just one emitter.

Rates
Versions 1 2 4 8 16 32 64 128

Bundling-0.1s 0 0 0 0 3 13 22 25
Dropping-0.1s 0 0 0 0 4 14 25 30
Bundling-0.5s 0 0 2 3 8 18 27 30
Dropping-0.5s 0 0 2 3 9 19 29 34
Bundling-1s 0 1 4 5 10 19 29 31
Dropping-1s 0 1 4 5 11 20 31 36

the results for all the possible scenarios for a fixed number
of emitters. Except for very high numbers of emitters or
rates, the energy consumption goes up monotonically for the
Nobundling version. While this trend is true for the bundling
versions as well, for the dropping versions we do not see
such clear trends. This is because the number of events
processed by a dropping version (transferring events from the
presenter to the views) is to some extent independent of the
number of events generated. The small energy increase for
the dropping versions with increased rates is due to the cost
of producing more events by the model component in our
benchmark app. Not surprisingly, dropping is more energy
efficient than bundling; the dropping versions process fewer
events than the bundling versions. The bundling versions, in
spite of processing the same number of events as the no
bundling version, can save significant energy.

It is encouraging that, with bundling, we can process and
deal with the same amount of workload, and yet can make
apps significantly more energy efficient. Table II shows the
energy savings by different bundlers and droppers with fixed
one emitter. This is to ensure that the energy consumption
is not affected by resource limitations, thus enabling accurate
comparison. It shows that with bundling (doing all the work
without dropping anything) and maintaining a latency such
that a user does not notice any change (0.1 second), we can
still save up to 25% of the energy (Bundling-0.1s). With user-
acceptable latency (Bundling-1s), bundling can save up to 31%
in a simple app like our benchmark, with just one event source.
We verified with the Kruskal-Wallis test that these differences
are indeed statistically significant (with α = 0.05, p ≤ 0.01).

1 2 4 8 16 32 64 128
Rate (events/second)

20

22

24

26

28

30

32
E
n
e
rg

y
 (

J)
Number of emitters = 1

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

22

24

26

28

30

32

34

36

E
n
e
rg

y
 (

J)

Number of emitters = 2

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

E
n
e
rg

y
 (

J)

Number of emitters = 4

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

45

E
n
e
rg

y
 (

J)

Number of emitters = 8

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

45

E
n
e
rg

y
 (

J)

Number of emitters = 16

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

45

50

55

60

E
n
e
rg

y
 (

J)

Number of emitters = 32

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

Fig. 3: Energy consumption of bundling and dropping compared with the Nobundling versions for different number of emitters.
Results for more than 32 emitters are not presented; due to resource limitations, the energy consumption is inconsistent for
very high numbers of emitters and rates. Bars indicate the 99% confidence interval.

Findings: Dropping is the most energy efficient approach
compared to bundling and no bundling. However, dropping
might not be an acceptable alternative when accuracy is
important. Application developers can consider bundling
in such scenarios, which still saves significant energy over
no bundling.

V. REAL WORLD APPS

Results from the benchmark app shows that bundling and
dropping can save significant energy in Android apps. And
this saving is larger with increased numbers of event sources
or event generation rates. It is, however, not obvious how such
optimization approaches would perform in real-world apps [6].
In this section, we evaluate bundling and dropping in four
selected real-world Android apps.

A. Selection of Applications

The apps we selected had to be open source so that we
can implement bundling and dropping. We explored the F-
Droid repository [59] to find suitable apps. F-Droid contains
source code for all the posted Android apps and was used
in earlier mining software repositories research [60]–[62].
Finding suitable apps with reasonably small code size (so that
we could easily identify where to implement bundling and
dropping) was challenging, which hindered us from analyzing
more apps. Table III shows the characteristics of the four
selected apps.

The different types and code sizes of these four apps enables
reliable evaluation of bundling and dropping. The Sensor
Readout app is also available on Google Play [63] and has

been downloaded more than 50,000 times (as of writing). This
app has received 540 reviews with an average rating of 4.3/5.
This allows evaluating energy optimization techniques for apps
that are already popular. AcrylicPaint, a finger painting app,
represents apps where users might spend more continuous
time, making energy optimization more crucial.

We have implemented the bundling and dropping versions of
these apps, except for Sensor Readout, following the approach
presented in section III-A2. The original Sensor Readout app,
uses a timer function, and processes only 10 measurements per
second, although the app samples measurements continuously.
As a result, we did not have to implement our own timer for
the bundling and dropping variants. The apps, however, did
not follow a clear MVP pattern. Instead, their designs were
closer to the MVC pattern. We have identified which classes
contained the actual processing code, and refactored those
classes to accommodate our bundling/dropping presenters. Our
intention was to convert the existing design as close to the
bundling MVP pattern as possible. For ensuring correctness,
two of the authors were involved in refactoring and testing the
apps afterwards.

B. RQ 3: What are the energy impacts of bundling and
dropping on real-world applications?

The energy savings from bundling and dropping are of
course impacted by the bundling/dropping time—the time
these two variants wait before processing a batch of events.
We selected six different times: 0.01s—fastest human time
perception; 0.03s—animation speed; 0.1s—the corneal reflex
time of human eyes; 0.2s—double the corneal reflex time;
0.5s—half of user-acceptable latency; 1 second—acceptable

TABLE III: Description of the selected four real-world Android apps from F-droid.

Test
App Type # Classes ULOC Test scenario duration (s)

Sensor Readout [55] “Real-time graphs of sensor data” 56 6009 Measure the Gyroscope sensor 70
ColorPicker [56] “Pick colors and display values” 12 908 Move the scroll bars for R,G,B 50

Angulo [57] “Angle and Distance Measuring” 4 497 Start the measurements and wait 55
AcrylicPaint [58] “Simple finger painting” 7 936 Draw a hexagon 27

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

6

8

10

12

14

16

18

E
n
e
rg

y
 (

J)

AcrylicPaint App

acrylicPaintOriginal
acrylicPaintBundling
acrylicPaintDropping
acrylicPaintOriginal-GM2
acrylicPaintBundling-GM2
acrylicPaintDropping-GM2

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

40

50

60

70

80

90

100

110

E
n
e
rg

y
 (

J)

ColorPicker App

colorPickerOriginal
colorPickerBundling
colorPickerDropping
colorPickerOriginal-GM2
colorPickerBundling-GM2
colorPickerDropping-GM2

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

15

20

25

30

35

40

45

50

55

E
n
e
rg

y
 (

J)

Angulo App

anguloOriginal
anguloBundling
anguloDropping
anguloOriginal-GM2
anguloBundling-GM2
anguloDropping-GM2

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

40

60

80

100

120
E
n
e
rg

y
 (

J)
SensorReadout App

sensorOriginal
sensorBundling
sensorDropping
sensorOriginal-GM2
sensorBundling-GM2
sensorDropping-GM2

Fig. 4: Energy consumption of bundling and dropping compared with the original versions of four real-world apps. Bars
indicate the 99% confidence interval.

user latency [54]; and 2 seconds—double user-acceptable
latency. Figure 4 shows the energy consumption of bundling
and dropping compared with the original versions of the
four selected apps. Here, we also show the results for the
GreenMiner-2 (GM2) on the Asus Zenphone 2.

Except for the Sensor Readout app, we observe more
energy consumption for the bundling and dropping versions
for very low bundling and dropping times (e.g., 0.01s). This
suggests that running a timer thread for bundling or dropping
incurs energy consumption overhead. As we mentioned before,
Sensor Readout did not require a separate timer thread and
does not have this overhead when bundling or dropping is
used. For all the apps, however, the energy consumption
of bundling and dropping improve significantly when the
waiting time is reasonably higher. For example, even for 0.1s
latency which is difficult for users to perceive, the bundling
and dropping versions of AcrylicPaint and Angulo can save
12% (12% with GM-2) and 9% (8% with GM-2) energy
consumption respectively, when compared with their original

versions. The energy savings become significant for larger
latency. For example, we can save 37% (24% with GM-2)
energy consumption for the Sensor Readout app with a 1s
latency in drawing the measurements graphs, and that without
losing any measurements (i.e., with bundling).

GreenMiner-2 (with the ASUS ZenFone 2 phone) consumes
less energy than the GreenMiner (with the Galaxy Nexus
phone) for all apps, and thus the energy savings are generally
lower. The trends in percent of energy consumption reductions,
however, are similar across the apps for both the GreenMiners.

C. RQ 4: Can bundling and dropping help address users’
feedback without harming apps’ energy consumption?

Answering this question might require analysis from mul-
tiple perspectives. However, with one case study, we show
that there are scenarios where the developers can adopt our
bundling approach to address user feedback that involves
energy expensive modifications. For this study, we selected the
Sensor Readout app—the only app available on Google Play

5 10 20 30
of Measurements/second

50

60

70

80

90

100

E
n
e
rg

y
 (

J)

SensorReadout App

sensorOriginal
sensorBundling-0.1s
sensorDropping-0.1s

Fig. 5: Energy savings of bundling/dropping for the Sensor app
with higher sampling rates. Bundling/dropping time is fixed to
0.1 second. Bars indicate the 99% confidence interval.

with a significant number of reviews. For a selected sensor
type, this app shows/updates 10 measurements per second.

In general, this app is praised by users. However, some
reviews indicate user dissatisfaction. For example, one user de-
sires to see colour changes with different measurements while
updating graphs [55]. Another user is unsure why the sampling
rates from the sensors are low—10 samples per second.
Changing colors continuously and sampling at higher rates
might increase the energy consumption of the app significantly.
And yet, developers need to carefully address user feedback
for their apps to stay popular [64]. In fact, there are reviews on
the Sensor Readout app suggesting similar apps are supposedly
better than Sensor Readout. We show that Sensor Readout
can benefit by applying bundling—by sampling measurements
faster for timeline graphs, but delaying graphical updates by
only 0.1 second without harming latency (more measuresments
per second but constant UI update rate).

Figure 5 shows the energy consumption of the original
version compared with the bundling and dropping versions,
with different sampling rates. The bundling/dropping time (i.e.,
the latency in updating the graphs) is fixed to 0.1s. The average
energy consumption of the original version is high (≈94
joules) when the sampling rate is 20/second compared with
the original 10/second (≈69 joules); a 36% increase in energy
consumption. The difference is also statistically significant
(Kruskal-Wallis test, α = 0.05, p < 0.01). However, bundling
with 20 samples/second consumes similar energy to the orig-
inal version with just 10 samples/second. With sampling rate
higher than 20, the energy consumption of the phones does not
increase as expected. The Galaxy Nexus phones are unable to
process more than a threshold number of samples.

Findings: Real-world Android apps can save significant
energy with bundling and dropping. Sacrifices in latency
correlate with the energy savings. Bundling with almost
imperceptible latency (0.1s) can save energy without af-
fecting user satisfaction. In some scenarios, bundling and
dropping can help developers address users’ concerns with
no meaningful sacrifice in usability.

VI. UNDERSTANDING RESOURCE UTILIZATION PATTERNS
WITH BUNDLING AND DROPPING

It is unsurprising that dropping saves energy; in dropping the
presenter only sends the most recent event for processing. This
requires less CPU slots for the process (also known as CPU
jiffies [30]). Bundling, however, does the exact same amount
of work as on-time processing. Thus the question arises: why
does bundling save energy in spite of processing all the events?

Assumption: A CPU jiffy is an assigned CPU time slot
for a process in Linux [30], [46]. More CPU jiffies for a
process causes more CPU jiffies for the kernel, because of
more context switches between the user space and the kernel
space. In on-time event processing system, each event requires
at least one user CPU jiffy. This incurs at least one context
switch and one kernel CPU jiffy. This effect, however, can
be minimized with bundled processing. Batching of events
minimizes the number of context switches and the number of
CPU jiffies. If our assumption is correct, the energy efficiency
of bundling is explainable. The number of CPU jiffies and
context switches are almost linearly correlated with software
energy consumption [30].

A. RQ 5: Why do bundling and dropping save energy?
To verify the above assumption, we have analyzed the

AcrylicPaint app. Similar to Chowdhury et al. [30], we used
the Linux proc file system. To capture the CPU jiffies used by
an app, we used /proc/pid/stat. This also includes the
kernel CPU jiffies used for that app. However, app (process)
specific context switches can not be captured using such a file
system. We captured the number of context switches from
/proc/stat before and after running a test for an app.
The difference is thus approximately the number of context
switches for the app.

Figure 6 shows the result (10 measurements for each con-
figuration). The number of CPU jiffies and context switches
follow a similar pattern to the energy consumption of the
AcrylicPaint’s versions (Figure 4). This observation suggests
that our assumption is true: bundling indeed reduces the
number of CPU jiffies and context switches. This also indicates
that bundling and dropping enable efficient resource usage,
and thus can potentially provide similar energy savings for
platforms other than Android. The mechanisms of context
switches between the kernel and user space are similar across
different platforms and architectures.

Findings: Bundling and dropping access resources in effi-
cient ways—reducing the need for many context switches,
leading to energy efficient software. This observation sug-
gests that the energy efficiency of bundling and dropping
is not restricted to Android systems, but also is applicable
in other platforms.

VII. MAINTAINABILITY ANALYSIS

Developers and architects need to be concerned with the
maintainability consequences of changes made to enhance
any single aspect of a system’s quality. Thus it is important

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

160

180

200

220

240

260

280

N
u
m

b
e
r

o
f

C
P
U

 J
if
fi
e
s

AcrylicPaint App

acrylicPaintOriginal
acrylicPaintBundling
acrylicPaintDropping

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

30000

35000

40000

45000

50000

55000

N
u
m

b
e
r

o
f

C
o
n
te

x
t

S
w

it
ch

e
s

AcrylicPaint App

acrylicPaintOriginal
acrylicPaintBundling
acrylicPaintDropping

Fig. 6: Numbers of CPU jiffies and context switches for bundling and dropping compared with the original AcrylicPaint app.
Bars indicate the 99% confidence interval.

to understand the consequences of the changes made to the
apps to implement the bundling or dropping strategies. This
motivates our sixth and final research question.

RQ 6: What are the maintainability consequences of
implementing bundling and dropping on Android apps?

To assess these consequences we analyzed the before and
after versions of the four selected real-world apps. We first
reverse-engineered each of the apps using the Understand tool
[65]. Using this tool we were able to collect code metrics
on all versions of the apps. (For the purposes of brevity we
only report on the original and bundling versions of the apps
here. Results for the dropping versions were very similar.) In
each case the modifications to the apps were slight in terms of
effort, requiring fewer than 100 additional lines of code and at
most three new classes (including one Handler class and one
Thread class that runs the timer). But counting the lines of
code and classes is just the measure of the required effort for
converting a typical app version to a bundled version. Another
important question is whether these changes affected the long-
term maintainability of the system. If, for example, we added
few lines of code but added many new dependencies between
classes, this would increase coupling in the system, negatively
affect the maintainability of the app going forward.

To determine whether this was the case we analyzed the
coupling of the apps, in their before and after versions,
using the Decoupling Level (DL) metric [11], a system-wide
measure of coupling. The DL metric has been empirically val-
idated [11] and shown to be more reliable than other coupling
metrics such as Propagation-Cost [66] and Independence-
Level [67] in predicting maintenance effort. DL scores range
from 0 to 100, and the higher the number the better, as this
indicates that the system’s files are more highly decoupled
and hence can be independently modified. The purpose of
using this metric is to determine if the changes made to
address energy efficiency significantly lowered the value of
the DL metric. If so, this would mean that the maintainability
of the system was negatively impacted by the energy-saving
modifications.

The DL values of the before and after versions of four apps

TABLE IV: DL values for before/after versions of each app
(bundling only).

App DL Score DL Score DL ∆
Original Bundling

Angulo 68% 69% +1%
ColorPicker 17% 17% +0%
AcrylicPaint 88% 82% -6%

Sensor Readout 32% 30% -2%

are shown in Table IV. While the values of the DL metric
varied widely (indicating the inherent maintainability of the
apps prior to our intervention) the changes for the apps due
to the addition of bundling were small. The observed drops in
DL scores were due to new relationships between classes that
the bundling and dropping functionality required. But since the
DL scores do not change dramatically (decreasing about 6%
for AcrylicPaint, increasing 1% for Angulo, and staying the
same for ColorPicker), this indicates that the tradeoffs made
for energy efficiency were generally good ones—improving
the energy efficiency of the apps while sacrificing little, if any,
maintainability of the apps for the long term. In fact, in [11],
it was noted that small variations in DL (≤ 10%) are typically
not meaningful.

Findings: Energy efficiency is largely ignored during soft-
ware maintenance [4]. One reason could be the difficulty in
fixing energy bugs [68]. Bundling and dropping, however,
are easy to implement and maintain.

VIII. THREATS TO VALIDITY

External validity is hampered by the single version of the
Android OS that we used on four Galaxy Nexus phones.
Also, we do not know how many real-world apps can directly
take advantage of the proposed bundling approach. The first
threat is mitigated somewhat by using the GreenMiner-2 with
a different phone (Zenphone 2). To mitigate the second threat,
we tried to select apps from different domains, and with
the context-switching analysis we explained why bundling is
energy efficient. This might help predicting what other types
of apps can adopt GreenBundling.

Internal validity can be criticized for the way we calculated
the number of context switches. Unlike the CPU jiffies,
process-specific context switches are inaccessible using the
procfs file system. The difference between after and before
when running a process can be affected by other processes
(e.g., garbage collection).

The Kruskal-Wallis test, although it does not assume any
normality distribution about the data, still assumes that data
in each group has similar skewness [69]. These threats are
minimized by measuring each configuration 10 times and
then showing the means, and confidence intervals. Construct
and conclusion validity may also be questioned based on the
tests scripts that we created for the real-world apps. It is
not guaranteed that typical users of these apps would interact
similar to the way our test scripts do. However, our test scripts
exercise the main functionality of these apps: e.g., drawing
measurement graphs and objects with the Sensor Readout app
and the AcrylicPaint app respectively.

IX. RELATED WORK

In recent years, developers have expressed more concerns
about software energy consumption [70]. The software re-
search community has been investigating several areas of this
issue. Hasan et al. [15], Pereira et al. [16], and Manotas et
al. [71] have presented recommendations for selecting energy
efficient Java collections. Energy efficient color transformation
in Android apps was proposed by Li et al. [13] and Agolli et
al. [72]. Off-loading jobs [73], pre-fetching content [74], and
enabling ad-blockers [43] have been found to save energy in
some cases. Chowdhury et al. [18] suggested that HTTP/2
servers are more energy efficient, from the clients’ perspective,
than HTTP/1.1 servers. Energy efficient logging techniques
for Android systems [39] have also been studied.

Other research has shown correcting code smells helps
to improve energy efficiency [75]. In a similar vein, the
impact of code obfuscation and refactoring on software energy
consumption was studied by Sahin et al. [76], [77]. The energy
change from code obfuscation is too small to notice, whereas
refactoring can impact both positively and negatively.

Developers need to measure or estimate their apps’ energy
consumption. Hao et al. [23] proposed an instruction-based
energy estimation model. Machine learning based models were
proposed by Aggarwal et al. (GreenAdvisor [44]), Chowdhury
et al. (GreenOracle [46] and GreenScaler [30]), and Pathak et
al. [78]. Nucci et al. proposed PETrA [24] to estimate Android
apps’ energy consumption leveraging various Android tools.

Locating software energy bugs and hotspots automatically is
another important research area. Wakelock-related energy bugs
have been frequently reported by earlier studies [19]–[22].
Developers need to exploit tools and techniques to locate and
solve such bugs [21]. Similar to the energy bugs, developers
should also resolve energy hotspots [10]. Jabbarvand et al. [79]
proposed a test-suite minimization approach focusing only
on locating energy bugs. In their later work, the authors

proposed an energy-specific mutation testing framework with
high precision in detecting energy bugs [80].

This paper, however, focuses more on high-level design
choices that can help developers writing energy efficient sys-
tems. To the best of our knowledge, this is the least explored
area of software energy efficiency, and there is still a need
for more research on this avenue. The closest to our work
is the short study by Sahin et al. [31], where the authors
investigated different existing design patterns and their energy
consumption. In contrast to our work, that study lacks proper
guidelines and cost analysis for making a design choice.

X. CONCLUSION & FUTURE WORK

In this work we showed that an architectural choice, such
as choosing a bundled MVP architecture, can improve the
sustainability and energy consumption of a system without
negatively impacting system maintainability. The consequence
of this research means that architects and developers can (and
should) make design decisions to address energy consumption
before they start coding.

We have demonstrated the value of a bundled presenter in
MVP by first benchmarking a generic MVP architecture and
then by demonstrating that the energy improvements demon-
strated in the benchmark were in fact realized on real-world
apps that were refactored into bundled MVP architectures from
more classical MVC architectures. A significant reduction of
energy consumption can in fact be achieved. Furthermore we
showed that these modified apps did not seriously affect the
user experience, nor did the refactored versions suffer in terms
of their eventual maintainability. Thus, the energy-savings that
we achieved were truly win-win.

Our final message is this: fundamental architectural choices,
such as the ones we have investigated in this paper, can
have substantial effects on energy consumption. Although
we demonstrated our results on MVP-based architectures, it
is our hope and belief that developers and researchers can
use this study to motivate similar studies, allowing them to
address questions of energy consumption, and their consequent
tradeoffs, at design time. We do not need to wait until the app
is built to make these important design choices. In our future
work, we want to evaluate the proposed bundling architectures
on other smartphones than Android, and with real end-users
for evaluating actual usability. We also want to evaluate
other architectural patterns and architectural choices so that
architects can predictably translate sustainability requirements
into designs and into working systems.

ACKNOWLEDGMENTS

Shaiful Chowdhury was supported by the Alberta-Innovates
Technology Future PhD Scholarship. Dr. Hindle is supported
by an NSERC Discovery Grant. Dr. Kazman was supported
by U.S. National Science Foundation grant number 1514561.
This research was also partially supported by JSPS KAKENHI
Grant Numbers JP15H05306 and JP18H03222 and an ”JSPS
Invitational Fellowship”.

REFERENCES

[1] V. Woollaston, “customers really want better battery life,” http://
www.dailymail.co.uk/sciencetech/article-2715860/, 2014, (last accessed:
2018-Jul-22).

[2] C. Wilke, S. Richly, S. Gtz, C. Piechnick, and U. Amann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in 2013 IEEE International Conference on Green Computing
and Communications and IEEE Internet of Things and IEEE Cyber,
Physical and Social Computing, Aug 2013, pp. 134–141.

[3] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile
app users complain about?” IEEE Software, vol. 32, no. 3, pp. 70–77,
May 2015.

[4] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause, “An empirical study of practitioners’ per-
spectives on green software engineering,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16, 2016,
pp. 237–248.

[5] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do pro-
grammers know about software energy consumption?” IEEE Software,
vol. 33, no. 3, pp. 83–89, May 2016.

[6] C. Sahin, L. Pollock, and J. Clause, “From benchmarks to real apps:
Exploring the energy impacts of performance-directed changes,” Journal
of Systems and Software, vol. 117, pp. 307 – 316, 2016.

[7] Statista, “Number of smartphone users worldwide from 2014
to 2020 (in billions),” https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/, (last accessed: 201-Aug-06).

[8] P. Poole, “Half of Us Have Computers in Our Pockets, Though
You’d Hardly Know it,” http://www.huffingtonpost.com/pamela-poole/
smartphone-technology b 2573671.html, (last accessed: 2018-Jul-22).

[9] Cisco, “Cisco visual networking index: Forecast and
methodology, 2016-2021,” https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html, (last accessed: 201-Aug-06).

[10] Banerjee, Abhijeet and Chong, Lee Kee and Chattopadhyay, Sudipta and
Roychoudhury, Abhik, “Detecting Energy Bugs and Hotspots in Mobile
Apps,” in FSE 2014, Hong Kong, China, Novemeber 2014, pp. 588–598.

[11] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling level: A
new metric for architectural maintenance complexity,” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE
’16, 2016, pp. 499–510.

[12] “Greenbundle: replication and extension,” https://github.com/shaifulcse/
GreenBundle-Data-Code.

[13] D. Li, A. H. Tran, and W. G. J. Halfond, “Making Web Applications
More Energy Efficient for OLED Smartphones,” in ICSE 2014, Hyder-
abad, India, June 2014, pp. 527–538.

[14] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate Online Power Estimation and Automatic Bat-
tery Behavior Based Power Model Generation for Smartphones,” in
Proceedings of the 8th IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, 2010.

[15] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,
“Energy profiles of java collections classes,” in Proceedings of the 38th
International Conference on Software Engineering, ser. ICSE ’16, 2016,
pp. 225–236.

[16] R. Pereira, M. Couto, J. a. Saraiva, J. Cunha, and J. a. P. Fernandes,
“The influence of the java collection framework on overall energy
consumption,” in Proceedings of the 5th International Workshop on
Green and Sustainable Software, ser. GREENS ’16, 2016, pp. 15–21.

[17] D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond, “Automated energy
optimization of http requests for mobile applications,” in Proceedings of
the 38th International Conference on Software Engineering, ser. ICSE
’16, 2016, pp. 249–260.

[18] S. Chowdhury, S. Varun, and A. Hindle, “Client-side Energy Efficiency
of HTTP/2 for Web and Mobile App Developers,” in SANER ’16, Osaka,
Japan, March 2016.

[19] Y. Liu, C. Xu, S. Cheung, and V. Terragni, “Understanding and detecting
wake lock misuses for android applications,” in FSE 2014, Seattle, WA,
USA, Nov 2016.

[20] F. Alam, P. R. Panda, N. Tripathi, N. Sharma, and S. Narayan, “Energy
optimization in android applications through wakelock placement,” in
2014 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2014, pp. 1–4.

[21] X. Wang, X. Li, and W. Wen, “Wlcleaner: Reducing energy waste caused
by wakelock bugs at runtime,” in Dependable, Autonomic and Secure
Computing (DASC), 2014 IEEE 12th International Conference on, Aug
2014, pp. 429–434.

[22] P. S. Patil, J. Doshi, and D. Ambawade, “Reducing power consumption
of smart device by proper management of wakelocks,” in Advance
Computing Conference (IACC), 2015 IEEE International, June 2015,
pp. 883–887.

[23] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating Mobile
Application Energy Consumption Using Program Analysis,” in ICSE
’13, 2013, pp. 92–101.

[24] D. D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and
A. D. Lucia, “Software-based energy profiling of android apps: Simple,
efficient and reliable?” in 2017 IEEE 24th International Conference on
Software Analysis, Evolution and Reengineering (SANER), Feb 2017,
pp. 103–114.

[25] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a
Smartphone,” in Proceedings of the USENIXATC’10, 2010.

[26] A. Shye, B. Scholbrock, and G. Memik, “Into the Wild: Studying Real
User Activity Patterns to Guide Power Optimizations for Mobile Archi-
tectures,” in IEEE/ACM MICRO 42, New York, NY, USA, December
2009, pp. 168–178.

[27] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan,
M. Kandemir, T. Li, and L. K. John, “Using Complete Machine
Simulation for Software Power Estimation: The SoftWatt Approach,” in
Proceedings of the 8th International Symposium on High-Performance
Computer Architecture, ser. HPCA ’02, 2002, pp. 141–150.

[28] J. Flinn and M. Satyanarayanan, “PowerScope: A Tool for Profiling the
Energy Usage of Mobile Applications,” in WMCSA ’99, New Orleans,
Louisiana, USA, February 1999, pp. 2–10.

[29] M. Dong and L. Zhong, “Self-constructive High-rate System Energy
Modeling for Battery-powered Mobile Systems,” in Proceedings of the
MobiSys ’11, June 2011, pp. 335–348.

[30] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler:
training software energy models with automatic test generation,” Em-
pirical Software Engineering, Jul 2018.

[31] C. Sahin, F. Cayci, I. L. M. Gutirrez, J. Clause, F. Kiamilev, L. Pollock,
and K. Winbladh, “Initial explorations on design pattern energy usage,”
in 2012 First International Workshop on Green and Sustainable Software
(GREENS), June 2012, pp. 55–61.

[32] M. Fowler, “Gui architectures. 2006,” URL http://www. martinfowler.
com/eaaDev/uiArchs. html, 2007.

[33] M. Potel, “Mvp: Model-view-presenter the taligent programming model
for c++ and java,” Taligent Inc, p. 20, 1996.

[34] C. V. Lopes, Exercises in programming style. Chapman and Hall/CRC,
2016.

[35] Bohdan Samusko , “Model-view-presenter: Our choice of
architecture for your android app,” https://steelkiwi.com/blog/
model-view-presenter-our-choice-of-android-app/, (last accessed:
2018-Aug-02).

[36] android-architecture, “Android architecture blueprints,” https://github.
com/googlesamples/android-architecture, (last accessed: 2018-Aug-02).

[37] Pulkit Sethi, “Xamarin application architecture,” https://blog.kloud.com.
au/2018/01/17/xamarin-application-architecture/, (last accessed: 2018-
Aug-02).

[38] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the Energy Spent
Inside My App?: Fine Grained Energy Accounting on Smartphones with
Eprof,” in EuroSys ’12, Bern, Switzerland, April 2012, pp. 29–42.

[39] S. Chowdhury, S. Di Nardo, A. Hindle, and Z. M. J. Jiang, “An
exploratory study on assessing the energy impact of logging on android
applications,” Empirical Software Engineering, vol. 23, no. 3, pp. 1422–
1456, Jun 2018.

[40] Y. Lyu, D. Li, and W. G. J. Halfond, “Remove rats from your
code: Automated optimization of resource inefficient database writes
for mobile applications,” in Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ser. ISSTA
2018, Amsterdam, Netherlands, 2018, pp. 310–321.

[41] Android, “Processes and threads overview,” https://developer.android.
com/guide/components/processes-and-threads, (last accessed: 2018-Jul-
22).

[42] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “GreenMiner: A Hardware Based Mining Software
Repositories Software Energy Consumption Framework,” in MSR 2014,
Hyderabad, India, May 2014, pp. 12–21.

[43] K. Rasmussen, A. Wilson, and A. Hindle, “Green Mining: Energy
Consumption of Advertisement Blocking Methods,” in GREENS 2014,
Hyderabad, India, June 2014, pp. 38–45.

[44] K. Aggarwal, A. Hindle, and E. Stroulia, “Greenadvisor: A tool for
analyzing the impact of software evolution on energy consumption,” in
2015 IEEE ICSME, Bremen, Germany, Sept 2015, pp. 311–320.

[45] S. Romansky, N. C. Borle, S. Chowdhury, A. Hindle, and R. Greiner,
“Deep green: Modelling time-series of software energy consumption,”
in 2017 IEEE International Conference on Software Maintenance and
Evolution (ICSME), Shanghai, China, Sept 2017, pp. 273–283.

[46] S. A. Chowdhury and A. Hindle, “Greenoracle: Estimating software
energy consumption with energy measurement corpora,” in Proceedings
of the 13th International Conference on Mining Software Repositories,
ser. MSR ’16, 2016, pp. 49–60.

[47] A. McIntosh, S. Hassan, and A. Hindle, “What can android mobile
app developers do about the energy consumption of machine learning?”
Empirical Software Engineering, Jun 2018.

[48] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical
methods. John Wiley & Sons, 2013.

[49] Android, “Android Debug Bridge,” https://developer.android.com/studio/
command-line/adb, (last accessed: 2018-Jul-22).

[50] Laerd, “Spearman’s Rank-Order Correla-
tion,” https://statistics.laerd.com/statistical-guides/
spearmans-rank-order-correlation-statistical-guide.php, (last accessed:
2018-May-11).

[51] T. Akidau, “The world beyond batch: Streaming 101,” https://www.
oreilly.com/people/09f01-tyler-akidau, (last accessed: 2018-AUG-05).

[52] J. Krystynak, “How to serve billions of web requests per day without
breaking a sweat,” https://www.infoworld.com/article/2868513/database/
how-to-serve-billion-web-requests-per-day.html, (last accessed: 2018-
AUG-22).

[53] J. Shore, “How many data sources in your apps? let me
count the apis.” https://searchcloudapplications.techtarget.
com/blog/Head-in-the-Clouds-SaaS-PaaS-and-Cloud-Strategy/
How-many-data-sources-Let-me-count-the-APIs, (last accessed:
2018-AUG-22).

[54] “Microsoft,” https://docs.microsoft.com/en-us/windows/desktop/
uxguide/progress-bars, (last accessed: 2018-Jun-02).

[55] F-Droid, “Sensor readout,” https://f-droid.org/en/packages/de.onyxbits.
sensorreadout/, (last accessed: 2018-Jun-02).

[56] F-droid, “Colorpicker,” https://f-droid.org/en/packages/com.enrico.
sample/, (last accessed: 2018-Jun-02).

[57] ——, “Angulo,” https://f-droid.org/en/packages/eu.domob.angulo/, (last
accessed: 2018-Jun-02).

[58] ——, “Acrylicpaint,” https://f-droid.org/en/packages/anupam.acrylic/,
(last accessed: 2018-Jun-02).

[59] “F-droid: Free and open source android app repository,” https://f-droid.
org/, (last accessed: 2018-May-22).

[60] L. Bao, D. Lo, X. Xia, X. Wang, and C. Tian, “How android app
developers manage power consumption?: An empirical study by mining
power management commits,” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16, 2016, pp.
37–48.

[61] D. E. Krutz, M. Mirakhorli, S. A. Malachowsky, A. Ruiz, J. Peterson,
A. Filipski, and J. Smith, “A dataset of open-source android appli-
cations,” in Proceedings of the 12th Working Conference on Mining
Software Repositories, ser. MSR ’15, 2015, pp. 522–525.

[62] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting
crashing releases of mobile applications,” in Proceedings of the 10th
ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, 2016, pp. 29:1–29:10.

[63] Google Play, “Sensor readout,” https://play.google.com/store/apps/
details?id=de.onyxbits.sensorreadout, (last accessed: 2018-Jun-02).

[64] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in 21st IEEE International Requirements Engineering Conference
(RE), July 2013, pp. 125–134.

[65] Scitools.com, “Understand,” https://scitools.com/, (last accessed: 2018-
Aug-18).

[66] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the structure
of complex software designs: An empirical study of open source and
proprietary code,” Management Science, vol. 52, no. 7, pp. 1015–1030,
July 2006.

[67] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant’Anna, “From
retrospect to prospect: Assessing modularity and stability from software
architecture,” in 2009 Joint Working IEEE/IFIP Conference on Software
Architecture European Conference on Software Architecture, Sep 2009,
pp. 269–272.

[68] S. A. Chowdhury and A. Hindle, “Characterizing energy-aware software
projects: Are they different?” in Proceedings of the 13th International
Conference on Mining Software Repositories, ser. MSR ’16, 2016, pp.
508–511.

[69] J. McDonald, “Kruskalwallis test: Handbook of biological statis-
tics,” http://www.biostathandbook.com/kruskalwallis.html, (last ac-
cessed: 2018-AUG-07).

[70] H. Malik, P. Zhao, and M. Godfrey, “Going green: An exploratory
analysis of energy-related questions,” in Proceedings of the 12th Working
Conference on Mining Software Repositories, ser. MSR ’15, 2015, pp.
418–421.

[71] I. Manotas, L. Pollock, and J. Clause, “Seeds: A software engineer’s
energy-optimization decision support framework,” in Proceedings of the
36th International Conference on Software Engineering, ser. ICSE 2014,
2014, pp. 503–514.

[72] T. Agolli, L. Pollock, and J. Clause, “Investigating decreasing energy
usage in mobile apps via indistinguishable color changes,” in 2017
IEEE/ACM 4th International Conference on Mobile Software Engineer-
ing and Systems (MOBILESoft), May 2017, pp. 30–34.

[73] A. P. Miettinen and J. K. Nurminen, “Energy Efficiency of Mobile
Clients in Cloud Computing,” in Proceedings of the 2nd USENIX
Conference on Hot Topics in Cloud Computing, ser. HotCloud’10,
Boston, MA, USA, June 2010.

[74] N. Gautam, H. Petander, and J. Noel, “A Comparison of the Cost and
Energy Efficiency of Prefetching and Streaming of Mobile Video,” in
Proceedings of the 5th Workshop on Mobile Video, ser. MoVid ’13, Oslo,
Norway, February 2013, pp. 7–12.

[75] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,
“Investigating the energy impact of android smells,” in 2017 IEEE
24th International Conference on Software Analysis, Evolution and
Reengineering (SANER), Feb 2017, pp. 115–126.

[76] C. Sahin, P. Tornquist, R. McKenna, Z. Pearson, and J. Clause, “How
Does Code Obfuscation Impact Energy Usage?” in Proceedings of
the 30th IEEE International Conference on Software Maintenance and
Evolution (ICSME), 2014.

[77] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect
energy usage?” in Proceedings of the 8th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measurement (ESEM),
2014.

[78] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained Power Modeling for Smartphones Using System Call Tracing,”
in EuroSys ’11, Salzburg, Austria, April 2011, pp. 153–168.

[79] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware
test-suite minimization for android apps,” in Proceedings of the 25th
International Symposium on Software Testing and Analysis, ser. ISSTA
2016, 2016, pp. 425–436.

[80] R. Jabbarvand and S. Malek, “µdroid: An energy-aware mutation testing
framework for android,” in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE 2017, 2017,
pp. 208–219.

